On the Decoupling of Massive Particles in Field Theory

J. Ambjørn
The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen \varnothing, Denmark

Abstract

The article examines the Feynman amplitude when some of the mass parameters are scaled to infinity. Contributions from diagrams containing the scaled mass go to zero provided no particles are massless and BPHZ subtractions are used.

I. Introduction

During the last few years there have been numerous applications of the decoupling theorem [1], [2]. These applications have made desirable a more stringent proof of the theorem. It will be shown that the heavy sector decouples perturbatively when BPH subtractions are used, in the case of a theory with two mass scales and momenta in the Euclidean regime.

As in Weinberg's power counting theorem the problems are mainly technical. The works of Appelquist [3], Anikin, Polivanov, and Zavialov [4], Bergere and Zuber [5], and Bergère and Lam [6] have shown that the α-parametric integral representation allows one to write down a closed expression for the renormalized Feynmann amplitude.

The rest of the paper is organized in the following way:
Section II gives the definition of the Feynman amplitude in the case of a scalar theory. In Sect. III a simple proof of the decoupling theorem is outlined for a scalar theory where technical problems are minimalized. The generalization to theories with spin and derivative couplings can be found in Sect. IV. Section V contains a short discussion of the results. Two appendices are devoted to technical questions.

II. Parametric Integral Representation of the Feynman Amplitude

To any connected Feynman graph G with L lines and V vertices corresponds the Feynman amplitude (in Euclidian space)

$$
\tilde{F}(p)=\int \prod_{l \in L} \frac{d^{4} k_{l}}{(2 \pi)^{4}\left(k_{l}^{2}+m_{l}^{2}\right)} \cdot \prod_{v \in V}(2 \pi)^{4} \delta^{(4)}\left(p_{v}-\sum_{l \in L}\langle v, l\rangle k_{l}\right)
$$

where p_{v} denotes the sum of the external momenta beginning at vertex v and $\langle v, l\rangle$ the incidence matrix on $V \times L$.

There are several well-known ways of writing \tilde{F} as a parametric integral. The following expression will be useful [7]

$$
\begin{align*}
& \tilde{F}(p)=(2 \pi)^{4-2 I} F(p) \delta^{(4)}\left(\sum_{v \in V} p_{v}\right) \tag{1}\\
& F(p)=\int_{0}^{\infty} \prod_{l \in L} d \alpha_{l} \cdot \frac{\Gamma(L-2 I) \sum_{l \in L} \alpha_{l} \exp \left(-\sum_{l \in L} \alpha_{l}\right)}{U^{2}(\alpha) \cdot\left[\sum_{l \in L} \alpha_{l} m_{l}^{2}+E\left(\alpha, p_{v}\right)\right]^{L-2 I}} .
\end{align*}
$$

The functions involved are given by:

$$
\begin{align*}
& U(\alpha) \equiv \prod_{l \in L_{G}} \alpha_{l} \cdot \sum_{T \in \mathbb{T}_{G}} \prod_{l \in L_{T}} \alpha_{l}^{-1} \tag{2}\\
& W_{S}(\alpha) \equiv \prod_{l \in L_{G}} \alpha_{l} \cdot \sum_{T^{2} \in \mathbb{T}^{2}(S)} \prod_{l \in L^{2}} \alpha_{l}^{-1} \tag{3}\\
& E(\alpha, p) \equiv \sum_{S \in \mathbb{S}_{\mathrm{ex}}}\left(W_{S} / U\right) \cdot p^{2}(S) \tag{4}
\end{align*}
$$

where the notation is defined as follows [7]:
I denotes the number of loops in G, L both the set of lines and its cardinalnumber.
$\mathbb{T}_{G}\left(\mathbb{T}_{G}^{2}\right)$ denote the set of trees (2-trees) in G. A tree in G is a connected subgraph which has no loops and the same vertices as G. If one removes a line from a tree the corresponding subgraph is denoted a 2 -tree.

A cut-set S is a minimal set of lines such that the subgraph of G where these lines are removed is not connected. $\mathbb{T}^{2}(S)$ denotes the set of 2-trees satisfying $T_{2} \cap S=\emptyset . \mathbb{S}_{\text {ex }}$ denotes the set of cut-sets dividing G in two parts both containing external vertices. $p(S)$ is the sum of external momenta in one of the connected parts defined by S.

The parametric representations of F is not always well-defined. Ultraviolet divergencies can manifest themselves through the gamma function or a nonintegrability of the integrand in regions where α_{l} goes to zero. The BPH procedure takes care of this. Following f.ex. APZ [5] the subtracted amplitude can be written in the closed form:

$$
\begin{align*}
F^{R}= & \sum_{n=z(0)}^{D_{0}+1} c_{n} \int_{0}^{1} \prod_{i=0}^{\kappa} \frac{d \zeta_{i}\left(1-\zeta_{i}\right)^{D_{i}}}{D_{i}!} \zeta_{0}^{q_{n}} \int_{0}^{\infty} \prod_{l \in L} d \alpha_{l} \sum_{l \in L} \alpha_{l} \exp \left(-\sum_{l \in L} \alpha_{l}\right) \\
& \cdot \prod_{i=1}^{\kappa}\left(\frac{\partial}{\partial \zeta_{i}}\right)^{D_{i}+1} \cdot\left[\prod_{i=1}^{\kappa} \zeta_{i}^{4 I_{\Gamma_{i}}} \cdot \frac{\Gamma\left(N_{G}+n\right) \cdot E^{n}(\beta, p)}{U^{2}(\beta) \cdot\left[\sum_{l \in L} \alpha_{l} m_{l}^{2}+E(\beta, p) \cdot \zeta_{0}^{2}\right]^{N_{G}+n}}\right] \tag{5}
\end{align*}
$$

$\Gamma_{1}, \ldots, \Gamma_{\kappa}$ denotes the divergent subgraphs different from G. A subgraph is divergent if $D_{i} \equiv-2 L_{\Gamma_{i}}+4 I_{\Gamma_{i}} \geqq 0$. If $D_{0}<0$ (G superficial convergent) ζ_{0} must be omitted and $n \equiv 0$. If $D_{0} \geqq 0$, the ζ_{0} differentiation has given the terms $\sum_{n} c_{n} \zeta_{0}^{q_{n}} E^{n}$; $q_{n} \geqq 0 . z(0)=-N_{G}+1$ when $D_{G} \geqq 0$ and $N_{G}=L-2 I$.

$$
\begin{equation*}
\beta_{l} \equiv \pi_{l}^{2}(\zeta) \cdot \alpha_{l}, \quad \pi_{l}(\zeta) \equiv \prod_{\substack{\Gamma_{i} \ni l \\ i \geqq 1}} \zeta_{i} . \tag{6}
\end{equation*}
$$

(6) shows that if a line l belongs to a divergent subgraph Γ_{i} the corresponding parameter α_{l} is multiplied by a "subtraction parameter" ζ_{i}^{2}.

