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On the Decoupling of Massive Particles in Field Theory

J. Ambj0rn

The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen 0, Denmark

Abstract. The article examines the Feynman amplitude when some of the mass
parameters are scaled to infinity. Contributions from diagrams containing the
scaled mass go to zero provided no particles are massless and BPHZ
subtractions are used.

I. Introduction

During the last few years there have been numerous applications of the decoupling
theorem [1], [2]. These applications have made desirable a more stringent proof
of the theorem. It will be shown that the heavy sector decouples perturbatively
when BPH subtractions are used, in the case of a theory with two mass scales and
momenta in the Euclidean regime.

As in Weinberg's power counting theorem the problems are mainly technical.
The works of Appelquist [3], Anikin, Polivanov, and Zavialov [4], Bergere and
Zuber [5], and Bergere and Lam [6] have shown that the α-parametric integral
representation allows one to write down a closed expression for the renormalized
Feynmann amplitude.

The rest of the paper is organized in the following way :
Section II gives the definition of the Feynman amplitude in the case of a scalar

theory. In Sect. Ill a simple proof of the decoupling theorem is outlined for a scalar
theory where technical problems are minimalized. The generalization to theories
with spin and derivative couplings can be found in Sect. IV. Section V contains a
short discussion of the results. Two appendices are devoted to technical questions.

II. Parametric Integral Representation of the Feynman Amplitude

To any connected Feynman graph G with L lines and V vertices corresponds the
Feynman amplitude (in Euclidian space)

p(p)= m π ( 2 π ) 4 5 < - Σ <M> k>-

where pv denotes the sum of the external momenta beginning at vertex υ and <ι;, />
the incidence matrix on V x L.
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There are several well-known ways of writing F as a parametric integral. The
following expression will be useful [7]

(1)

U2(«)
leL

L-2I '

The functions involved are given by :

= Π α/ Σ Π "Γ1

leLG ΓeTG leLT

= Π ««• Σ Π «f '
ZeLG Γ2eT2(S) /eLT2

Se§ex

(2)

(3)

(4)

where the notation is defined as follows [7] :

I denotes the number of loops in G, L both the set of lines and its
cardinalnumber.

TΓG(TG) denote the set of trees (2-trees) in G. A tree in G is a connected
subgraph which has no loops and the same vertices as G. If one removes a line
from a tree the corresponding subgraph is denoted a 2-tree.

A cut-set S is a minimal set of lines such that the subgraph of G where these
lines are removed is not connected. T2(5) denotes the set of 2-trees satisfying
T2πS = &. §ex denotes the set of cut-sets dividing G in two parts both containing
external vertices. p(S) is the sum of external momenta in one of the connected parts
defined by S.

The parametric representations of F is not always well-defined. Ultraviolet
divergencies can manifest themselves through the gamma function or a non-
integrability of the integrand in regions where α/ goes to zero. The BPH procedure
takes care of this. Following f.ex. APZ [5] the subtracted amplitude can be written
in the closed form:

DO+I i K AT (\ Γ Y^1 °°
7R- V Γ f Π *l ςt'; rin f FT ̂  V r/ pyn / V ^Y~ 2^ cn J 11 pπ s>o J 11 βαί 2^ αi exP ~ 2^ α

n = z(0) 0 i = 0 ^i: 0 leL leL \ /eL

K / β \ D ί + l

Π \ A?
ί = l

Π«
ί = l

+ n) E"(β,p)

ZeL

Γ1 ?...,/^ denotes the divergent subgraphs different from G. A subgraph is
divergent if D.= — 2LΓ . + 4/Γι ̂  0. If D0<0 (G superficial convergent) £0 must be
omitted and n = 0. If D0^0, the C0 differentiation has given the terms ^cnζ

q

0

nEn;

^Q. z(ty=-NG+l when DG^ NG = L-2L

(6)
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(6) shows that if a line / belongs to a divergent subgraph Γt the corresponding
parameter αz is multiplied by a "subtraction parameter" £?.

A glance at (5) makes it clear that the β-variables are the natural integration
variables. For this reason we first change to the /?- variables. Next the ^-integration
domain is decomposed into Hepp-sectors of the form :

β^.^β^O (/L> >Ί) (?)

