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Exponential Clustering for Long-Range
Integer-Spin Systems*
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Abstract. By using Kirkwood-Salsburg equations for classical spin systems
with unbounded integer values we prove exponential decay (resp. power law
decay) for exponential (resp. power law) decaying potentials. We use these
results to prove the mass gap in the two-dimensional Higgs-Villain model in
the weak coupling region.

1. Introduction

In a previous paper [1] we have worked out a Kirkwood-Salsburg equation for
unbounded integer spin systems whose Hamiltonians are positive definite qua-
dratic forms and investigated the conditions under which it led to a unique
equilibrium state expressed as a convergent series in powers of the "Kirkwood-
Salsburg" operator. We applied these results to the two-dimensional Higgs-Villain
model, which is reduced to such a system by duality transformations [2-6].

In the present paper we use the series expansion of the equilibrium state to
prove exponential (resp. power law) decay of truncated correlation functions when
the interaction potential decays exponentially (resp. with a power law). Similar
results for lattice gas and continuum systems are obtained in [7] and [8]. In fact,
our method, especially in Theorem 2, is very similar to that of [7]. The results of
[8] apply to very general systems, but only with finite range interactions.

We apply our results once more to the two-dimensional lattice Higgs-Villain
model to prove that in a certain range of parameters (g2/T large and g2 small)
truncated expectations of local observables exhibit exponential decay, i.e. there is a
mass gap. Moreover our lower bound on the mass approaches the "bare mass"
gqT~112 as T-^0 with g2/T fixed. There is some question whether this mass gap
should be interpreted as a Higgs mechanism. A massive photon would be
associated with a Yukawa type potential between external charges, contradicting
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confinement [9]. Previous results on the Higgs mechanism in general lattice Higgs
models were obtained in [10] using the cluster expansion. Further results are
announced [4] and proved in detail in [11].

We recall notations and results on the Kirkwood-Salsburg equation for
unbounded spin systems on the lattice [1]. The system has Hamiltonian
HΛ = Σ sxV(x — y)sy with the spins sx belonging to Έ and Gibbs measure e~βIlΛ.

x, yeΛ

The potential V is assumed to be real, symmetric, translation invariant (for the
sake of simplicity) and positive definite with Σ sxV(x — y)sy^ε Σ s^ for some

x,yeΛ xeΛ

constant ε>0. Qx denotes a configuration {sx}xeX defined o n l , with all sxφ0. φ is

the empty configuration. We write v(Qx) = Σ s%. For any constant r > 0, a norm
xeX

on complex-valued functions on {Qx} is defined by | | φ | | r = sup \ψ(Qx)\eMQx\ The
X,Qχ

Banach space of functions ψ{Qx) with | | φ | | r < oo will be denoted by Fr.
The Kirkwood-Salsburg equation can be expressed as ρ = δ + Kρ where

δ(φ)=ί, δ(Qx) = O for nonempty Qx and Kρ(φ) = 0

Qτ

where the activity z which appears in [1] is absorbed in V(0). Above

Wx(Qx)=V(0)sl + 2 Σ sxV(x-y)sy; X'=X-{x};x = x(Qx)eX (1.2)
y^X'

fe(sx,ρr)=Π(e"2^K(χ-^-i); k[Sχ,φ)=ι (1.3)

RxQ(Qγ) = Q(Qγ)-ΣQ(txQγ)- (1-4)
ί Φ O

The proofs in this paper require the choice of the distinguished site x to be made in
such a way that if xo—x(QχQγ)€Xi then also xo=x(Qχ). It is not clear that our
method of choice in the previous paper [1], leading to the bound WX(QX)
^(2ε— V(0))sl, can satisfy the requirement. Instead, we choose x(Qx) to be the first
point of X in some consistent ordering (e.g., lexicographic) for which
IsJ^maxdSyl'.yeX}. This leads to the bound

W*(Qx) ̂  V(0)s2

x - 2\^sxV(x - y)sy\ £ (7(0) - 2 ^ (1.5)

Therefore the following result is a slight modification of Theorem 2 in [1] :

Theorem 1. Let S x = Σ I^MI and S2=z Σ F W 2 If r ^ and

xΦO xΦO

i 8(F(0)-25 1 )- r- i 8
2 ^-2 i β^>log2, (1.6)

then K is an operator in Fr with norm | |K | | r < 1. For l^r^βεthe unique solution of
the K — S equation gives the correlation functions of the theory.

