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Abstract. Consider a gauge field F and a scalar field φ with a self-coupling V(φ)
as well as the standard coupling between F and φ. lϊQ^2V(φ)^φ-Vf(φ\ there
are no classical lumps. If V(φ) = \φ\4 the system is conformally invariant and all
the energy radiates out along the light cone.

1. Introduction

Consider the Lagrangian density

(1)

in Minkowski space, where F denotes a Yang-Mills field, φ a scalar field, and V a
self-coupling depending only on \φ\2. The internal symmetry group (5 is a compact
Lie group, and D denotes the covariant derivative.

In [1] we considered a pure Yang-Mills field with Lagrangian F2. We proved
that all the energy of a solution to the Yang-Mills equations radiates out along the
light cone. We prove here the exact analogue in the case of (1) provided V satisfies
the inequality

Q^4V(φ}^φ V'(φ). (2)

A typical case is V(φ) = c\φ\p where c>0, p^4.
In case V(φ) = c\φ\4, our Lagrangian 3? is invariant under the conformal group

of Minkowski space (Theorem 1). This 15 dimensional Lie group generates 15
conservation laws satisfied by the solutions of the equations of motion. We derive
the explicit forms of these laws in Sect. 3. In Sect. 4 we show that one of them, the
First Inversional Law, implies the decay result mentioned above. For arbitrary V,
they are no longer all conservation laws. However, under assumption (2) the extra
terms in the First Inversional Law have the proper signs and we infer the same
decay result.
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In Sect. 5 we allow the potential V to include a positive mass term. Assuming
only F^O, we deduce that certain components of the energy density are square
integrable over light cone surfaces (Theorem 3). If V satisfies

Q^2V(φ)^φ Vf(φ) (3)

then the energy within a fixed region of space is integrable in time and decays to
zero as ί->oo (Theorems 4 and 5). It follows that there are no "classical lumps" if
(3) holds; that is, no solutions of finite energy which are independent of time
(Corollary 3).

We do not consider the question of the global existence of solutions but simply
derive properties which any smooth solution would have to satisfy. For reference
to related work, see [1]. In the case of a pure scalar field, the method of Sect. 5
derives originally from [2], and the conditions (2) and (3) are well-known [3].

2. The Equations

We begin with some notational conventions. Let (5 be a Lie group and 9 its Lie
algebra. We denote the Lie multiplication by A x B (rather than the usual [^4,#]).
Thus Ax A = Q, Ax B= — Bx A and the Jacobi identity takes the form

We assume (5 is compact. Then g possesses a natural inner product which we
denote by A-B, and (A xB)-C = A-(Bx C). We let \A\2=A A. In the special case
when (5 = SU(2), g is three-dimensional and its elements can be regarded as vectors
with x and denoting the ordinary cross and dot products.

We write the space variables as x = (xl9x2,x3) and the time variable as t. We

write partial derivatives as dk= - — (fc = l,2,3) and d°= -1. We do not raise or
oxk ot

lower indices; these are ordinary calculus derivatives. The gauge potentials Aμ

(μ = 0, 1,2,3) are functions on space-time with values in g, as is the scalar field φ.
The covariant derivatives are defined by

D° = d0-gA°x (4.0)

Dk = dk + gAkx (fc-1,2,3).

We will repeatedly use the identity

DμA B + A DμB = dμ(A B) (μ = 0, 1,2,3),

where A,B are C1 vector fields. Indeed, let μ= 1,2,3. Then by (4.k) we have

But A (Aμ x B) = B (A x Aμ\ This proves (*) for μ = 1, 2, 3, and the proof for μ = 0 is
similar.

