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Abstract. In [4] Henon studied a transformation which maps the plane into
itself and appears to have an attractor with locally the structure of a Cantor set
cross an interval. By making use of the characteristic exponent, frequency
spectrum, and a theorem of Smale, our numerical experiments provide
evidence for the existence of two distinct strange attractors for some parameter
values, an exponential rate of mixing for the parameter values studied by
Henon, and an argument that there is a Cantor set in the trapping region of
Henon.

1. Introduction
In [4] Henon, motivated by computer studies of the Lorenz system performed by
Pomeau, studied a transformation which maps the plane into itself. Henon was
able to prove, among other things, that the transformation which he considered
was the most general quadratic map which carries the plane into itself and has
constant Jacobian determinant. Then in a remarkable sequence of computer
graphics he gave strong numerical evidence that the transformation he studied has
a strange attractor whose local structure is the product of a one-dimensional
manifold by a Cantor set, at least in the neighborhood of one of the stationary
solutions.

Further, Henon was able to show for the specific parameter values which he
considered that there exist a compact set M, called a "trapping region", which is
carried into itself by the action of the transformation. Subsequently, Feit in [2] has
generalized the above result by giving a characterization of the compact set of
nondivergent points for Henon's transformation - a point in [2] is called
nondivergent provided its forward orbit under the action of the transformation
is bounded.

In [2] characteristic exponents were also computed for a substantial set of
parameter values for the Henon map. If the characteristic exponent is less than
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zero then neighboring trajectories approach each other at an exponential rate and
if it is positive then we have exponential separation of nearby trajectories hence,
the characteristic exponent provides a measure of sensitivity to initial conditions.
Feit found, for the parameter values studied by Henon, that the associated
characteristic exponent was positive. For a review of the properties of characteris-
tic exponents we refer the reader to [6] and the bibliography cited there.

Another quantity which is an indicator of sensitivity to initial conditions is the
decay of time correlations the time correlation function is a normalized time
covariance function and the decay of this function to zero provides some evidence
that a given dynamical system is mixing [6], By computing the Fourier transform
of the covariance, i.e., the frequency spectrum, it is possible to determine which
frequencies contribute most to the variance of a process. If the frequency spectrum
consists of solitary narrow spikes then the underlying process is (multiply)
periodic, while if there is a broad band of frequencies present then the process has
continuous spectrum and is not periodic. Gollub and Swinney [3] have measured
frequency spectra for the velocity field in a rotating fluid and have found a broad
band of frequencies present.

Despite the graphics of Henon and the work of Feit, some doubt has been
expressed that there is a Cantor set in the trapping region. Indeed, Newhouse [5]
has suggested that Henon may have found a very long periodic orbit. If this is the
case then it is certain that computational error will prevent one from establishing
the period of the closed orbit.

In order to demonstrate the effects of computational error on the iteration of
Henon's transformation consider the following simple experiments: Given an
initial condition, compute the sixtieth iterate of the transformation using two
different machines (a CDC 7600 and a CRAY-1) - both machines carry fourteen
significant digits in single precision. We found that there was no agreement in the
output of the machines by the sixtieth iterate of the transformation!

Since the computational error is definitely significant after sixty iterations of
Henon's map, it is apparent that it will be difficult, if not impossible, to establish
numerically that what we see in [4] is only a very long periodic orbit. Further,
although the above experiment illustrates that the rounding error makes it
impossible to predict the coordinates of a high iterate of Henon's map, the
numerical experiments whose result we report in this article indicate that rounding
error does not affect the gross statistical properties of the transformation.

In the following sections we shall make use of the characteristic exponent,
frequency spectrum and a theorem of Smale [7] to further study the Henon
transformation. In Sect. 2 we present the model of Henon and describe a few of its
properties. Section 3 is devoted to reporting the results of our numerical studies. In
Sect. 4 we end with a discussion of our findings. In the appendix we estimate the
round-off in repeated iterations of the Henon transformation.