2. Exponential Clustering and the Kirkwood-Salsburg Equation
00

Our basic strategy is to use the expansion ρ = Σ ^ " ^ s o that

Q(QXQY)-Q(QXMQY)= Σ ίKnδ(QxQγ)-"Σ Vδ(Qx)Kn-mγϊ] (2-1)
n=2 j = l
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and to bound inductively each term on the right. In pulling out a factor such as

e-μd(x,γ) from e a c } 1 t e r m ( w h e r e d(X,Y) = inϊ{\x — y\:xeX, yeY}) we obtain a
quantity which can be bounded using the same estimates used in [1] to bound the
operator K, but with a "comparison potential" V instead of V. For example, we
may take V(x) = eμ^V(x).

Theorem 2. Suppose β, V, and r satisfy (1.6) and \V(x)\ rgconst. e~m^ for some m>0
and \x\ is some norm on IRd. Then there exist constants C and μ>0 such that

2
xΦO xΦO

^Q^e~^x>γK (2.2)

Proof For m>μ^0 let V(x) = eμ{xl\V{x)\ with Sί= Σ \V(x)\ and S2 = Σ ^ W 2 By

continuity we can take μ > 0 such that

2Sί2βS±L = β(V(0)-2S1)-r-β2Sί-2βS±>\og2 (2.3)

so that B = 2e~L<l. This is the condition on μ that we need for the proof.
As indicated above, it is enough to show that

Λ Σ & ^ ^ (2.4)

with Σ cn < °° T n e P r o o f w i l 1 b e b y induction. For n = 1 Kδ(QxQγ) = 0 so C1 = 0.
« = i

Suppose (2.4) is true for n. Then (assuming X = X ( Q X Q Γ ) G X )

K"+1δ(QxQγ)- Σ KJδ(Qχ)Kn+1

7 = 1

7 = 0 Γ c X c Q τ

where

(with W"(βκ) = 2 Σ

j = o

7 = 0 TCXC Qτ

TY^Φ
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Using the inequality |eαί— l |^α(β | f | - 1) for O g α ^ 1, we have

So from the estimate

2β Σ sxV(χ-y)sy

e veY e-βWx(Qx)<e

following the proof of Theorem 2 in [1] we get

If Tc{XuY)c is nonempty, choose j ; o eTsuch that \x-yo\ + d(XuT, Y)^d(X, Y).
In the estimate of T2, we want to extract a factor e~μ\χ~y°\ from k(s ,0 T ) and

μd{xuτγ)f

R x K n δ ( Q x , Q τ Q γ ) - £ x x τ γ

To do this we must consider together terms with s positive and negative. Let Qτ

be Qy with the sign of Syo reversed. Then by the induction hypothesis (2.4), the
definition (1.4) and the inequality |sinhαί|^α|sinhί| for O ^ α ^ l , it follows that

Usx,Qτ)\ \RxK
nδ(Qx, QTQY)-Y RxK

jδ(Qr Qτ)Kn^δ{Qγ)\
7 = 0

+ same expression with Q'τ

^ 4C Jfc(^, Q τ u ^ | sinh£| F ^ ^

g 4CJfc(Sjc, Qn{yJ sinhySI V(x - yo)sxsyo\e ~ ^x>Y) e ~ 'WX'QTQY) . (2.5)

Following again [1], we obtain

Similarly we can extract a factor e~μlx~yl with yeTnYfrom k(sχ9Qτ) in each term
of T3, obtaining

Thus we have (2.4) with Cn+1^B(n\\K\\n

r + Cn). Since ||K||r<JBί< 1, it is easily seen
that XC n <oo.

The short distance behavior of V(x) will have a strong influence on the
allowable values of μ in Theorem 2. For example, in section 4 we will have

p — m\x\

V(x) = (—JJhm2)~1(x) which has the asymptotic form const — . However,
/ \ \]/m\x\

F(l)«m ^ m F(0) for large m, so in order to have V(0)>2Sί, as is necessary for
(2.3) to hold, we will need μ<21ogm. We would instead like to have μ (the lower
bound on the "physical mass") of the same order of magnitude as m (the "bare
mass"). In fact, we will show that (2.2) holds with any μ<m if β is sufficiently large.
The strategy is to modify the definition of V at short distances. This will make it
necessary to have B small enough, which will be achieved for large enough β.
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Theorem 3. Suppose £ | F ( x ) K w < oo and V(0)-2Sί >2\/Ίf2. Then there are some
β0 and r0 such that for β>β0 and r = βr0 (2.2) holds (with C->0 as β-^ooj.