A glance at (5) makes it clear that the β-variables are the natural integration variables. For this reason we first change to the β-variables. Next the β-integration domain is decomposed into Hepp-sectors of the form:

$$
\begin{equation*}
\beta_{l_{L}} \geqq \ldots \geqq \beta_{l_{1}} \geqq 0 \quad\left(l_{L}>\ldots>l_{1}\right) . \tag{7}
\end{equation*}
$$

The reason is that in these sectors the singularities of $U^{-2}(\beta)$ are controlled by the introduction of Speers scaling variables [8]

$$
\begin{equation*}
\beta_{l_{J}}=\prod_{i \geqq j}^{L} t_{i}^{2} \quad\left(0 \leqq t_{i} \leqq 1, i<L . \quad 0 \leqq t_{L}<\infty\right) \tag{8}
\end{equation*}
$$

Speers lemma [8] states that in a sector (7), (8)

$$
\begin{align*}
U(\beta) & =\left(\prod_{i=1}^{L} t_{i}^{4 I_{G_{i}}}\right) \cdot \mathscr{P}\left(t_{1}^{2}, \ldots, t_{L-1}^{2}\right) \tag{9}\\
E\left(\beta, p_{v}\right) & =t_{L}^{2} \mathscr{F}\left(t_{1}^{2}, \ldots, t_{L-1}^{2}, p_{v}\right) / \mathscr{P}\left(t_{1}^{2}, \ldots, t_{L-1}^{2}\right) \tag{10}
\end{align*}
$$

where G_{i} consist of lines l_{1}, \ldots, l_{i} and the vertices belonging to these lines. \mathscr{P} is a polynomial >0 in (8). \mathscr{F} is likewise a polynomial $\geqq 0$ in (8).

As a result of these rather trivial manipulations $F^{R}(p)$ can be written in the form:

$$
\begin{align*}
F^{R}\left(p_{v}\right)= & \sum_{\text {sectors }} \sum_{n=z(0)}^{D_{0}+1} \int_{0}^{1} d \zeta_{0} \frac{\left(1-\zeta_{0}\right)^{D_{0}+1}}{D_{0}!} \zeta_{0}^{q_{n}} \int_{0}^{1} \prod_{i=1}^{\kappa} \frac{d \zeta_{i}\left(1-\zeta_{i}\right)^{D_{i}}}{\zeta_{i} D_{i}!} \\
& \cdot \int_{0}^{\infty} d t_{L} \int_{0}^{1} \prod_{i=1}^{L-1} d t_{i} \cdot \sum_{l \in L} t_{L}^{2} c_{l} \exp \left(-t_{L}^{2} \sum_{l \in L} c_{l}\right) \\
& \cdot t_{L}^{-1} \cdot\left(\sum_{s \geqq N_{G}+n} \chi_{s}^{(n)}\left(t_{1}, \ldots, t_{L-1}, p_{v}\right) \cdot\left[\sum_{l \in L} c_{l} m_{l}^{2}+\zeta_{0}^{2} \mathscr{F}\left(t, p_{v}\right) / \mathscr{P}(t)\right]^{-S}\right) \tag{11}
\end{align*}
$$

where $c_{l_{l}} \equiv c_{l_{l}}(\zeta, t) \equiv\left(\pi_{l_{l}}^{2}(\zeta)\right)^{-1} \cdot \prod_{j \geq i}^{L-1} t_{j}^{2}$ and $\chi_{s}^{(n)}$ is a polynomium in p_{v} of degree $D_{0}+2 S$ and is analytic in t_{1}, \ldots, t_{L-1} in the integration domain. The Taylor series in t_{i} starts with a power N_{i} higher than or equal to $\max \left(-D_{G_{1}}-1,0\right)$.

For the sake of completeness the details of this derivation are given in appendix A . The derivation involves only a minor change of the proof of APZ .

Formula (11) will be used to derive the decoupling theorem in the next section.

III. The Decoupling Theorem

Some of the masses are now scaled to infinity. Let us assume that there are two masses m and M and that M goes to infinity. The following estimate will be proved:

$$
\begin{align*}
& \left.\left|F^{R}\left(p_{v}, m, M\right)\right|<c(\varepsilon) \cdot(M)^{-2 v_{M}+\varepsilon} \quad \text { for } \quad \varepsilon \in\right] 0,1[\tag{12}\\
& v_{M} \equiv \max \left(1, \min _{H \subseteq G}\left(-D_{H}\right)\right) \tag{13}
\end{align*}
$$

where H runs over subgraphs (including G) containing all particles with mass $M . p_{v}$ and m are allowed to vary in a compact domain not containing $m=0$.