The reason is that in these sectors the singularities of U~2(β) are controlled by
the introduction of Speers scaling variables [8]

cx)). (8)
i*j

Speers lemma [8] states that in a sector (7), (8)

(9)

_ (10)

where Gt consist of lines / 1 9 . . . , / f and the vertices belonging to these lines. & is a
polynomial >0 in (8). J^ is likewise a polynomial Ξ>0 in (8).

As a result of these rather trivial manipulations FR(p) can be written in the
form:

—
»)= Σ Σ KO , CH Π

sectors n = z(0) 0 ^0 ! 0 i = l

oo 1 L-l

ί*Lί Π ^rΣΦ;e xP(-^Σ
0 0 ί=l ZeL V ZeL

tll

leL
(11)

where clt = c/t(C, ί) = (πf/0) X ' Π ^ an<^ Xs(Π) ^s a polynomium in pv of degree D0
j = l

and is analytic in t1,...,tL_ί in the integration domain. The Taylor series in ί.
starts with a power AT. higher than or equal to max( — DG — 1,0).

For the sake of completeness the details of this derivation are given in
appendix A. The derivation involves only a minor change of the proof of APZ.

Formula (11) will be used to derive the decoupling theorem in the next section.

III. The Decoupling Theorem

Some of the masses are now scaled to infinity. Let us assume that there are ίwo
masses m and M and that M goes to infinity. The following estimate will be proved :

\FR(pv,m,M)\<c(ε)'(MΓ2vM + ε for εe]0,l[ (12)

vM = max(l,min(-DH)) (13)
HcG
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where H runs over subgraphs (including G) containing all particles with mass M. pv

and m are allowed to vary in a compact domain not containing m = Q.

Proof. Let /ίo denote the largest line (relative to sector (7)) corresponding to
particles with mass M. One can make the estimates :

/ L-l \-vM + ε/2

[Σc;m;

2+c0j^i-^ M2 π ίf (m2r s + V Λ*KΣ
[leL \ \ ϊ g i o / V leL

The last line is correct because the variables belong to a compact domain. The
ί-integration in (11) is therefore dominated by a sum of terms of the form:

0 0 i = l \ leL I \ leL

L-l

•'Γ1- Π ίp2^.[(M2)VΛί~ε/2(m2)s-VM + ε/2]-1. (14)
i^io

By definition JV. — 2vM ̂  — 1 when /. ̂  I.Q and the integral exists. Going back to the
jβ-variables and taking advantage of the fact that in the sector considered
βl-ε/2βh...βlL^(βlι βl2...βlι)

1-ε/2L the t integration in (14) is dominated by the
expression :

o o o
or going to α-variables

(11) finally gives:

l -ε/2

1ε/LG ι oo i

sectors n s

Γ(ε/(2LG))L° * Γ(eLΓ./LG)
' V ;

This completes the proof.

IV. Generalization to Theories with Spin and Derivative Couplings

The Feynman amplitude for graphs appearing in such theories can be written (in
Euclidean space)

leL Kl ~T~mi veVG \ leL
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where numerical constants and y matrices have been left out. Rt is a polynomium
in fcj. Its degree dt depends on the spin of the particle at /. If the particle is a
fermion, ml appears in a positive power. Sυ is a homogeneous polynomium of
degree dv in the internal and external momenta ending at vertex v.

Following Zimmermann, the superficial degree of a subgraph H is defined as:

It will be useful to introduce the following notation :

Π
leLG

Sυ(Pv, fc;) =
veVG

Pvι m

(17)

(18)

where Lorentz indices, constant coefficients and masses appearing in a negative
power are suppressed.

where vH(σ) denotes Σ dv + (number of factors in Y\ kh which come from
veVH i=l

jRz(fcj)). jΞD^-D^σ) and δH(σ)Ξβ(/JH(σ)/2). Here e(X) denotes the

integral part oΐX.
F can be written as a parametric integral (numerical constants and Lorentz

indices are omitted as above) :

v\veVG

e(v(σ)/2) λ(σ) μ(σ)

Σ Σ ΠP,,Π'
α = 0 Div(α) i = l r = l

- Σ α/

ZeL \leL U2(a)
leL

(20)

The χίm(α)'s are homogeneous in α of degree -1, the Qfapjs are homogeneous in
α of degree 0 and linear in pυ. The definitions are as follows:

(22)

§ denotes the set of cut-sets, and <S,/) the incidence matrix on §xL. Div(α)
v(σ)

denotes the division of the v(σ) lines appearing in J~] klt into α + 1 parts: (l\J'[\
ί = l