Proof. The proof of this theorem is a combination of the proof above and that of
the Corollary in [1]. Let us take r = βr0. Then

L = β(V(0)-2S1-r0-S2/r0)-2S1/r0.

For any μ satisfying Σ|F(x)|έ>μ | x |< oo, we define V(χ) = \V(x)\ if \x\^R and V(x)
= \V[x)\eM if \x\>R, where R is chosen so that the condition F ( 0 ) - 2 S 1 > 2 | / ^
holds. Then there exists r 0 such that V(0) — 2Sί — ro — S2/ro>0 and therefore a βo

such that, for β>β0, B = 2e~L<e~μR. Now we imitate the proof of Theorem 2. If
d(X,Y)^R we use

y)- Σ

If d{X, Y)>RWQ have the same estimate on Tλ and T3 as in Theorem 2. If there is
y o eTwith \x — yo\>R, we again have the estimate (2.5). lΐ\x — yo\^R for all yoeT,
then ί/(Iui; 7)^^(X, Y)-R so

<2C β-^^'^^Λg-ί vί

This leads to the estimate \T2\^BCne
μRe~rΛQxQγ)e~μdiXJ\ Thus

O

It is easily seen that Cn^DBnenμR for some D independent of β. So C = ^ Cπ is
n = 2

finite if B<e~μR, and as β->oo we have J5->0 and so C->0.
Similar results to Theorems 2 and 3 can be obtained for power law, rather than

exponential, decays by using the metric δ(x, y) = \og(l + \x — y\) instead of |x — y|.
Thus if V(0)-2S1>2\/S~2 and £|F(x) | |x | y < oo, then for β sufficiently large
\Q(QxQγ)-Q(QxMQγ)\<Cd{X, γyye-

rv{QxQγ) for some C and r.

3. Exponential Clustering of Observables

Once we have obtained exponential clustering of the correlation functions ρ(Qx)
by Theorem 2 or 3, we may look at cluster properties of more general observables.
Suppose/is a function on the configuration space Zx for a region X on the lattice,
with the property that

f{{sx}) = 0 if any sx = 0 for xeX. (3.1)
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Then <f)=Σf(Qx)Q{Q%) (assuming that the sum converges absolutely; since
QxQx

ρeFr for some 1 ̂ r<;βε, this is a very mild condition on the grouth of/). For two
such"functions / and g on TLX and TLΎ respectively, with X and Y disjoint,

so that if ρ satisfies (2.2) we obtain

l<Λ>-</><0>l*c(^

If f does not have the property (3.1) we can write / = Σ Pτf where P τ /
TcX

depends only on the spins in T, and vanishes if any of these is zero. In fact

Pτf{{*x})= Σ ( - D i n s | / « ° W Kl.es)- For T=^, P φ / is the constant /({0}).
5CΓ

From the clustering of ΫTJ and PTig, we obtain that of/ and gf.

yeY

b s \Then Pτf= Π (^Λ"5" ~i), and similarly for ̂ . Thus ifρ satisfies (2.2)

Σ Σ Σ Σ Π

Σ ί Π \eiaχS*-

\ 5 + 0 )yeY\

gyΣWg-μ^X.y) (3.2)

00

where y =2 £ |s|e~™2.

We can accomodate sums and integrals of such functions. Suppose
f=$dvι(a)eiΣaχSχ and g^=^dv2{b)eiΣbySy for complex measures dvt and dv2 on
[ - π , π ] z and [ - π , π ] y respectively. Then if ρ satisfies (2.2)

\<fg> ~ </> <^>l ^ C(f dv.

