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Abstract. We classify the action of one parameter isometry groups of
Gravitational Instantons, complete non singular positive definite solutions of
the Einstein equations with or without A term. The fixed points of the action
are of 2-types, isolated points which we call "nuts" and 2-surfaces which we call
"bolts". We describe all known gravitational instantons and relate the numbers
and types of the nuts and bolts occurring in them to their topological
invariants. We perform a 3 + 1 decomposition of the field equations with
respect to orbits of the isometry group and exhibit a certain duality between
"electric" and "magnetic" aspects of gravity. We also obtain a formula for the
gravitational action of the instantons in terms of the areas of the bolts and
certain nut charges and potentials that we define. This formula can be
interpreted thermodynamically in several ways.

1. Introduction

There has been considerable interest recently in "Instantons" in Yang-Mills
Theory [1-3]. They may be defined as non singular solutions of the classical
equations in 4-dimensional Euclidean space. They provide stationary phase points
in the path integral for the amplitude to tunnel between two topologically distinct
vacua [4, 5] and they may play a role in confinement. Instantons also contribute
to the anomalous divergence of the axial vector current [2] and they may lead to
the decay of baryons into leptons. Because gravity and supergravity are gauge
theories like Yang-Mills it seems reasonable to suppose that gravitational
instantons may play a similar important role. We shall define a gravitational
instanton to be a non singular complete positive definite metric which satisfies the
classical vacuum Einstein equations or the Einstein equations with a A term. The
A term can be regarded as a Lagrange multiplier for the 4-volume V or it may arise
from the Lagrangians of certain supergravity theories [6, 7]. One class of
gravitational instantons that has been extensively studied already is the Kerr-
Newman family of metrics [7-12]. In these solutions one can remove the apparent
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singularity at the horizon and obtain a complete positive definite metric by
identifying the imaginary time coordinate periodically. This leads to a new
approach to the thermal aspects of black holes which have been discovered by
other methods.

Nearly all known gravitational instantons possess continuous symmetry
groups of at least two parameters [11, 14-19]. In this paper we shall give a
classification scheme based on the existence of at least a one parameter group. This
enables us to determine two kinds of basic object, one that we call a "nut" after the
self-dual Taub-NUT solution [10, 11] which is the canonical example and the
other which we call a "bolt", for obvious reasons. The canonical example is the
Schwarzschild solution. In cases where the symmetry group is more than
1-dimensional, different choices of one-parameter subgroup may lead to different
numbers and locations of nuts and bolts. However there are two topological
invariants, the Euler number χ and the signature τ, which can be expressed as sums
over the nuts and bolts with certain coefficients. Roughly speaking, the Euler
number is the sum of the number of nuts, the number of antinuts and twice the
number of bolts while the signature is a measure of the number of nuts minus the
number of antinuts.

The existence of these two kinds of basic objects reflects a certain symmetry in
the theory analogous to duality invariance in electromagnetism. One can think of
bolts as being the analogue of "electric" type mass-monopoles and the nuts as
being gravitational dyons endowed with a real electric type mass-monopole and
an imaginary "magnetic" type mass-monopole. The presence of magnetic type
mass introduces a Dirac string-like singularity in the metric. This can be removed
by appropriate identifications and changes in the topology of the spacetime
manifold. However the metric cannot then be asymptotically flat in the usual
sense. This means that the nuts unlike the bolts cannot occur in the classical
regime. However one might imagine that quantum fluctuations of the metric might
lead to the appearance and disappearance of nut-antinut pairs.

Gravitational Instantons can be interpreted as the stationary phase metrics in
the path integrals for the partition functions, Z, of the thermal canonical ensemble
[12] and the volume canonical ensemble [6]. In these cases the action of the
instanton gives the dominant contribution to — log Z. We shall relate this action
to the areas of the bolts and to the charges and potentials of the nuts. From this it
follows that the bolts have an intrinsic gravitational entropy equal to one quarter
the sum of their areas. This generalises the results obtained for black holes and
cosmological event horizons [12, 13, 20].