We write the Yang-Mills field strengths as

^ ^ v = ̂  2, 3) (5)

d
1 In [1] d° was defined as --

dt
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and

A° (fe=l,2,3) (6)

and also denote

El=Fl\ E2 = F20, E3=F30, (7)

H^F32, H2 = F13, H3 = F21. (8)

Further, we put

lp» = D"φ (μ = 0,l,2,3). (9.μ)

We consistently use Σ> Σ to denote sums over the indices fc = 1,2,3 and
fc μ

μ = 0, 1, 2, 3, respectively.
Let E be the matrix with the columns E1, E2, and E3, each of which belongs to

g. If α = (α1?α2,α3) is an ordinary 3-vector, then Ea=^jockE
k. If we denote

k

\E\2 = Σ\Ek\2> then |£α|^|£||α|. Similarly, let H be the matrix with columns H1,
k

H2, and H3 and let *F be the matrix with the columns ψ1, ψ2, and ψ3.
Let V0 be a real function of a real variable and define V(φ)= V0(\φ\2). Let V'(φ)

denote 2</>7o(|0|2) where VQ is the derivative of V0.
The Lagrangian density is

k k k

The Euler equations for <£ take the following explicit form :

D°Hi=D3E2-D2E3, (11.1)

D°H2 = D1E3-D3E1, (11.2)

D°H3=D2E1-DiE2, (11.3)

D0^:1 =D2H3-D3H2 + gψ1 x φ , (12.1)

D°E2=D3H1-D1H3+gιp2xφ, (12.2)

D°E3=D1H2-D2H1+gψ3xφ, (12.3)

* = 0, (13.fi)

= - Π<W , (14.0)

D°ψj-Djψ° =

D1ψ2-D2ψ1 = -gH3 xφ, (15.1)

D2ψ3-D3ψ2 ^-gH^xφ, (15.2)

D3ψ1-D1ψ3=-gH2xφ. (15.3)
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Derivation of Equations (11)-(15). Actually, only Eq. (12), (13.E), and (14.0) result
directly from 5£ as equations of motion. The rest of the Eq. (11)-(15) are
"constraint" equations which follow from the definitions of Fμv and ψμ, as we now
demonstrate.

The Euler equations of (10) have the form

_ _

In order to evaluate (16) and (17) it is convenient to note that

and

., d

Indeed, i) is obvious and ii) follows from

dε2

= B Cx{A + (BxC)} at e = 0.

We now evaluate (16).

clearly am=ψ°and WΦ)=~ψj 0=W) by

Hence (16) implies

3V- £dkψk = gA°xψ° + g^Akxιpk-V'(φ]
k k

which is precisely (14.0) in view of (4.0) and (4.fe).
Next, consider (17.0). Then by ii) we find

and

f j C f f i ( f

^ = Σ<^ (M = OΛ2,3). (17,0

The derivatives of <g have values in g. Thus for instance,

A
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Jί>f does not depend on d°A° while

d^/d(djA°) = Ej by i ) .

Therefore (17.0) implies

which is the same as (13.E).
We now consider (17. k) for k = 1 say. We have

By ii) we have

ijcp
,— y =gA° x El -gA3 x F13 +gA2 x F21-gφ x φ1

uA

= gA° x E1 -gA3 x H2 + gA2 x H3-gφ x ip1 .

Furthermore, by i),

fig?
— — — -F1 - F21- H3 anH -F13-H2

d(d°Aί)~L ' d(d2Ai)~~* ~ H ' and 3i~* ~H

Since S£ does not depend on d1A1, (17.1) yields

which is the same as (12.1).
Next we indicate the derivation of the "constraint" equations. In each case

below the Jacobi identity is used.
Consider (11.1). We have

d°(A* x A2) - gA° x d*A2

+ gA° x d2A3 - g2A° x (A3 x A2) .

In the second line replace

d°A2 by E2-d2A°-gA2xA°

and

d°A3 by E3-d3A°-gA3xA°.