Finally, we note a further refinement that will be useful in the application to the
Higgs-Villain model. Suppose again /=exp(i^Λ:csx) and 0 = exρ(i£Vy)> but

instead of being strictly local they satisfy conditions Y}ax\em*>X)<co and
X

Σ\bJe»diy γ)<oD. Let xoeTv y0eT2 with d(Tv Γ2) = |x0-JΌl Then

CT, xeΓ! fir,
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Since d(Y,X)^d{xo,X) + d(yo, Y) + \xo-yo\ we obtain

(3.3)

4. The Mass Gap in the Higgs-Villain Model

We want to use the results of the previous sections to prove exponential clustering
of localized observables in the two-dimensional Higgs-Villain model. This model
has angle variables φx and Axμ associated with sites in 7L2 and nearest-neighbor
bonds respectively (xμ is the bond between x and x + μ, μ = 1 or 2, where ί = (1,0)
and 2 = (0,1)). The partition function and Gibbs equilibrium states are Z=\dσ
and <̂ /̂ > = Z ~ 1 \fdσ respectively, with

dσ=Π Σ

•Π Σ
Here dμ is the finite difference operator dμf(x)=f{x + μ)—f(x), εμv is the anti-

symmetric tensor I, and repeated Greek indices are summed. Thus

\—1 0/
εμvdμAxv is the plaquette variable Axi+A{x+ι)2 — A{x+2n—Ax2. We start with a
finite lattice and assume periodic boundary conditions, in order to ensure
translation invariance. As in the above sections, our results hold as well in the
thermodynamic limit. We will actually work not with C * 2>? but with a θ vacuum
<̂  ^>θ, where θ is an integer from 0 to q — 1 [1].

Let X be a bounded region in IR2, and / a function of the variables φx and Axμ

for xeX and xμCX respectively. We will assume that / has an absolutely
convergent Fourier series YjcstQxpi((s,φ) + (tμ,Aμ)). Here sx and txμ are integer-
valued functions on sites and bonds respectively, and we write (g, h) for
the I2 inner product Yj~g(x)h(x). Unless (s,φ) + {tμ,Aμ) is gauge-invariant,
<^expz((s,φ) + {tμ,Aμ))^>θ = 0. Now the gauge-invariant terms (s,φ) + (tμ,Aμ) are the
linear combinations with integer coefficients of dμφx — qAxμ and εμvdμAxv. This may
involve terms with xφX unless we assume X is simply connected, and thus contains
any site enclosed by a path in X. Discarding all but gauge-invariant terms, we may
w r i t e / - Σauveuv w h e r e euv = Qxpi((u,εμvdμAv) + {vμ9dμφ-qAμ)). We let | |/ | | ζ

Σ »ι;μ)) ^ 0 Γ C>0 We will prove the following theorem:

Theorem4. Suppose (1.6) holds with V(x) = ( — A+m2)~1(x\ β= and m2

g2q2

= . Then there are positive numbers μ, ζ, C such that, for any functions fx and

fγ of the variables in two disjoint simply-connected regions X and Y,

\«fxfy»β-«fx»e«fγ»e\SC\\fx\\ζ \\fΎ\\ζe-^x γ\ (4.1)

Moreover as T->0 with m fixed, we may take μ->m.
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Proof. It is sufficient to show that, for u and vμ (resp. u' and v'μ) supported mX (resp.

Y)

K < e M A v > > * - < < 0 > < ^ (4.2)

Using the duality transformations of {1} we obtain

— (w,(-

and similar expressions for ^euυeu,υ,^θ and ^eu,v^θ, where — Δ=d*dμ,
w = Tε d*v +g2qu, and

2π2

The imaginary "external field" in this model can be dealt with by a slight
modification of the definition of K, as in {1}, leaving unchanged all the estimates of
the preceding sections. Thus by (3.3) we have

| < g i(M + λ ' ) > β _ < e i ( M ) > β < y < ^ (4.3)

with λ= — ( — A +rn2yιw, λ = — ( — A +m2)~ιw', C and μ as in Theorem 2 or

Theorem 3, and ,4= Sl9 noting that

x A xy x x

Moreover, we can use the inequality \eat—l\^ae^ for O ^ α ^ l to prove

i/ifY V\ \—^ /

so that

1

-exp — (w,(-/l+m 2 ) 1w) + (w\(-A+m2) xw')

^ exp — ((w, ( - A + m2) ~ ι w) + (w;, ( - A+ m2) ~ 1 w')

S exp B((w, w) + (v/, w')) ̂  " μ d ( X ' Y ) (4.4)
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with B= — (m~2 + 51). Putting together (4.3), (4.4) and easy bounds on w and W

in terms of u, vμ, u' and v'μ, and noting that £ \ux\ ^(w, w) because the wx are integers
(and similarly for u', υμ and υ'μ\ we obtain (4.2).

For this model the condition (10.6) is true if m2>10.4 (so that F(0)-2S 2

>2]/Ίf2 holds) and g~2 is sufficiently large (with a bound approaching 0.2 as

m-χx>).
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