2. Preliminary Result

The mapping of Henon is defined as follows:

T(x,y) = (l+y-ax\bx). (1)
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T is invertible with inverse

T-1(x,y) = (b-ίy9x-l+ab-2y2) . (2)

We shall assume throughout that α>0 and ft = 0.3.
It is immediate that T has two fixed points whose coordinates are given by

2α
3

One fixed point is in the left half plane while the other is in the right. We are
particularly interested in those parameter values for which the stationary solution
in the first quadrant is unstable. This is the case provided a > 3(1 — ft)2/4 (a > 0.3675
when ft -0.3).

Two of the main tools which we will be using in our analysis of T are the
characteristic exponent and frequency spectrum. The characteristic exponent is
given by the following expression

lim -log|DT"(x)v| , (4)
«->oo n

where by Tn we mean T composed with itself n times and D denotes differentiation
with respect to the two-vector x, v is a two-vector chosen at random. The
frequency spectrum is the Fourier cosine transform of the lag covariances where
the /cth lag is given by

1 n - l

- Σ

and x(ί) is some quantity of interest (e.g., position) which is assumed to have mean
zero.

3. Numerical Results

We find it convenient to present our numerical results in three separate sub-
sections, devoted to characteristic exponents, frequency spectra, and unstable
manifolds.

a) Characteristic Exponents

The characteristic exponents were computed following the procedure described in
[2]. However, we generally took one initial point and two random vectors. We
then iterated the initial point 60,000 times. This led to values of the characteristic
exponent which agreed to at least four decimal places for the two different random
vectors.

As we indicated in the introduction, Feit has computed the characteristic
exponent for a large set of values of a and ft. The result of one of those
computations was two distinct values of the characteristic exponent, having
opposite sign, when a= 1.0752. The corresponding limit sets were a stable orbit
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Fig. 1. a Graph of the characteristic exponent for αε [1.07, 1.08] and initial condition (0,0). b Same as a
only starting from a different initial condition
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Fig. 2. a Graph of a strange attractor when a— 1.08, initial condition the origin, b Graph of a strange
attractor when α=1.08, initial condition on a previous attractor

having period 24 and a set consisting of four arcs which are permuted under the
action of T. The phenomenon of several different attractors being present for the
same parameter value is known as hysteresis.

In Figs, la, b we see the graph of characteristic exponent as a function of α,
aε [1.07,1.08]. The variable parameter was incremented by a fixed amount (0.0001)
until the right end-point of the interval was reached. The graphs are the result of
computing the characteristic exponent for two different initial conditions, the
origin and the last point from the previous experiment (when α=1.07, the initial
conditions in both computations were equal).
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A comparative examination of the phase portraits associated with the above
graphs reveal that for a = 1.0721 we have two attractors present, a stable orbit
having period 12 and four stable arcs.

For a =1.0124 both phase plots are again in agreement and the agreement
seems to persist until around a= 1.0768. Recall, however, that Feit found two
distinct attractors when α= 1.0752. The fact that we did not find the stable cycle
having period 24 can be understood by realizing that neither the origin nor the
points on the four stable arcs are in the basin of attraction of the cycle of length 24.

For 0 = 1.0768 the graphs reveal that there are two distinct positive values for
the characteristic exponent depending on initial conditions and therefore two
distinct strange attractors which persist at least until α=1.08. An examination of
the (x,)>)-plane shows that in the interval [1.0768, 1.08] we have disjoint permuted
arcs of period four and six, and we also find stable cycles having period 20 and 18.

In Figs. 2 a, b we have reproduced the phase plots of the two different
attractors associated with the differing values of the characteristic exponent,
0=1.08.

We offer a possible explanation of what we are observing in the subinterval
mentioned above. Recall that as early as α= 1.0721 our phase space contains two
different attractors, stable period 12 and four stable arcs. As we increased the
parameter the cycle of period 12 undergoes repeated bifurcations (period 24 when
0=1.0752) until by a= 1.0768 all of the periodic points associated with cycles of
type 3-2" are unstable, but it seems likely that these points still have one-
dimensional stable manifolds. This stable "block" of points then gains and
transfers stability just as a periodic orbit might. However, it remains unclear why
such blocks should act in an apparently cooperative manner. We conclude this
subsection by remarking that the two different attractors having positive ex-
ponents persist until a= 1.0806 at which point the stable block having period six
becomes unstable and does not reappear in that form.

b) Frequency Spectrum

In computing the frequency spectrum for Henon's transformation we have used
the following procedure: Iterate T 500,000 times while simultaneously computing
lag covariances, Γk, for separations as large as 1000, then perform the cosine
transform. By taking fc as large as 1000 we are able to resolve frequencies as small
as 1/500.