Proof. Let $l_{i_{0}}$ denote the largest line (relative to sector (7)) corresponding to particles with mass M. One can make the estimates:

$$
\begin{aligned}
& {\left[\sum_{l \in L} c_{l} m_{l}^{2}+\zeta_{0} \mathscr{F}|\mathscr{P}|^{-s} \leqq\left(M^{2} \prod_{i \geqq i_{0}}^{L-1} t_{i}^{2}\right)^{-v_{M}+\varepsilon / 2}\left(m^{2}\right)^{-s+v_{M}}\left(m^{2} \sum_{l \in L} c_{l}\right)^{-\varepsilon / 2}\right.} \\
& \left|\chi_{s}^{(n)}\left(t_{1}, \ldots, t_{L-1}, p_{v}\right)\right| \leqq c_{s}^{(n)} \prod_{i=1}^{L-1} t_{i}^{N_{i}} .
\end{aligned}
$$

The last line is correct because the variables belong to a compact domain. The t-integration in (11) is therefore dominated by a sum of terms of the form:

$$
\begin{align*}
& \int_{0}^{\infty} d t_{L} \int_{0}^{1} \prod_{i=1}^{L-1} d t_{i} t_{i}^{N_{l}} \cdot\left(t_{L}^{2} \sum_{l \in L} c_{l}\right)^{1-\varepsilon / 2} \exp \left(-t_{L}^{2} \sum_{l \in L} c_{l}\right) \\
& \quad \cdot t_{L}^{\varepsilon-1} \cdot \prod_{i \geqq i_{0}}^{L-1} t_{i}^{\varepsilon-2 v_{M}} \cdot\left[\left(M^{2}\right)^{v_{M}-\varepsilon / 2}\left(m^{2}\right)^{s-v_{M}+\varepsilon / 2}\right]^{-1} \tag{14}
\end{align*}
$$

By definition $N_{i}-2 v_{M} \geqq-1$ when $l_{i} \geqq l_{i_{0}}$ and the integral exists. Going back to the β-variables and taking advantage of the fact that in the sector considered $\beta_{l_{1}}^{1-\varepsilon / 2} \beta_{l_{2}} \ldots \beta_{l_{L}} \geqq\left(\beta_{l_{1}} \cdot \beta_{l_{2}} \ldots \beta_{l_{L}}\right)^{1-\varepsilon / 2 L}$ the t integration in (14) is dominated by the expression:

$$
\int_{0}^{\infty} d \beta_{l_{L}} \int_{0}^{\beta_{l_{L}}} d \beta_{l_{L-1}} \ldots \int_{0}^{\beta_{l_{2}}} d \beta_{l_{1}} \cdot \frac{\left(\sum_{l \in L} \beta_{l} / \pi_{l}(\zeta)\right)^{1-\varepsilon / 2} \exp \left(-\sum_{l \in L} \beta_{l} / \pi_{l}(\zeta)\right)}{\left(\beta_{l_{1}} \ldots \beta_{l_{L}}\right)^{1-\varepsilon / 2 L_{G_{i}}}}
$$

or going to α-variables

$$
\left(\prod_{i=1}^{\kappa} \zeta_{i}^{L_{L_{i}}}\right)^{\varepsilon / L_{G}} \cdot \frac{1}{L_{G}!} \int_{0}^{\infty} \prod_{l \in L} d \alpha_{l} \cdot \frac{\left(\sum_{l \in L} \alpha_{l}\right)^{1-\varepsilon / 2} \exp \left(-\sum_{l \in L} \alpha_{l}\right)}{\left(\alpha_{l_{1}} \ldots \alpha_{l_{L}}\right)^{1-\varepsilon / 2 L_{G_{i}}}}
$$

(11) finally gives:

$$
\begin{gather*}
\left|F^{R}\right| \leqq(M)^{-2 v_{M}+\varepsilon} \cdot\left[\sum_{\text {sectors }} \sum_{n} \sum_{s}\left(m^{2 s-2 v_{M}+\varepsilon}\right)^{-1}\right. \\
\left.\quad \cdot \frac{\Gamma\left(\varepsilon /\left(2 L_{G}\right)\right)^{L_{G}}}{L_{G}!\Gamma(\varepsilon / 2)} \cdot \prod_{i=1}^{\kappa} \frac{\Gamma\left(\varepsilon L_{\Gamma_{i} /} / L_{G}\right)}{D_{i}!}\right] \tag{15}
\end{gather*}
$$

This completes the proof.

IV. Generalization to Theories with Spin and Derivative Couplings

The Feynman amplitude for graphs appearing in such theories can be written (in Euclidean space)

$$
\begin{equation*}
\tilde{F}(p)=\int \prod_{l \in L} \frac{d^{4} k_{l} R_{l}\left(k_{l}, m_{l}\right)}{k_{l}^{2}+m_{l}^{2}} \cdot \prod_{v \in V_{G}}\left(S_{v}\left(p_{v}, k_{l}\right) \cdot \delta^{(4)}\left(p_{v}-\sum_{l \in L}\langle v, l\rangle k_{l}\right)\right) \tag{16}
\end{equation*}
$$

where numerical constants and γ matrices have been left out. R_{l} is a polynomium in k_{l}. Its degree d_{l} depends on the spin of the particle at l. If the particle is a fermion, m_{l} appears in a positive power. S_{v} is a homogeneous polynomium of degree d_{v} in the internal and external momenta ending at vertex v.

Following Zimmermann, the superficial degree of a subgraph H is defined as:

$$
\begin{equation*}
D_{H}=4 I_{H}-2 L_{H}+v_{H} ; \quad v_{H}=\sum_{l \in L_{H}} d_{l}+\sum_{v \in V_{H}} d_{v} . \tag{17}
\end{equation*}
$$

It will be useful to introduce the following notation:

$$
\begin{equation*}
\prod_{l \in L_{G}} R_{l}\left(k_{l}, m_{l}\right) \prod_{v \in V_{G}} S_{v}\left(p_{v}, k_{l}\right)=\sum_{\sigma} \prod_{i=1}^{\lambda(\sigma)} p_{v_{l}} \prod_{j=1}^{\nu(\sigma)} k_{l_{\jmath}} \prod_{r=1}^{\mu(\sigma)} m_{l_{r}} \tag{18}
\end{equation*}
$$

where Lorentz indices, constant coefficients and masses appearing in a negative power are suppressed.

