
Communications in
Commun. Math. Phys. 67, 199-203 (1979) Mathematical

Physics
©by Springer-Verlag 1979

A Note on the Vacuum Structure of an
SU(2) Yang-Mills Theory

D.H. Mayer1* and K.S. Viswanathan2**
1 Institut fur Theoretische Physik, E, RWTH Aachen, D-5100 Aachen, Federal Republic of Germany
2 Physics Department, Simon Fraser University, Burnaby, B. C., Canada V5A 1S6

Abstract. We discuss different compactifications of the spacial part [R3 of
Minkowski space and give classifications of the vacuum structure for a
Yang-Mills theory.

1. Introduction

The possible vacua in an SU(2) Yang-Mills theory and their physical implications
have been discussed in several papers [l]-[6]. It turns out that a classification
of this vacuum structure can be given by using homotopy theory of the underlying
topological spaces. If we restrict ourselves to the so called A° = 0 gauge, the
vacuum configurations are given by pure gauge fields A(x) = 0-1(x)V0(x), where
g : [R3 -> SU(2) is some mapping of the spacial part [R3 of Minkowski space into
the gauge group G, which for simplicity we take to be SU(2). To get the above
mentioned classification one proceeds as follows: one compactifies R3 to some
compact space K and studies then the continuous mappings of K into the gauge
group G. Commonly one takes for K the one-point compactification S3 and gets
then a vacuum classification, for instance, via π3(SU(2)) which is isomorphic to Z.
Therefore an infinite sequence AM,n = 0, ± 1,..., of vacua arises in an SU(2)
theory.

In terms of the mappings g: [R3 -> SU(2) the one-point compactification can
be described also by allowing only those mappings g which have the property
that lim g(x) = const, independent of the direction in which one goes to infinity.

X-> 00

Now Gribov [5] found that the physical properties of such a theory are in a
great deal affected also by mappings g which have a more complicated behaviour
at infinity. It is therefore natural to look for different compactifications of [R3

which allow also such mappings.
Instead of giving a compactification of the space [R3 in terms of a certain

topological compact space K in which it can be embedded we use another comple-
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tely equivalent approach [7]: the space K can be described more indirectly by the
set ^(K, SU(2)) of all continuous mappings g:K^> SU(2). If K should be a com-
pactification of IR3 then all these g arise from mappings g : IR3 -> SU(2). It is clear
that a compactification K is therefore also determined by the set of those 0's
which we want to be extendible in the above sense to continuous mappings
g:K-+SU(2).

The procedure we want to follow therefore is to choose a certain set τ0 of
mappings g: [R3 -* SU(2) to which the Gribov mappings belong and classify
these mappings via homotopy theory. In a second section we show how the set
τ0 is related to a natural compactification K of the space [R3 in an SO(3) Yang-
Mills theory, which is topologically just real projective 3-space P3.

2. The τ0 Compactification of U3

Let be given a vacuum field A(x) such that

A(x) = g~ 1(x)Vgf(x), (1)

where g: [R3 -» SU(2) is some continuous mapping of [R3 into the gauge group
SU(2) which is diffeomorphic topologically to the 3-sphere S3. We denote by
/(x) the function /(x)=lim g(x) which we assume to exist. Then define the set

i=x/f i °x | l
τ by

τ : = {ge^(U3,S3)\fe^(S2,S3)}. (2)

The compactification K of [R3 which allows all geτ to be extendible to ge^(K, S3}
is just the unit 3-ball B3 in [R3, where B3 : = {xe [R3 : || x || <£ 1}. Because B3 is contrac-
tible, any continuous mapping g : K -> S3 can be continuously deformed into
the constant mapping. The vacuum structure of an SU(2) theory with this com-
pactification is therefore trivial.

To get a nontrivial structure we have to make some restrictions on the allowed
mappings g : 1R3 -» S3. This is generally done by introducing equivalence relations
on B3 : the S3 compactification corresponds to the equivalence relation where
all points on the boundary dB3 are identified to one point. In terms of the mappings
g such an equivalence relation can be described by demanding that g takes on
the same values at points which should be identified. What we want to do is still
a little bit more general: we prescribe certain relations between the values the
mapping g takes on at different points. To formulate this more precisely we note
that the set τ in (2) can be described also by the set τ which is given by

τ = {g:B3 -+ S3 :g is induced by a geτ},

and this set is just Ή(B3 , S3). We define then the sets τ0 c τ and τ0 <= f as follows :

τ0 = {<?eτ:<7(x)= ±g( - x) for xeδ£3}. (3)

The mappings ^eτ0 can be classified now via homotopy theory. Denote by τ±



Vacuum Structure of SU(2) Yang-Mills Theory 201

the sets

τ± - {gετ0 :g(x) = ± g( - x) for xeδB3} . (4)

Then we have

Lemma 1. The homotopy classification of the set τ+ is given by the cohomotopy
set π3(P3) which is in one to one correspondence with fί3(P3) = Z.