In distinct contrast to the characteristic exponent for parameter values in the
interval described in the last subsection, the frequency spectrum remains flat and
uninteresting with peaks corresponding to periods two, four or six until around
0 = 1.23. For 0 = 1.23 there seems to be the first occurrence of an odd period,
period seven. Below this parameter value the behavior of the dynamical system is
confined to something having period 2n or 2" with "noise", and a small range of
parameter values where there is a period 3 2" phenomenon.

Feit has found that there are entire subintervals where 0<1.23 on which the
characteristic exponent is positive. In particular, for 0=1.15 the characteristic
exponent associated with the attractor is greater than zero, the attractor for this
value consists of two disjoint pieces of arc. A closer examination of this limit set
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Frequency spectrum as computed on the CRAY-1 computer, b Frequency spectrum as
on the CDC 7600 computer

reveals that the arcs are images of each other and the overall behaviour is a period
two with noise.

A possible explanation of why one does not observe a continuous band of
frequencies for T when α = 1.15 has been provided by Bo wen in [1], In that article
Bo wen is interested in modeling the Couette flow data of Gollub and Swinney [3].
In this context he points out that even though a dynamical system may undergo a
qualitative change, a quantitative observation may be insensitive to that change.
Our numerical experiments suggest that Bowen's comments are valid for Henon's
transformation for a less than 1.23 and the observable is the frequency spectrum.

The result of our frequency spectrum calculations are summarized in Table 1.
There we present only the behaviour of the x-covariances and spectra, the
corresponding y behavior are similar

Table la

Covariance Power spectrum

1.30 period 7
1.31 attractor
1.32attractor
1.33 attractor
1.34 attractor
1.35 attractor
1.36 attractor
1.37 attractor
1.38 attractor
1.39 attractor
1.40 attractor

period 7
decay to zero
decay to zero
decay to zero
decay to zero
decay to zero
decay to zero
decay to zero
decay to zero
decay to zero
decay to zero

peaks corresponding to periods 7, 14 and 21
periods 7, 14, 21
periods 7, 14 and broad band
periods 7, 14 and broad band
periods 8, 14 and broad band
periods 7, 14 and broad band
periods 7, 14 and broad band
periods 6 and broad band
broad band
broad band
broad band

a In each experiment summarized here, Twas iterated 500,000 times and we resolved
frequencies as small as 1/500, έ> = 0.3 throughout



Henon Transformation 135

It is immediately clear from the table that the time correlations tend to zero in
all except one of the cases reported. Further, a cursory study of the correlation
function suggests that the rate of decay is exponential hence, we have evidence for
an exponential rate of mixing for certain parameter values. Because of the decay of
the time correlations it is not unexpected that for those values of a we should get a
broad frequency band in the spectrum.

To complete this subsection we present Figs. 3 a, b. In these figures we see the
x-frequency spectra for the parameter values studied by Henon. These graphs were
the results of spectral calculation from the two different machines mentioned in the
introduction of this article. Even though it is certain that rounding errors are
significant as far as predictability is concerned, these figures provide evidence that
the Henon attractor has some of the statistical properties of the Axiom A systems
of Smale [7]. Specifically, there seems to be a lack of sensitivity to the effects of
small random perturbation (rounding error) on the statistics derived from iterating
T a high number of times [6].

c) Unstable Manifold

In this subsection we present strong evidence that there is a Cantor set in the
trapping region of Henon.

In order to show the existence of a Cantor set in M, we make use of a theorem
of Smale. First we recall a definition from [7]. Let Ws(p], Wu(p) denote the stable
and unstable manifolds of a periodic point p. By a homoclinic point of T, a
diffeomorphism of M, we mean a point xe Ws(p)r\Wu(p). If Ws(p) and Wu(p) are
transversal at x, then x is called a transverse homoclinic point. Smale proved the
following

Theorem. Suppose x is a transverse homoclinic point of a diffeomorphism T of M.
Then there is a Cantor set A CM, xeΛ, and m a positive integer such that Tm(A)CA
and T™ restricted to A is topologically a shift automorphism.