$$
\begin{equation*}
D_{H}(\sigma)=4 I_{H}-2 L_{H}+v_{H}(\sigma) \tag{19}
\end{equation*}
$$

where $v_{H}(\sigma)$ denotes $\sum_{v \in V_{H}} d_{v}+$ (number of factors in $\prod_{i=1}^{v(\sigma)} k_{l_{i}}$ which come from $\left.\prod_{l \in L_{H}} R_{l}\left(k_{l}\right)\right) . \quad \Delta_{H}(\sigma) \equiv D_{H}-D_{H}(\sigma)$ and $\delta_{H}(\sigma) \equiv e\left(\Delta_{H}(\sigma) / 2\right)$. Here $e(X)$ denotes the integral part of X.
\tilde{F} can be written as a parametric integral (numerical constants and Lorentz indices are omitted as above):

$$
\begin{align*}
\tilde{F}(p)= & \delta^{(4)}\left(\sum_{v \in V_{G}} p_{v}\right) \cdot F(p) \\
F(p)= & \sum_{\sigma} \sum_{a=0}^{e(v(\sigma) / 2)} \sum_{\operatorname{Div}(a)} \cdot \prod_{i=1}^{\lambda(\sigma)} p_{v_{l}} \prod_{r=1}^{\mu(\sigma)} m_{l_{r}} \tag{20}\\
& \cdot \int \prod_{l \in L} d \alpha_{l}\left(\sum_{l \in L} \alpha_{l}\right) e^{-\sum_{l \in L} \alpha_{l}} \cdot\left[\frac{\Gamma\left(N_{G}-a\right) \prod_{i=1}^{a} \chi_{l_{i}^{\prime \prime} l_{i}}(\alpha) \prod_{l \in J_{a}} Q_{l}(\alpha, p)}{U^{2}(\alpha) \cdot\left[\sum_{l \in L} \alpha_{l} m_{l}^{2}+E(\alpha, p)\right)^{N_{G}-a}}\right]
\end{align*}
$$

The $\chi_{l m}(\alpha)$'s are homogeneous in α of degree -1 , the $Q_{l}\left(\alpha, p_{v}\right)$'s are homogeneous in α of degree 0 and linear in p_{v}. The definitions are as follows:

$$
\begin{align*}
\chi_{l, m} & =-\sum_{S \in \mathbb{S}}\langle S, l\rangle\langle S, m\rangle \frac{W_{S}(\alpha)}{\alpha_{l} \alpha_{m} U_{G}(\alpha)} \tag{21}\\
Q_{l}\left(\alpha, p_{v}\right) & =\sum_{S \in \mathbb{S}}\langle S, l\rangle \frac{W_{S}(\alpha)}{\alpha_{l} U_{G}(\alpha)} \cdot p(S) \tag{22}
\end{align*}
$$

\mathbb{S} denotes the set of cut-sets, and $\langle S, l\rangle$ the incidence matrix on $\mathbb{S} \times L$. $\operatorname{Div}(a)$ denotes the division of the $v(\sigma)$ lines appearing in $\prod_{i=1}^{v(\sigma)} k_{l_{i}}$ into $a+1$ parts: $\left(l_{1}^{\prime}, l_{1}^{\prime \prime}\right)$, $\left(l_{2}^{\prime}, l_{2}^{\prime \prime}\right), \ldots,\left(l_{a}^{\prime}, l_{a}^{\prime \prime}\right), J_{a \cdot} \chi_{l, m}$ should not be mistaken as the $\chi_{s}^{(n)}$ in (11) and (24).

The subtracted amplitude can now be written:

$$
\begin{align*}
F^{R}(p)= & \sum_{\sigma, a, \operatorname{Div}(a)} \sum_{n=z(a)}^{D_{0}+1} \prod_{i=1}^{\lambda(\sigma)} p_{v_{i}} \prod_{r=1}^{\mu(\sigma)} m_{l_{r}} \\
& \cdot \int_{0}^{1} d \zeta_{0}\left(1-\zeta_{0}\right)^{D_{0}} \zeta_{0}^{q_{n}} \cdot \int_{0}^{1} \prod_{i=1}^{\kappa} d \zeta_{i}\left(1-\zeta_{i}\right)^{D_{i}} \int_{0}^{\infty} \prod_{l \in L} d \alpha_{l}\left(\sum_{l \in L} \alpha_{l}\right) e^{-\sum_{l \in L} \alpha_{l}} \\
& \cdot \prod_{i=1}^{\kappa}\left(\frac{\partial}{\partial \zeta_{i}}\right)^{D_{i}+1}\left[\frac{\prod_{i=1}^{\kappa} \zeta_{i}^{4 I_{\Gamma_{i}}+v_{\Gamma_{i}(\sigma)}} E(\beta, p)^{n} \prod_{j=1}^{a} \chi_{l^{l} l_{j}^{\prime \prime}}(\beta) \prod_{l \in J_{a}} Q_{l}(\beta, p)}{U^{2}(\beta)\left(\sum_{l \in L} \alpha_{l} m_{l}^{2}+\zeta_{0}^{2} E(\beta, p)\right)^{N_{G}-a+n}}\right] \tag{23}
\end{align*}
$$

If $D_{0} \geqq 0 \quad z(a)=-N_{G}+a+1$ and $N_{G}-a+n \geqq 1+\delta_{G}(\sigma)$. If $D_{0}<0$, ζ_{0} must be omitted and $z(a)=n=0$, but still $N_{G}-a+n \geqq 1+\delta_{G}(\sigma)$.