Hence

D0//1 = 83E2 - d2E3 - gd3(A2 x A°) + gd2(A3 x A°)

+ gdQ(A3 x A2)-gA° x d3A2 + gA° x d2A3-g2A° x (A3 x A2) .
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Now we write the first two terms here as

d3E2-d2E3=D3E2-gA3xE2-D2E3+gA2xE3

and evaluate the cross products A3 x E2, A2 x E3 using (6) and (7). Then in the
expression for DQHl above, the quadratic terms cancel pairwise, and the three
cubic terms sum to zero by the Jacobi identity. This establishes (11.1); (11.2) and
(11.3) follow from cyclic permutation.

Consider next (13.Ή). By (4.1) we have

x F32

= d\d3A2-32A3+gA3xA2)

+ gA1xd3A2-gA1xd2A3+g2A1x(A3xA2).

D2H2 and D3H3 can be evaluated from this by cyclic permutation. When we form

the sum ^DkHk, the second-derivative terms cancel pairwise, as do the quadratic
k

terms. Again the Jacobi identity shows that the three cubic terms vanish upon

summation. Therefore £ DkHk = 0 which is (13.JΪ).
k

To establish (14j), we write (for j =1,2, 3)

£)<y _ Djψo = 3<y _ gjyo _gAoχψj_ gAJ χ φo

= d°(djφ + gAj xφ)~ dj(d°φ - gA° xφ)- gA° x ιpj - gAj x ιpQ

= g(d°Aj + djA°) xφ + gAj x(d°φ~ ιp°) + gA° x (djφ - ιpj) .

Using (7), (9.0), and (9j), this reduces to

g(EJ - gAj xA°)xφ + g2Aj x (A° xφ)- g2A° x (Aj xφ) = gEj x φ .

Finally, we verify (15.1). We have

Diιp2-D2ιp1 = dl\p2 + gAl xip2- d^-gA2 x ψ1

(d2φ + gA2xφ)-gA2x(dί

Six terms cancel pairwise and we get

g(d1A2-d2A1) xφ + g2Aί x (A2 x φ)-g2A2 x (A1 x φ).

We substitute

and use the Jacobi identity to obtain (15.1). This completes the derivation of the
full set of equations of motion (11)-(15).
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3. The Conservation Laws

The energy is obtained as follows. Multiply (llj) by Hj and (12j) by Ej(j=l,2, 3)
and add the resulting six equations. Using (*) we get the identity

S°eYM = Σ [_dkp\M + gψkxφ Ek ] , (18)
k

and

Next we multiply (14.μ) by ψμ (μ = 0, 1, 2, 3) and add the resulting four equations to
obtain

(19)
ψ ψk)+gEkxφ Ψ^.

k

Adding (18) and (19) we get the Energy Conservation Law

5°e = Σδy, (20)
k

where

e = ±(\E\2 + \H\2 + ZW\2\+V(<l>) (21)
\ μ /

and

(22)

Next we calculate the momenta. Consider

Using (*) we have

ay =/+//,

where

Using (11), (12), and (14) we have
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Using (*) we can write these as

/ = \d\\E2\2 + |E3|2 + \H2\2 + \H 3|2)

°Έ1 xφ.

The third line of / becomes, by (13.E),

By (15), the second line of // becomes

All the cubic terms drop out and we obtain (for 7 = 1) the Momentum
Conservation Law

d°pj = djf + Σ8k(!Jk (23-7)
k

where

f = e-\Ψ\2-2V(φ)

and

The equations for j = 2, 3 are obtained in exactly the same way.
The other eleven identities are derivable from (20) and (23 j). They are as

follows :

d°(Xje + trf = d\tf) + X dk(xjP

k + tq*} (j = 1, 2, 3) , (24)
k

) , (25)
k

and two similar laws obtained by cyclic permutation of indices.