(/2, / j ) , . . . , (ζ, ζ), JΛ. χ/ m should not be mistaken as the χ(

s

n) in (11) and (24).
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The subtracted amplitude can now be written:

DO+I λ(σ) μ(σ)

FR(p)= £ £ Π^Π^f,.
σ,α,Div(fl) n = z(a) ί=l r=l

1 l κ oo _ y

leL l

(23)

0 0 ϊ = l 0 leL \leL

π ί a ID.+ IiQ te1
Π Cf/r' + vr'(σ)£(/?,p)" Π %;05) Π β((^>i

l/2(/?)
leL

If Do^O z(a)=-NG + a+l and NG-a + n^l+δG(σ). If D0<0, C0 must be
omitted and z(a) = n = 0, but still NG — a + n^l +^G(σ).

The same manipulations that led to (11) now give:

λ(σ) μ(σ)

FR(P)= Σ Σ ΠP.Π^
sectors σ,α,Div(α),n ί = l r = l

i i * A r ( \ —r}Dn °° i L-i
i-f Π yλj. i!) -ί^ί Π dtj0 ί = 1 t i 0 0 7 = 1

Σ χ,(ίι,.. ,ίL-ι,P)fΣc Im ί

2 + Cg^-ϊV (24)

Some details are given in Appendix B.
The following estimate can now be proved :

FR(p, m, M) ̂  h(p9 m,ε)>M~2vM + ε (25)

where VM is defined as Max/l/2,Min(-DH/2)V H is defined in (13).
H

.
The proof follows the proof in Sect. Ill in all essentials, although one has to be

more careful when making the estimates. Details are given in Appendix B.
It should be pointed out that the decoupling theorem is not valued if one uses

the "minimal" subtractions defined in [5] instead of Zimmermann's subtraction
(17).

V. Conclusion

The article has proven that the massive sector decouples at least as fast as
M~2vM + ε, εe]0, 1[, where vM(G) is given by (13) or (25).

A more detailed study using the Mellin transformation or the asymptotic
expansion of the Laplace transformation would presumably improve the estimate
so it could be written in the form M"2vM[ln(M/m)]". This would, however, require
considerably more work and is not needed in the context of the decoupling
theorem.
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It would be interesting to produce a stringent proof to all orders in
perturbation theory in the case of massive-massless particles, e.g. in gauge theories.
This, however, seems to be a difficult task.

Acknowledgement. I would like to thank Poul Olesen for suggesting this problem and for encourage-
ment. I would also like to thank N.K. Nielsen for drawing my attention to the work of Anikin,
Polivanov and Zavialov.

Appendix A

The purpose of this appendix is to present some details of the transformation from
(5) to (12).

The change of variables from (αz,Q to (ft, Q = (πf(Q αz, Q is described by the
following equations :

Kf Ir /(«, 0] = QLr< ~ 1 &j(β, 0

+ Σ A
0(>i leLΓί V

Equation (5) considered in a Hepp sector (7) takes the form :

l2_

_CS J Π T ί ̂  ί dβ^... ί dβh
Q - 0 i = l (>iυi- 0 0 0

lleL 'W>/

Transforming to Speers variables (8), the Jacobians are:

and (A.I) becomes

0 0

leL \ leL

L K

Π t^ - > π ^/(ίΓ2L Π T4/c /(ί,p)) <A 2)
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where
L-l

c,EEc,(i,i) = ̂ (0~2 Π t?

&ΐ= FT (l -s + 2ζf^- + Σ f/^r--ί, i-^-) (A 3)
n l ' 5(Γ , r •'δί 7" pf 's = 0 V U(sι ljeLΓi

 Uij

leL

r) I r\ r\ r\

Note that — αz = 0 implies 12ζ?—j+ Σ ^^ ^'-IP—

2Cf ̂ j can therefore be omitted from 5£( if we agree that tld/dtl does not act on

Note also that if Gίo is a divergent subgraph

Using these facts

π ί?^.-1 π ^/fc2L πVicj /(
i=l i= l V j = l

is seen to be of the form stated in Sect. II. The only problems come from ί.
belonging to divergent subgraphs G;. In this case, however, ££( annihilates the
troublesome term tfLGi~4Iθί ~ 1 because :

d \D ί o + 1

f (ΓL — Γ \
~dt~. '' ^i = 1io>

This shows that the function in question is analytic in each ί. variable separately.
Hartog's theorem [9] then implies that the function is analytic in all variables
together. The specific form of /(p, ί), (A.3), results in (11) in Sect. II.