The same manipulations that led to (11) now give:

$$
\begin{align*}
F^{R}(p)= & \sum_{\text {sectors }} \sum_{\sigma, a, \operatorname{Div}(a), n} \prod_{i=1}^{\lambda(\sigma)} p_{v_{i}} \prod_{r=1}^{\mu(\sigma)} m_{l_{r}} \\
& \cdot \int_{0}^{1} d \zeta_{i}\left(1-\zeta_{i}\right)^{D_{0}} \zeta_{0}^{q_{n}} . \int_{0}^{1} \prod_{i=1}^{\kappa} \frac{d \zeta_{i}\left(1-\zeta_{i}\right)^{D_{\Gamma_{i}}}}{\zeta_{i}^{1+\Delta_{\Gamma_{i}}(\sigma)}} \cdot \int_{0}^{\infty} d t_{L} \int_{0}^{1} \prod_{j=1}^{L-1} d t_{j} \\
& \cdot t_{L} \prod_{j=1}^{L-1} t_{j}^{\Delta_{G}(\sigma)} \cdot \sum_{l \in L} c_{l}(\zeta, t) e^{-t_{L}^{2} \sum_{l \in L} c_{l}(\zeta, t)} \\
& \cdot\left(\sum_{s \geqq N_{G}+n-a} \chi_{s}\left(t_{1}, \ldots, t_{L-1}, p\right)\left(\sum_{l \in L} c_{l} m_{l}^{2}+\zeta_{0}^{2} \mathscr{F} \mid \mathscr{P}\right)^{-s}\right) . \tag{24}
\end{align*}
$$

Some details are given in Appendix B.
The following estimate can now be proved:

$$
\begin{equation*}
F^{R}(p, m, M) \leqq h(p, m, \varepsilon) \cdot M^{-2 v_{M}+\varepsilon} \tag{25}
\end{equation*}
$$

where v_{M} is defined as $\operatorname{Max}\left(1 / 2, \operatorname{Min}_{H}\left(-D_{H} / 2\right)\right) . H$ is defined in (13).
The proof follows the proof in Sect. III in all essentials, although one has to be more careful when making the estimates. Details are given in Appendix B.

It should be pointed out that the decoupling theorem is not valued if one uses the "minimal" subtractions defined in [5] instead of Zimmermann's subtraction (17).

V. Conclusion

The article has proven that the massive sector decouples at least as fast as $\left.M^{-2 v_{M}+\varepsilon}, \varepsilon \in\right] 0,1\left[\right.$, where $v_{M}(G)$ is given by (13) or (25).

A more detailed study using the Mellin transformation or the asymptotic expansion of the Laplace transformation would presumably improve the estimate so it could be written in the form $M^{-2 v_{M}}[\ln (M / m)]^{n}$. This would, however, require considerably more work and is not needed in the context of the decoupling theorem.

It would be interesting to produce a stringent proof to all orders in perturbation theory in the case of massive-massless particles, e.g. in gauge theories. This, however, seems to be a difficult task.

Acknowledgement. I would like to thank Poul Olesen for suggesting this problem and for encouragement. I would also like to thank N.K. Nielsen for drawing my attention to the work of Anikin, Polivanov and Zavialov.

Appendix A

The purpose of this appendix is to present some details of the transformation from (5) to (12).

The change of variables from $\left(\alpha_{l}, \zeta_{i}\right)$ to $\left(\beta_{l}, \zeta_{i}\right)=\left(\pi_{l}^{2}\left(\zeta_{i}\right) \cdot \alpha_{l}, \zeta_{i}\right)$ is described by the following equations:

$$
\begin{aligned}
& \text { Det }\left\{\frac{\partial(\alpha, \zeta)}{\partial(\beta, \zeta)}\right\}=\prod_{l \in L} \pi_{l}(\zeta)^{-2}=\prod_{i=1}^{\kappa} \zeta_{i}^{-2 L_{\Gamma_{i}}} \\
& \left(\frac{\partial}{\partial \zeta_{i}}\right)^{D_{i}+1}\left[\zeta_{i}^{4 I_{\Gamma_{i}}} f(\alpha, \zeta)\right]=\zeta_{i}^{2 L_{\Gamma_{i}}-1} \mathscr{L}_{i} \hat{f}(\beta, \zeta) \\
& \mathscr{L}_{i} \equiv \prod_{s=0}^{D_{2}}\left(4 I_{\Gamma_{i}}-s+2\left(\zeta_{i}^{2} \frac{\partial}{\partial \zeta_{i}^{2}}+\sum_{l \in L_{\Gamma_{i}}} \beta_{l} \frac{\partial}{\partial \beta_{l}}\right)\right) .
\end{aligned}
$$

Equation (5) considered in a Hepp sector (7) takes the form:

$$
\begin{align*}
& \int_{0}^{1} d \zeta_{0} \frac{\left(1-\zeta_{0}\right)^{D_{0}}}{D_{0}!} \zeta_{0}^{q_{n}} \int_{0}^{1} \prod_{i=1}^{\kappa} \frac{\mathrm{d} \zeta_{i}\left(1-\zeta_{i}\right)^{D_{l}}}{\zeta_{i} D_{i}!} \cdot \int_{0}^{\infty} d \beta_{l_{L}} \int_{0}^{\beta_{l_{L}}} d \beta_{l_{L-1}} \cdots \int_{0}^{\beta_{l_{2}}} d \beta_{l_{1}} \\
& \quad \cdot\left(\sum_{l \in L} \frac{\beta_{l}}{\pi_{l}^{2}(\zeta)} \exp \left(-\sum_{l \in L} \frac{\beta_{l}}{\pi_{l}^{2}(\zeta)}\right)\right) \cdot \prod_{i=1}^{\kappa} \mathscr{L}_{i} \\
& \quad \cdot \frac{\Gamma\left(N_{G}+n\right) \cdot E\left(\beta, p_{v}\right)^{n} \cdot U^{-2}(\beta)}{\left[\sum_{l \in L} \frac{\beta_{l}}{\pi_{l}(\zeta)} m_{l}^{2}+\zeta_{0} E\left(\beta, p_{v}\right)\right]^{N_{G}+n} .} \tag{A.1}
\end{align*}
$$