It follows from the above theorem that there is a dense set of periodic orbits
contained in A.

The above theorem suggests that we look for transverse homoclinic points in
the trapping region M. Since it is straightforward to find the fixed points of T
which lie in M, the associated stable and unstable direction, and their eigenvalues,
we performed the following experiment:

1) Generate a segment of the stable manifold by constructing a line having the
appropriate slope, containing 250 points, centered at the fixed point and having
total length 0.02 units.

2) Follow the same procedure as in 1) for the unstable manifold; the only
difference being in this case we generate a line containing 1000 points. Now using
T~1 iterate the segment of stable manifold three iteration while saving the 250
initial points and all intermediate iterates. Then using the mapping T, iterate the
section of unstable manifold forward to determine if there is a nontrivial
transversal intersection of the unstable manifold with the segment of stable
manifold. Because of the computational errors inherent in iterating T on a
machine, we hope to see a transversal intersection well before iteration sixty.
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Fig. 4. Iteration 11 of the unstable manifold. Several intersections of stable and unstable manifold can
be seen in this figure.

For the specific values investigated in [4], we found that by the 10th iterate of
the initial points on the unstable manifold there was an intersection with the
segment of stable manifold. By iteration 11 (Fig. 4) a section of the unstable
manifold crosses the stable manifold within 0.01 units of the fixed point; we can
also see several other such intersections in this picture.

Though Fig. 4 is extremely strong numerical evidence that the stable and
unstable manifolds of the fixed point do have a nontrivial transversal intersection,
what is required is an estimate which will show that by iterate eleven the
computational error is not too great. In the appendix to this paper, we give the
required estimates. Those estimates indicate that, for the case studied by Henon,
the absolute error is no larger than 10 ~ 5 for single precision arithmetic and 10 ~ 1 5

for double precision.
In Fig. 5 we have iterated a section of the unstable manifold 12 times. In this

figure it is possible to see those parts of the unstable manifold which bend back on
itself.

If we iterate the points on the unstable manifold four additional times, we find
a phase portrait which is virtually identical to Fig. 2 of [4]. This proves, if one does
the computations in double precision, that the unstable manifold is contained in a
cylinder of small radius and provides additional support to the speculation that
the Henon attractor is the closure of its unstable manifold.

We note that the value of the parameter a (b = 0.3) for which the first nontrivial
transverse intersection of stable and unstable manifolds of the fixed point occur is
ac where 1.15<αc^1.16. We conclude this subsection by remarking that as a is
increased beyond the value studied by Henon, the unstable manifold approaches
the set, <2, of divergent points of Feit. For the critical value a —1.4272 the unstable
manifold of the fixed point in the first quadrant intersects Q. Because of the
presumed mixing of the system, all points on the unstable manifold are eventually
mapped into Q, and once in that set they tend to infinity. For those parameter
values for which the unstable manifold intersects Q we expect to find no attractor
present.
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Fig. 5. Iteration 12 of the full unstable manifold. The unstable manifold bends back on itself

4. Conclusion

In this article we have presented the results of several of our numerical
experiments on Henon's transformation. In our study we have made use of the
characteristic exponent, frequency spectrum, and a theorem of Smale. By using
these tools we have found parameter values which give rise to two different
attractors depending on initial conditions, both of which have positive characteris-
tic exponents. Our analysis of the frequency spectrum suggests that for the
parameter values where two attractors exist, the spectra calculations are in-
sensitive to the qualitative difference between a stable period four and a stable
block having period four. For higher parameter values we found continuous
spectra and time correlations which apparently tend to zero at an exponential rate.
Hence for the parameter values studied in [4] the motion on the attractor is most
likely mixing. We have found that there is a transversal homoclinic point in the
trapping region of Henon. This provides a partial explanation of the graphics in
[4]. However, though it is certainly the case that there is a Cantor set in the region,
it is not the case that such Cantor sets are attractors. The calculations reported
here provide evidence that the statistical quantities we have measured are stable
under the systematic perturbations caused by rounding error.