2. Nuts and Bolts

We shall consider an oriented manifold M with a positive definite metric gab which
admits at least a one-parameter isometry group G. We shall denote by μτ:M-»M
the action of the group, where τ is the group parameter and we shall denote by

K = Ka —— = — the Killing vector. The isometry group G is said to have a fixed
ox ότ

point where K = 0. At a fixed point p the action of μτ on the manifold M gives rise
to an isometry μτ*:Tp(M)->Tp(M) where Tp(M) is the tangent space at p. μ t* is
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generated by the antisymmetric matrix Ka.b. Antisymmetric 4 x 4 matrices can
have rank 0, 2, or 4. The zero case is not interesting because it would imply that the
Killing vector K was zero everywhere and that the action of the group G was
trivial. This follows because μτ* would be the identity and because μ commutes
with the exponential map at p, i.e.

In the case that Ka.b has rank 2 there will be a 2-dimensional subspace T± of
Tp(M) which is left unchanged by μτ*. The action of μτ* will rotate T2, the
2-dimensional orthogonal complement of TA into itself. Thus μτ* has the canonical
form

/V = L Λ ...... .:_... ' (2 D
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0

cosκ;τ
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sinκ;τ
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where K is the surface gravity and is given by the non zero skew eigen value of Ka;b

in an orthonormal frame. From this one can see that μτ* and hence μτ must be
periodic with a period 2nκ~ 1. The image of T± under the exponential map will not
be moved by μτ and so will constitute a 2-dimensional oriented totally geodesic
sub manifold of fixed points. We shall call such a 2-dimensional fixed point set a
bolt. A simple example is provided by the horizon 2-sphere of the Euclidean
Schwarzschild solution with G being the periodic group of imaginary time
translations [8, 12].

In the case that Ka.b has the maximal rank 4 there can be no directions at p
which are left invariant under μτ*. Thus p must be an isolated fixed point. We shall
call it a nut after the fixed point at the centre of the Euclidean self-dual Taub-NUT
solution [10]. In this case there will be two orthogonal 2-dimensional subspaces Tλ

and T2 which are mapped into themselves by μτ*. The canonical form is

μτ* = (2 2)

where jq and κ2 are the skew eigenvalues of Ka.b in an orthonormal frame. For
some purposes it is convenient to sub divide nuts into 2 classes - "nuts" and
"antinuts" - depending on whether the sign of κ±κ2 is positive or negative respec-
tively. Unless we explicitly say otherwise we shall call both classes nuts.

If κ±κ2

 l = pq~ * where p and q are relatively prime integers, the action of μτ will
be periodic with period β = 2πpκ^ 1 = 2πqκ2

 1. We shall call this a nut of type (p, q).
If κ±κ2

 1 is irrational, the orbits of a vector X in Tp under the action of μτ* is
dense in the torus C(X) consisting of all vectors Y of the form

<*°<*(JO, (2.3)
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where

I i3J.ll /V -i I -i V^Wa t\ ι t 1 V/ V I

<H ' n , Λ ' (2-4)I
cos/c1τ1 sinκ:1τ1 0 0\

— sinκ1τ1 cosκ1τ1 0 0

o
0

0

0

0 0

1 0

0 cos/c7

0. 1 0

0 0 I/

0 \o
(2.5)

\0 0 — smκ2τ2 cosκ2τ2

All scalar invariants of the metric must be constant over each torus in M of the
form exp C(X) for eachZe Tp(M). Because scalar invariants characterize the metric
it follows that μ* * and μ2. * must actually correspond to independent isometries μ*
and μ2

τ of the metric gab on M. One could then take appropriate combinations of
the Killing vectors K1 and K2 such that the orbits were periodic. We shall therefore
consider only periodic isometry groups.

The antisymmetric tensor Ka,b can be decomposed into self dual and antiself
dual parts.

, (2.6)

where

^b^(Ka;b±^abcdK^d) . (2.7)

At a bolt

K:bK
+ab = K-bK~ab. (2.8)

At a nut

K^bK
+ab>K-bK~ab (2.9)

while at an antinut

K^bK
+ab<K-bK-ab. (2.10)

A nut is said to be self-dual if K~b is zero. Then p = q = ± 1. If the curvature is self-
dual - i.e. if

then Ka;b is self-dual everywhere if it is self-dual at one point. Similar remarks
apply to anti self-dual anti-nuts which have p=—q=±l.