Transforming to Speers variables (8), the Jacobians are:

$$
\operatorname{Det}\left\{\frac{\partial \beta}{\partial t}\right\}=\prod_{i=1}^{L} t_{i}^{2 i-1}, \quad \operatorname{Det}\left\{\frac{\partial t}{\partial \beta}\right\}=\left(\beta_{1}^{1 / 2} \beta_{2} \ldots \beta_{L}\right)^{-1}
$$

and (A.1) becomes

$$
\begin{align*}
& \int_{0}^{1} d \zeta_{0} \frac{\left(1-\zeta_{0}\right)^{D_{0}}}{D_{0}!} \zeta_{0}^{q_{n}} \int_{0}^{1} \prod_{i=1}^{\kappa} \frac{d \zeta_{i}\left(1-\zeta_{i}\right)^{D_{i}}}{\zeta_{i} D_{i}!} \cdot \int_{0}^{\infty} d t_{L} \int_{0}^{1} d t_{i} \\
& \cdot\left(\sum_{l \in L} t_{L}^{2} c_{l}(\zeta, t) \exp \left(-t_{L}^{2} \sum_{l \in L} c_{l}(\zeta, t)\right)\right) \\
& \cdot\left(\prod_{i=1}^{L} t_{i}^{2 L_{G_{i}}-1} \cdot \prod_{i=1}^{\kappa} \mathscr{L}_{i}^{\prime}\left(t_{L}^{-2 L} \prod_{i=1}^{L-1} t_{i}^{-4 I_{G_{i}}} f(t, p)\right)\right) \tag{A.2}
\end{align*}
$$

where

$$
\begin{align*}
c_{l} & \equiv c_{l}(\zeta, t) \equiv \pi_{l}(\zeta)^{-2} \prod_{l_{i} \geqq l}^{L-1} t_{i}^{2} \\
\mathscr{L}_{i}^{\prime} & \equiv \prod_{s=0}^{D_{i}}\left(I_{\Gamma_{i}}-s+2 \zeta_{i}^{2} \frac{\partial}{\partial \zeta_{i}^{2}}+\sum_{l_{j \in L_{\Gamma_{i}}}} t_{j} \frac{\partial}{\partial t_{j}}-t_{j-1} \frac{\partial}{\partial t_{j-1}}\right) \tag{A.3}\\
f(t, p) & =\Gamma\left(N_{G}+n\right)(\mathscr{F} / \mathscr{P})^{n} \mathscr{P}^{-2} \cdot\left(\sum_{l \in L} c_{l} m_{l}^{2}+\zeta_{0}^{2} \mathscr{F} / \mathscr{P}\right)^{-N_{G}-n} .
\end{align*}
$$

Note that $\frac{\partial}{\partial \zeta_{i}} \alpha_{l}=0$ implies $\left(2 \zeta_{i}^{2} \frac{\partial}{\partial \zeta_{i}^{2}}+\sum_{l_{j} \in L_{\Gamma_{i}}} t_{j} \frac{\partial}{\partial t_{j}}-t_{j-1} \frac{\partial}{\partial t_{j-1}}\right) \cdot t_{L}^{2} c_{l}(\zeta, t)=0$. $2 \zeta_{i}^{2} \frac{\partial}{\partial \zeta_{i}^{2}}$ can therefore be omitted from \mathscr{L}_{i}^{\prime} if we agree that $t_{l} \partial / \partial t_{l}$ does not act on $c_{l}(\zeta, t)$.

Note also that if $G_{i_{0}}$ is a divergent subgraph

$$
\sum_{l_{j} \in L_{G_{i_{0}}}} t_{j} \frac{\partial}{\partial t_{j}}-t_{j-1} \frac{\partial}{\partial t_{j-1}}=t_{i_{0}} \frac{\partial}{\partial t_{i_{0}}}
$$

Using these facts

$$
\prod_{i=1}^{L} t_{i}^{2 L_{G_{i}}-1} \prod_{i=1}^{\kappa} \mathscr{L}_{i}^{\prime}\left(t_{L}^{-2 L} \prod_{j=1}^{L-1} t_{j}^{-4 I_{G_{j}}} \cdot f(t, p)\right)
$$

is seen to be of the form stated in Sect. II. The only problems come from t_{i} belonging to divergent subgraphs G_{i}. In this case, however, \mathscr{L}_{i}^{\prime} annihilates the troublesome term $t_{i}^{2 L G_{i}-4 I_{G_{i}}-1}$ because:

$$
t_{i}^{2 L_{G_{i}}-1} \mathscr{L}_{i}^{\prime}\left(t_{i}^{-4 I_{G_{i}}} f\right)=\left(\frac{\partial}{\partial t_{i}}\right)^{D_{i_{0}}+1} f, \quad\left(G_{i} \equiv \Gamma_{i_{0}}\right)
$$

This shows that the function in question is analytic in each t_{i} variable separately. Hartog's theorem [9] then implies that the function is analytic in all variables together. The specific form of $f(p, t)$, (A.3), results in (11) in Sect. II.

Appendix B

The purpose of this appendix is to present some details in the derivation of (24) and (25).

The change of variables from $\left(\alpha_{l}, \zeta_{i}\right)$ to $\left(\beta_{l}, \zeta_{i}\right)$ is described in Appendix A. The only difference is the following equations:

$$
\begin{aligned}
& \left(\frac{\partial}{\partial \zeta_{i}}\right)^{D_{i}+1}\left[\zeta_{i}^{4 I_{\Gamma_{i}}+v_{\Gamma_{i}}(\sigma)} f\left(\alpha, \zeta^{2}\right)\right]=\zeta_{i}^{2 L_{\Gamma_{i}}-\Delta_{\Gamma_{i}}(\sigma)-1} \mathscr{L}_{i}(\sigma) \hat{f}\left(\beta, \zeta^{2}\right) \\
& \mathscr{L}_{i}(\sigma)=\prod_{s=0}^{D_{i}}\left(4 I_{\Gamma_{i}}+v_{\Gamma_{i}}(\sigma)-s+2\left(\zeta_{i}^{2} \frac{\partial}{\partial \zeta_{i}^{2}}+\sum_{l \in L_{\Gamma_{i}}} \beta_{l} \frac{\partial}{\partial \beta_{l}}\right)\right)
\end{aligned}
$$

The transformation to t-variables in a β-Hepp sector can be performed as in Appendix A.