Proof. Because real projective 3-space P3_is diffeomorphic to the unit 3-ball
B3 with antipodal points on the boundary dB3 identified [8], every #eτ+ induces
a mapping of P3 into S3. The homotopy classification of these mappings is given
by the third cohomotopy set π3(P3) [9] of P3. The Hopf Theorem [10] then
gives the one-to-one correspondence with the third cohomology group of P3 with
integer coefficients, which turns out to be Z.

This solves the classification of the set τ+ . It is infact given by the degree
of the mappings #eτ + . We mention only briefly that every geτ with g(x) = const.
for xedB3 belongs to τ+ . It induces even a mapping # : S3 -> S3 and can be classified
also by π3(S3). The classification is again via the degree and gives the same result.

We are left with the classification of the set τ _ . But this can be given quite
easily, as one can see best in the one dimensional case. Here one has to consider
mappings of the closed interval [—!, + !] into S1 such that g(l) = — g( — 1).
This forces the image to cover the unit-circle half-integer times. It is straight-
forward to see that exactly the same happens in higher dimensions. So, if we
define the number q as

then this q is a topological invariant and takes on all half integers ±^, + f , ... .
Any element of the class [ ± -|] generates all other classes in the set τ0 .
To summerize we have

Theorem 1. The homotopy classification of the set τ0 and therefore also of the set
τ0 is in one-to-one correspondence with the group \~L.

A mathematical problem which is left at this stage is whether a compact space
K exists such that τ0 = ^(K9 S3) and if this space can be characterized in a simple
way. It is certainly not a quotient space of the unit 3-ball B3 . In the next section
we discuss the relation between τ0 and the vacuum classification problem in an
SO(3) Yang-Mills theory.

3. The Vacua in an SO(3) Theory

Because SO(3) ̂  SU(2)/Z2 and P3^S3/Z2 we have SO(3)^P3. The vacuum
structure in such a theory is therefore related to the homotopy classification of
mappings g : [R3 -> P3. We consider in analogy to the previous case the set σ : =
[ge^(U\ P3) :/(x)e<P(S2, P3)}. Furthermore denote by σ+ = {geσ :/(x) =/(- x)} .
The mappings geσ+ induce continuous mappings g : P3 -> P3. Their classification
is given by a Theorem of Olum [11] and Wada [12] :
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Theorem 2. The homotopy classes of all mappings g : P3 -» P3 are in one-to-one
correspondence with the group

Hl denotes the first cohomology group of P3 with coefficients in Z2 and if3 the
third cohomology group with integer coefficients.

To get the relation of the classification of τ0 with the above result we proceed
as follows :
For #eτ0 define the mapping/ : B3 -> IP3 by

f'' = π°9 (6)

where π : S3 -> P3 is the canonical projection. Because π(y) = π( — y) for all yeS3

we get also/(x) =/( - x) for all xe<9£3 . Therefore/induces a mapping/ : P3 -> P3.

It is also clear that g and — g induce the same/_

Every/ : P3 -> P3 induces a homomorphism £ : π^P3) -» π^P3) of the funda-
mental group of P3. Because π^P3)^ Z2 there exist only two homomorphisms :

h+ = 0 (trivial map)

h_ = id (identity map).

Therefore all mappings/ : P3 -> P3 fall trivially into two sets ξ± defined as

£± = {/:P3-*P3:/* = /ι±} (8)

This reflects just the group Z2 in the Theorem of Wada and Olum.*A little reflection
shows also that every #eτ+ induces a mapping /+ such that/±eξ+ .
Because the group Z in Theorem 2 corresponds just to the degree of the mappings

/[ll] we have

Theorem 3. The homotopy classification of the set τ + is in one-to-one corres-
pondence with the one of the set ξ+. The classification of the set τ _/{[ + £]}
corresponds in a one-to-one way to that of the set £_/[(f ,0)]. The classes [ ± £|
correspond to the single class [(|,0)] in ξ _ .
(We denote the elements of Z2 by 0 and \ ).

Therefore the two Gribov vacua in an SU(2) theory belong to the same homo-
topy class in an SO(3) theory where the space [R3 is compactified to project! ve
3-space P3.

An extended version of this work will appear elsewhere.
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