δ° (te + Σ xkP
k + Ψ° Φ\ + V'(Φ) φ - 4V(φ)

= Σ <W + xkf+Σ *fl* + Ψk φ\, (26)
k \ j I

(27)

° Φ\ +Xj{φ V'(φ)-4V(φ)}
I

k

(7 = 1,2,3). (28)



Yang-Mills Field Coupled to a Scalar Field 59

Theorem 1. IfV(φ) = c\φ\4., the system is invariant under the conformal group.

Indeed, 4V(φ) = φ-Vf(φ\ so that all 15 identities are exact conservation laws.
These are the conservation laws which follow from the invariance via Noether's
Theorem. We omit the direct proof of the invariance.

As an example we present a detailed derivation of the First Inversional Law
(27). Multiply (20) by r2 + 12 and (23. j) by 2txjt The sum of the resulting four
equations can be written as

=Σdk \(γ2 + * V + 2tχkf + 2ί Σ *fljk + 2Φ - 3/ - Σ ̂ 1 (29)
k [ J [ k \

The last expression is

) = -\ψ°\2 + \Ψ\2 + 4V(φ) .

Now multiply (14.0) by φ and make use of (*) to obtain

δ°(φ° - φ) - ψ° - D°φ - Σ (8k(ψk φ)-ψk Dkφ) =-φ V'(φ) .
k

By (9.μ) this can be written as

k φ). (30)

Multiplying this by 2ί, we get

° - φ) .«/»] + 2tφ V'(φ) = 2t(\ψ°\2 - 1 Ψ\2) + X 3*(2ίψ*

When we add this result to (29), we obtain (27).

4. Asymptotics in the Case of Zero Mass

Theorem 2. Assume that V satisfies the inequalities

Let R>Q and 0<ε^l. Then as £-»oo,

= 0(Γ2)9

where e is the energy density (21). (This is valid provided §r2edx<co at all times.)

Proof. We integrate (27) over all space. Assume that the solution is smooth and
satisfies J r2e dx<co at any time. Then the right side vanishes. We obtain

We break this integrand into two parts, the part involving the Yang-Mills field IYM
x

and the part involving the scalar field Is. Let ω = — and introduce unit vectors α
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and β so that α,/?,ω form an orthonormal basis for R3 with α x β = ω. By the
orthonormal property of the basis vectors we have

and a similar identity with E replaced by H. Then, as we showed in [1],

In particular, |£ω fcPyJ=βyM and so

IYM^(t-r)2eYM. (32)

x
We now express /s as a sum of squares. First we denote χk = ψk + -jj-φ and

x

r
define Ξ to be the matrix with columns χ1, χ2, χ3. Using (9.fc) we have

10I2), (33)
r~

where r = |x| and rdr = ̂ xkd
k. Hence

r2)r\φ\2}, (34)

where

(35)

Hence for any subset B of space we have

B

Choosing B={x:\x\<R + (l-ε)t} we obtain from (32) and (35)

for t>Rs~1. Finally, using (33) again we have

for t>Rε~1. This completes the proof.
The following two corollaries are proved exactly as in [1].
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Corollary 1. Assume that any finite-energy solution (a solution with^edx < oo) can be
approximated by cut-off solutions in the energy norm, uniformly in time (see [l]j.
'Then for any finite energy solution and for each R>0 and 0<ε^l, we have

lim J e dx = 0 .

Corollary 2. Under the same assumptions, there is no finite energy solution of the
form

E = E(x-ct), H = H(x-bt), φ = φ(x-at)9

where a,b,c are constant vectors of norm less than one, except the trivial solution

E = H = Q, 0-const, V(φ) = 0.

Remark. By (31) and (34), the integral over all space of certain of the components of
eis 0(Γ2).

5. Estimates in Case the Scalar Field Has Positive Mass

We begin by showing that certain components of the fields are square integrable
over light cones.

Theorem 3. For any finite energy solution,

J

+ \Eω 2 + \Hω 2 + \Eu-Hβ\2 + \Eβ + Ha 2}dS^ const ,

where dS is the usual surface measure on {\x =t}. (The notation of Theorem 2
remains in effect.) //Fg O, each term is positive and therefore integrable on the cone.