Lemma 1.

$$
\prod_{i=1}^{a} \chi_{l_{i}^{\prime} l_{i}^{\prime}}(\beta) \prod_{l \in J_{a}} Q_{l}(\beta, p)=\frac{A(t, p)}{t_{L}^{2 a} \cdot \prod_{i=1}^{L-1} t_{i}^{\nu G_{i}(\sigma)}}
$$

where $A(t, p)$ is a function of t_{1}, \ldots, t_{L-1}, analytic in the t domain.
Proof. $Q_{l}(\beta)$ is bounded and creates no difficulties. $\left|\chi_{l m}(\beta)\right| \leqq \sum_{H \ni l, m}\left(\beta_{l}+\beta_{m}\right)^{-1}$ ([7] Theorem 10-3). Therefore it is sufficient to prove that

$$
\prod_{i=1}^{a}\left(\beta_{l_{i}^{\prime}}+\beta_{l_{i}^{\prime}}\right) \geqq t_{L}^{2 a} \prod_{j=1}^{L-1} t_{j}^{\nu_{j}(\sigma)} .
$$

Let $l_{i}^{\prime \prime} \geqq l_{i}^{\prime}$ and let n_{j} denote the number of $l_{i}^{\prime \prime} \leqq j$ we have:

$$
\prod_{i=1}^{a} \beta_{l_{1}^{\prime \prime}}=\prod_{j=1}^{L} \beta_{j}^{n_{j}-n_{j-1}}=\prod_{j=1}^{L}\left(\beta_{j} / \beta_{j+1}\right)^{n_{j}}=\prod_{j=1}^{L} t_{j}^{2 n_{j}} .
$$

$2 n_{j} \leqq v_{G_{j}}(\sigma)$ because $l_{i}^{\prime \prime}<j$ implies $l_{i}^{\prime}, l_{i}^{\prime \prime} \in G_{j}$. This gives:

$$
\prod_{j=1}^{L} t_{j}^{2 n_{j}}=t_{L}^{2 a} \prod_{j=1}^{L-1} t_{j}^{2 n_{j}} \geqq t_{L}^{2 a} \cdot \prod_{j=1}^{L-1} t_{j}^{v_{G_{j}}(\sigma)}
$$

As a consequence of Lemma 1, the integrals in question have the form:

$$
\left.\begin{array}{l}
\int_{0}^{1} d \zeta_{0}\left(1-\zeta_{0}\right)^{D_{0} \zeta_{0}^{q_{n}}} \int_{0}^{1} \prod_{i=1}^{\kappa} d \zeta_{i}\left(l-\zeta_{i}\right)^{D_{i}} \zeta_{i}^{-1-\Delta_{\Gamma_{i}}(\sigma)} \cdot \int_{0}^{\infty} d t_{L} \int_{0}^{1} \prod_{i=1}^{L-1} d t_{i} \\
\cdot\left(t_{L}^{2} \sum_{l \in L} c_{l}\right)^{-t_{L}^{2}} \sum_{l \in L} c_{l} \tag{B.1}
\end{array} \prod_{i=1}^{L} t_{i}^{2 L_{G_{i}}-1} \cdot \prod_{i=1}^{\kappa} \mathscr{L}_{i}^{\prime}(\sigma) \cdot\left(t_{L}^{-2 L} \cdot \prod_{i=1}^{L-1} t_{i}^{-4 I_{G_{i}}-v_{G_{i}}(\sigma)} \cdot f\right)\right\},\left(\sum_{l \in L} c_{l} m_{l}^{2}+\zeta_{0}^{2} \mathscr{F} \mid \mathscr{P}\right)^{-N_{G}+a-n} .
$$

As before $\{\cdot\}$ in (B.1) can be written as:

$$
\begin{equation*}
t_{L}^{-1} \cdot \prod_{i=1}^{L-1} t_{i}^{\Lambda_{G_{\mathrm{i}}}(\sigma)} . \sum_{s \geqq N_{G}+n-a} \chi_{s}^{(n)}(t, p)\left(\sum_{l \in L} c_{l} m_{l}^{2}+\zeta_{0}^{2} \mathscr{F} / \mathscr{P}\right)^{-s} \tag{B.2}
\end{equation*}
$$

where $\chi_{s}^{(n)}(t, p)$ is defined as in (11).
One can make the estimate:

$$
\begin{align*}
\left(\sum_{l \in L} c_{l} m_{l}^{2}\right)^{s} \geqq & \geqq\left(t_{L}^{2} \ldots t_{i_{0}}^{2} M^{2}\right)^{v_{M}-\varepsilon / 2}\left(\sum_{l \in F(\sigma)} c_{l} M^{2}\right)^{F(\sigma) / 2} \\
& \cdot\left(\sum_{l \in L} c_{l}\right)^{\varepsilon / 2} \cdot\left(\sum_{l \in L} c_{l}\right)^{\Delta_{G}(\sigma) / 2-F(\sigma) / 2} \cdot\left(m^{2}\right)^{s-v_{M}-F(\sigma) / 2+\varepsilon / 2} \tag{B.3}
\end{align*}
$$

where v_{M} is given by (25), $F(\sigma)$ denotes the number or the set of massive particles appearing in $\prod_{r=1}^{\mu(\sigma)} m_{l_{r}}$ and i_{0} is the largest line corresponding to particles with mass M.

Using (B.2) and (B.3), the t-integrand in (B.1) is dominated by an expression of the form:

$$
\frac{\left(\sum t_{L}^{2} c_{l}\right) e^{-t_{L}^{2} \Sigma c_{l}} \cdot \prod_{i \geqq i_{0}}^{L-1} t_{i}^{N_{i}-2 v_{M}+\varepsilon} \cdot \prod_{i=1}^{L-1} t_{i}^{\Lambda_{G_{i}}(\sigma)} t_{L}^{\Delta_{G_{L}}(\sigma)}}{t_{L}\left(\sum_{l \in L} c_{l}\right)^{\varepsilon / 2}\left(t_{L}^{2} \sum_{l \in L} c_{l}\right)^{\Delta G / 2-F(\sigma) / 2} \cdot\left(t_{L}^{2} \sum_{l \in F(\sigma)} c_{l}\right)^{F(\sigma) / 2}}
$$

or

$$
\frac{\left(\sum_{l \in L} \alpha_{l}\right)^{1-\varepsilon / 2} \cdot e^{-\sum_{l \in L} \alpha_{l}} \cdot \prod_{i=1}^{L} t_{i}^{\Delta_{G_{i}}(\sigma)}}{\left(\prod_{i=1}^{L} t_{i}\right)^{1-\varepsilon}\left(\sum_{l \in L} \alpha_{l}\right)^{\Delta_{G}(\sigma) / 2-F(\sigma) / 2} \cdot\left(\sum_{l \in F(\sigma)} \alpha_{l}\right)^{F(\sigma) / 2}}
$$

In deriving (B.4), we have used the facts: $N_{i}-2 v_{M}+1 \geqq 0$ for $i \geqq i_{0}, N_{i} \geqq 0$ and $\left(\prod_{i \geqq i_{0}}^{L} t_{i}\right)^{1-\varepsilon} \geqq\left(\prod_{i=1}^{L} t_{i}\right)^{1-\varepsilon}$.