Finally there remains at least one major unanswered question: Did Henon find
a very long periodic orbit or a strange attractor? The numerical experiments of
Feit and this author provide support for the existence of a strange attractor. It is
shown in the appendix to this paper that the absolute error committed by iteration
60 to T is order one, this suggests that it will be difficult, if not impossible, to prove
using a machine that what Henon found is nothing more than a very long periodic
orbit.
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Appendix

In this appendix we do the estimates necessary to prove that by the eleventh
iteration of Henon's transformation the computational error is not significant.
However, the argument which we present falls short of being a proof due to certain
technicalities which we shall describe at the end of this section. The main sources
of computational error produced when iterating a transformation are due to the
method by which a machine internally represents each number and how it does its
arithmetic. We shall call these two types of error "rounding errors". Therefore we
want to prove that by the eleventh iteration of Henon's transformation the
rounding error is small. We shall do the estimates only for T since those for T~ 1

are similar. In what follows we shall denote the approximate floating point
operations of addition, subtraction, and multiplication as performed in the
machine by 0, θ, and ®.

We find it convenient to write T in the following form :

Further we shall also assume that O^α^l.5, 0<έ><! and that max|x f |^1.5. This
last condition is certainly true for the case studied in [4].

In the computer the above formula is represented as

Here we have used a "~" to denote the machine representation of the
associated exact numbers.

We seek an estimate of the magnitude of

l* i+ι-*i+ιl and l3>i+ι-5W i l -

It is enough to establish an estimate of the magnitude of

l χ i + ι - * / + ι l since \yi+ι-yi+ι\ = \bχ

i-b®xi\ .

Now if we let u denote the absolute error in representing a number in the machine
then when the machine represents b®xt it makes an absolute error no larger than
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^ |bχ. - bxt\ + \bxt - b®xt\

^ίφCi-Xil + Sw

This last inequality is a consequence of our assumptions.
Because of the last inequality we have

\xi+ 1 ~ *i + 1 1 = b\xi-ι - xi - 1 1 + \axf - a® *i® *i\ + 3w .

The error made in evaluating the number α®3cί®xί is no greater than

Therefore

Hence

^ί?|x /_ 1-x ί_ 1 | +

If we define K = 3a, η = 10u, β0 = max [|xt -x1|, |x0 — x0|] and α ί + 1

= (K + b)at + ?/ then it follows that \xί + 1—xi+ί\^ai + ί. If we now make use of the
recursive definition of ai + 1 in terms of aί we find that

We now compute an upper bound on α0 and find that a0<(4a + 5)u. Therefore,

(4α-

Now u = 10 14 on the machine which we did our computations, therefore

1 HM+

In particular if ΐ + 1 = 11 and a —1.4, b = 0.2

I v v I ̂  1 Π~ 5
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for single precision arithmetic, and

for double precision arithmetic.
Despite the error estimates given above we still have not proved that there is a

transverse homoclinic point in the trapping region of Henon. The reasons that our
arguments fall short include the following:

(a) In locating the fixed point in the trapping region we have made use of
formula (3) of Sect. 2. This formula involves doing floating point operations and
computing a square root. The floating point operations are, as we have seen, not
exact and computing a square root introduces additional uncertainties into the
computation.

(b) In Fig. 4 we have a sequence of dots which should lie very near the stable
and unstable manifolds. If these dots are connected in any reasonable manner to
form the smooth curves, they will cross. But it is not obvious that by iteration 11
the stable and unstable manifolds are close enough to being straight so that they
do indeed cross transversally.

(c) Finally, the accuracy of floating point operations on the CDC 7600 and
CRAY-1 depends among other things on what the compiler decides to do about
normalizing intermediate results when evaluating complicated expressions.

Because our analysis has not taken (a)-(c) into account we do not have proof
that there is a transverse homoclinic point in the trapping region of Henon.
Indeed, because of (c) it seems likely that the best one can do is prove that given a
specific compiler on a specific machine that estimates of the above sort are valid.
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