Proof. We integrate the energy conservation law (20) over the 4-dimensional
region {\x\<t<T} and then let T-»oo to obtain

2 J (e
\x\=t\

X

where ωk= — . The Yang-Mills terms in the integrand are written as in (31). The

other terms are 2V(φ) and

This proves Theorem 3.
Next we turn to an investigation of the asymptotic behavior in case V(φ)

includes a mass term. Typically one envisions

For this purpose, assume φ-V'(φ)^2V(φ)^Q. We employ the summation
convention (j,k = l,2, 3) for notational simplicity. Multiply (23j) by a function
2lj(x) (j = 1, 2, 3) and sum on j to get

2<9°(/ jpJ) + 2(djl j)f + 2dkl j qjk = 2dj(l/) + 28k(lfl

jk} .



62 R. T. Glassey and W. A. Strauss

Let m = djlj. Multiply (30) by m to get

d°(mψ° φ) + m(\Ψ\2 - |v>°|2 + V(φ) φ)

= δk(mψk φ)-(δkm)ψk φ

Adding these two equations we find

8°{ΉJp
i+mψ0 φ}

+ 2dklf q* + m(2f + \ Ψ\2 - \ψ°\2 + V'(φ) φ) - ±(dkdkm)\φ\2

= dk{2lkf+2lfl* + mψk φ-^(dkm)\φ\2}. (36)

We write (36) in the form d°X + Z = dkYk. We evaluate Z by substituting the
expressions for / and qjk :

Z = (m δjk - 2dklj)(Ej Ek + Hj Hk) + 2(dklj)ψj ψk

+ m(φ V'(φ) - 2V(φ))-±(δkδkm)\φ\2 .

In (36),

X = 1\.pi + mψ°.φ = 2ljpJ

YM + 2ψ°- l ψj + — φ .

Hence

(37)

The last term here is

ϊ+\

2 1 m2

= \ljψj\2 + rn

}\φ\2. (38)
/ Z \ - Δ t

Now we choose /7 (x)= —. Then

2
3 fc/. = ̂  Jr — x ixjr3 and m = djl. = -.

J ./"•' J "•' J γ

Therefore mδjk — 2dklj

Ijdjm + ±m2 = 0 and dkdkm = Q for

It follows from (37) and (38) that

Hence J|Z|dx is bounded by twice the energy. Now we integrate (36) over the
exterior of a small sphere {|x|>ε} and then let ε-»0. On the right side of the
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resulting equation, the terms in (36) of the form dkYk drop out except for the last
term, which gives

-~ J dk{(dkm)\φ\2}dx =
\>ε Γ

= - f \φ(x9t)\2dSx^-4π\φ(Q,t)\2£Q
ε \x\=ε

as ε->0. On the left side we have the integral of

where we have denoted

Er=-Ex, Hr=-Hx, ψr=-ψχ.

Thus we have proved that

JJ Zdxdt + 4π ] \φ(Q,t)\2dt^4$edx = 4e0. (39)
— oo — oo

Theorem 4. Assume φ V'(φ) ^2V(φ) ^ 0. Consider a smooth solution of finite energy.
Then

tt(\Er\
2 + \Hr\

2)^dxdt<κ, (40)

Jf(|«P|2-|!P r |
2)-ίίxA<oo, (41)

Jf (φ V(φ) - 2V(φ)) - dxdt < oo . (42)

These integrals, and the ones below, are taken over all space and time. Furthermore,
ifδ>0,

>, (43)
r)1

Proof. Estimates (40)-(42) follow immediately from the integrability of Z in (39).
Using the second term in (39) and shifting the origin x = 0 to any other point, we
obtain

00

π J \φ(x,t)\2dt^e0 for all x.
— oo

Therefore

This proves (44).
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In order to prove (43) we choose a more general form for our multiplier,
namely