Transforming to β variables, using $\beta_{1}^{1-\varepsilon / 2} \beta_{2} \ldots \beta_{L} \geqq\left(\beta_{1} \ldots \beta_{L}\right)^{1-\varepsilon / 2 L}$, transforming further to the α-variables and using $\left(\sum_{l \in F(\sigma)} \alpha_{l}\right)^{F(\sigma) / 2} \geqq\left(\prod_{l \in F(\sigma)} \alpha_{l}\right)^{1 / 2}$ the t-integral in (B.1) is dominated by

$$
\begin{align*}
\int_{0}^{\infty} & \prod_{l \in L} d \alpha_{l}\left(\sum_{l \in L} \alpha_{l}\right)^{1-\varepsilon / 2} \cdot e^{-\sum_{l \in L} \alpha_{l}} \cdot \prod_{l \in L} \alpha_{l}^{-1+\varepsilon / 2 L} \\
& \cdot \prod_{l \in L} \alpha_{l}^{\Delta_{G_{l}}(\sigma) / 2-\Delta_{G_{l-1}}(\sigma) / 2} \cdot \prod_{l \in F(\sigma)} \alpha_{l}^{-1 / 2} \cdot\left(\sum_{l \in L} \alpha_{l}\right)^{-\left(\Delta_{G}(\sigma) / 2-F(\sigma) / 2\right)} \\
& \cdot \prod_{l \in L}\left(\pi_{l}(\zeta)\right)^{\Delta_{G_{l}}(\sigma)-\Delta_{G_{l}-1}(\sigma)+\varepsilon / L} . \tag{B.5}
\end{align*}
$$

Lemma 2. (B.5) contains ζ (from Γ) in a power larger than or equal $\Delta_{\Gamma}(\sigma)+\varepsilon / L$. Proof. $\pi_{l}(\zeta), l \in \Gamma$ contains $\zeta . \Delta_{\Gamma}(\sigma)=\sum_{l \in L_{\Gamma}} a_{l}$ where a_{l} is the power from $R_{l}\left(k_{l}\right)$ not present in $\prod_{j=1}^{v(\sigma)} k_{l_{j}}$. Consequently

$$
\sum_{l \in \Gamma} \Delta_{G_{l}}(\sigma)-\Delta_{G_{l-1}}(\sigma)=\sum_{l \in \Gamma} a_{l}=\Delta_{\Gamma}(\sigma) .
$$

The integral in (B.5) exists: $l \in F(\sigma)$ implies $\Delta_{G_{l}}(\sigma)-\Delta_{G_{l-1}}(\sigma) \geqq 1$. It follows that $\alpha_{l}^{-1 / 2}, l \in F(\sigma)$ is cancelled by $\left(\alpha_{l}\right)^{\left(\Delta_{G_{l}}(\sigma) / 2-\Delta_{G_{l-1}}(\sigma) / 2\right.}$. The integral can be written:

$$
\int_{0}^{\infty} \prod_{l \in L} d \alpha_{l} \delta\left(1-\sum_{l \in L} \alpha_{l}\right) \cdot \prod_{l \in L} \alpha_{l}^{-1+\varepsilon / 2 L} \cdot\left[\frac{\prod_{l \in L} \alpha_{l}^{\Lambda_{G_{l}}(\sigma)-\Delta_{G_{l-1}}(\sigma)}}{\prod_{l \in F(\sigma)} \alpha_{l}}\right]^{1 / 2}
$$

which exists.

Lemma 2 shows that the ζ_{i} integrations in (B.1) can be performed. Consequently (24) is dominated by a sum of terms of the form

$$
h(p, m, \varepsilon) M^{F(\sigma)} /\left(M^{2}\right)^{v_{M}+F(\sigma) / 2-\varepsilon / 2} .
$$

As $2 v_{M}-\varepsilon \geqq 1-\varepsilon>0$ we have the decoupling (25).

References

1. Appelquist, Th., Carazzone, J. : Infrared singularities and massive fields. Phys. Rev. D 11, 2856 (1975)
2. Magg, M. : A possibility of asymptotic freedom without non-abelian gauge theories. Nucl. Phys. B 119, 85 (1977)
3. Appelquist, Th.: Parametric integral representation of renormalized Feynman amplitudes. Ann. Phys. 54, 27 (1969)
4. Anikin, S.A., Polivanov, M.K., Zavialov, O.I.: Simple proof of the Bogolubov-Parasiuk theorem. Preprint, Dubna E2-74 33 (1973)
5. Bergère, M.C., Zuber, J.B.: Renormalization of Feynman amplitudes and parametric integral representation. Commun. Math. Phys. 35, 113 (1974)
6. Bergère, M.C., Lam, Y.-M.P.: 1. Asymptotic expansion of Feynman amplitudes. 2. BogolubovParasiuk theorem in the α-parametric representation. J. Math. Phys. 17, 1546 (1976)
7. Nakanishi, N.: Graph theory and Feynman integrals. London: Gordon and Breach 1971
8. Speer, E.R.: Analytic renormalization. J. Math. Phys. 9, 1404 (1968)
9. Vladimirov, V.S. : Methods of the theory of functions of several complex variables. Cambridge, MA : MIT Press 1966

Communicated by R. Stora

Received February 12, 1978 ; in revised form October 6, 1978