Appendix B

The purpose of this appendix is to present some details in the derivation of (24)
and (25).

The change of variables from (αz, Q to (βl9 ζ.) is described in Appendix A. The
only difference is the following equations :

n*ϊ= Π
s=0 \ \ ?i leLΓl

The transformation to f-variables in a j5-Hepp sector can be performed as in
Appendix A.
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Lemma 1.

ήa. p| tvGl(σ)

where A(t,p) is a function of ί l 5 . . . 5 ί L _ l 5 analytic in the t domain.

Proof. ρz(0) is bounded and creates no difficulties. |χ/m(j8)|^ £ (βι + βmΓl (C7]

Theorem 10-3). Therefore it is sufficient to prove that

i = l 7 = 1

Let I" ̂  l\ and let n denote the number of /" ̂  j we have:

a L L L

Π^=Π/r" J - '=Π(/y/W"'=Π^.
i=l 7=1 7=1 7=1

2nj^vG(σ) because I"<j implies l^l'leGj. This gives:

L L-l L-l

7=1 J 7=1 7=1

As a consequence of Lemma 1, the integrals in question have the form:

1 l κ oo 1 L - l

0 0 i = l 0 0 i=l

' (B.i)
leL / l i = l ί = l \ ί = l

As before { } in (B.I) can be written as :

t ΐ 1 - ίff^ Σ χ^rtΣcX+C^/^-5 (B.2)
leL

where χ^\t, p) is defined as in (11).
One can make the estimate:

.§-Λ
Σ c z Γ / 2 ' ( Σ c ι | σ(σ)/2 F(σ)/2'(m2Y VM F(σ)/2 + ε/2 (B.3)
leL I \ZeL /

where VM is given by (25), F(σ) denotes the number or the set of massive particles
μ(σ)

appearing in f] mlr and i0 is the largest line corresponding to particles with mass
r = l

M.
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Using (B.2) and (B.3), the ί-integrand in (B.I) is dominated by an expression of
the form:

L-l L-l

i^ io l i=l
* / V r\ ε/2 (f2 Y \ ΔGI2 - F(σ)/2 . Λ 2
LL\L,Cl\ \1LLC1\ \LL

ZeL /ZeL ZeF(σ)

F(σ)/2

or

ZeL

/eL
Σ «,

(B.4)

In deriving (B.4), we have used the facts: N ί-2vM+1^0 for ι'^ί0, ΛΓ^O and

( L \ l - ε / L \ 1-ε

ΓH ^
i^ io /

Transforming to β variables, using β1

1-
ε/2β2...βL^(β1...βL)1~ε/2L, transform-

ing further to the α-variables and using / £ α^F(σ)/2 ^/ Π αi)1/2 tne ί-integral in
\JeF(σ) / \/εF(σ)

(B.I) is dominated by

0 ZeL \IeL

. ΓT αzl

ZeL

ΓT α~ 1/2 / y α \ -(AG(σ)/2 -F(σ)/2)

ZεF(σ) \ZeL

(B.5)
ZeL

Lemma 2. (B.5) contains ζ (from Γ) in a power larger than or equal AΓ(σ) + ε/L.

Proof. πt(ζ), /eΓ contains C ΛΓ(σ)= ^ αz where αz is the power from Rfa) not
ZeLΓ

v(σ)

present in γ[ kλ. Consequently

ZeΓ ZeΓ

The integral in (B.5) exists: /eF(σ) implies zίG z(σ)-zlG z_ ι(σ)^l. It follows that
α/~

1/2, leF(σ) is cancelled by (α /)(^^( (τ)/2-ziG !_1(σ)/2 ί τhe integraι can be written:

0 ZeL ZeL / ZeL

ΓK1

ZeL

Π «,
ZeF(σ)

1/2

which exists.
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Lemma 2 shows that the ζ. integrations in (B.I) can be performed.
Consequently (24) is dominated by a sum of terms of the form

h(p, m, ε)MFM/(M2γ* + F(σ)/2 ~ε/2 .

As 2vM — ε ^ l — ε > 0 we have the decoupling (25).
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