Then

The weight function ζ is chosen to satisfy the following constraints:

ζ
i) ζ bounded, - ^Γ^O

r

ii)

iii) ψ

- (45)

By (37) and (38) it follows that J \X\dx is bounded by a constant multiple of the
energy eQ. The general expression for Z implies that

(46)

Each of these six terms is non-negative and hence is integrable over all space-time.
Now we make the specific choice

where 0<(S<1. We will verify (45). By explicit calculation, we have

Therefore (43) follows from (46). We need only complete the verification of (45).
Indeed

and

This completes the proof of Theorem 4.
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Corollary 3. If φ V'(φ)^. 2 7(0)^0, there are no "classical lumps" of finite energy.
That is, if E(x), H(x\ φ(x) is a solution which is independent of time and has finite
energy, then E = H = φ = Q.

In (43) we are missing an estimate on \ψ°\2. To get it we need a slightly stronger
assumption on K as follows.

Theorem 5. Assume that Vhas the form

where

We assume m0, δ, and R are positive constants and α > 2. Then

HW(φ)-dxdt<ao, (47)

> , (48)

J J edxdt<oo, (49)
-co |x| <R

J edx-+Q as |ί|->oo. (50)
\*\<R

Proof. We have

φ V'(φ) - 2V(φ) = φ - W'(φ) -2W(φ) ^ (α - 2)W(φ) .

Therefore (42) implies (47). Now we multiply identity (30) from the end of Sect. 3
-^ = ̂ (r). Thus

φ. (51)

The last term is bounded by a constant times

(r+irl->\Ψ\2 + (r+lΓ3-δ\Φ\2

9

which is integrable over space-time. As for the first term in (51),

because of the mass term in the energy. The terms ξ\Ψ\2, ξ\φ\2 and ξφ W(φ) are
also integrable over space-time because

Hence (51) implies that ξ\ψ°\2 is also integrable. This is (48). Since

(49) follows from (43), (44), (47), and (48) as soon as we replace the factor r+ 1 in
the denominators by the constant
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We now derive (50) from (49) using the method of Morawetz [2]. Let

R+ί

f(t)= J J edxdρ^ J edx.
R \X\<Q \x\<R

We will show that /(ί)-»0 as |ί|->oo. By (49), /(ί) is integrable. Therefore it is
enough to show that the derivative f ' ( t ) is bounded (— oo <t < oo).

Now
Λ + l

f(t)= J J d°edxdρ
R \x\<ρ

R+ί / X \

= I JMΣvίΠ^e ^ί20)

= H<WU

Thus I f(t)\ ^ J e dx g \edx = e0.
R<\x\<R+ί

This completes the proof of Theorem 5.
Finally, we establish the square integrability of the potentials Aμ themselves.

We first assume only that 7(0)^0. It follows as in [1] that

in, say, the Lorentz gauge. This comes from multiplying (6) by Ak, summing over
fc=l,2, 3, and integrating. In particular,

for all t. We can also estimate \\φ\2dx, even in the case of zero mass. We integrate
the identity

φ^ = φ.DQφ = ̂ (\φ\2) (52)

to obtain

Therefore

0

Since 7(0)^0, we conclude that

t)\2dx = 0(l + t 2 ) for all ί.
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We can find stronger bounds on §\φ\2dx if we assume that φ- V'(φ)^
and that §r2edx<co. For then, we rewrite the integrated First Inversional Law
(27) in the form :

t2)(\E\2 + \H\2)dx + 2ί f r
k

2 2 - 1 f r

 2)ίίx + ί J φ ψ°dx

k

It follows that

so that (52) yields

^d°(\φ\2)dx^- for ί^l, say.

Hence |φ(x,ί)|2dx = 0(lnί)as ί->oo.

Acknowledgement. We are grateful to A. Jaffe for suggesting that we try the methods of [1] on this
system.
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