3. Examples

The examples of Schwarzschlld and the self-dual Taub-NUT solutions have
already been mentiod. The metric of the Schwarzschlld solution can be written in
the form

. (3.1)
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The apparent singularity at the horizon r = 2M can be removed by identifying τ
with a period 8πM [7,10,11]. The radial coordinate then has the range 2M^r < oo
and the topology of the manifold is R2 xS2. The isometry group is 0(2)® 0(3)
where the 0(2) corresponds to translations in the periodically identified imaginary
time τ and the O(3) corresponds to rotations of the θ and φ coordinates.

The Killing vector — has unit magnitude at large radius and has a bolt on the
oτ

horizon r = 2M which is a 2-sphere of area 16πM2. The surface gravity κ = (4M)~1

and the period β is 8πM. A typical Killing vector of 0(3), for example ^—, is zero
cφ

on a non compact 2-surface, the axis, 0 = 0 or π. We shall not consider Killing
vector which have non compact bolts. One can also take linear combinations

p~ 14M-— +q~ί -z-r. These will have a nut of type (p, q) at the northpole θ = 0 of
oτ cφ

the horizon r = 2M and an antinut of type (p, — q) at the southpole, θ = π, of the
horizon r = 2M.

The Kerr solution with mass M and (imaginary) angular momentum = zαM
has a Euclidean section with metric

ds2 = (r2 - α2 cos2 θ) (dr2Δ ~1 + dθ2)

+ (r2-a2cos2ΘΓ1L^(dτ + oc^n2θdφ)2 + sm2θ((r2-a2)dφ-adτ)2^ , (3.2)

where

A=r2-2Mr-a2 . (3.3)

The apparent singularity at the horizon

r = r + =M + (M2 + α2)1/2 (3.4)

can be removed by identifying the points (r, τ, θ, φ) with (r, τ-f 2πy, θ, φ + 2πγΩ)
where

y = 2Mr+(M2 + u2Γ1/2 (3.5)

and

0 = α(r*-α2Γ1 (3.6)

is the imaginary angular velocity —- of the horizon. This identification gives the
dτ

manifold topology R2 xS2, the same as that of the Euclidean Schwarzschild
solution. By the No Hair Theorems these are the only solutions which are
asymptotically flat in the conventional sense.

The isometry group is 0(2)® 0(2) and is generated by —— and the corotating
oφ

Killing vector K= — +Ω^—. K is zero on the horizon which is the 2-sphere
oτ cφ

r = r+ with area A = 4π(r2

+—u2). The surface gravity κ = y~l and the period

β = 2πy. The time translation Killing vector — has unit magnitude at large radius
dτ
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and for non zero α has 2 isolated fixed points at the north and south poles of the
horizon. One of these is a nut and the other an anti-nut, which is being determined
by the choice of orientation and the sign of α. The surface gravities are

κ,=y~l , (3.7)

κ2=±Ω. (3.8)

If M and α are such that γΩ = q/p, where q and p are relatively prime integers
the nut and anti-nut will be of type (p/q) and (p, — q) respectively and the period
will be 2πpγ = 2πqΩ~1.

The self-dual Taub-NUT metric can be written in the form

(3.9)

The Dirac string singularity at the northpole (9 = 0} can be removed by
introducing a new coordinate

τ' = τ + 2nφ. (3.10)

Similarly the Dirac string singularity at the southpole (θ = π) can be removed by
introducing a new coordinate

τ" = τ-2nφ. (3.11)

Because φ is identified modulo 2π, τ' and τ" must be identified modulo 8πrc. These
identifications and overlapping coordinate patches give the surfaces of constant
r>n the topology of 3-spheres with (τ(2n)~l,θ,φ) being Euler angles. The
apparent singularity at r = n is in fact just the origin in hyperspherical polar
coordinates. The topology of the manifold is R4. The curvature is self-dual with
the orientation defined by the positively oriented orthonormal basis

(3.12)

, (3.13)2n

ω

2 = (r2 -n2)1/2- sin - dθ + cos -m θdφ , (3.14)
\2n] \2n] ]

i/2(dτ + 2ncosθdφ) . (3.15)

The isometry group is isomorphic to l/(2) = (U(l)® SU(2))/Z2. The 17(1) group is

generated by the Killing vector — which is normalized to have unit magnitude at
cτ

large r. It has a single self-dual nut fixed point at the origin r = n. The surface
gravity κ1 =κ2 = (4n)~1 the period β = 8πn. The SU(2) acts transitively on

3-spheres of constant r. A typical Killing vector ^— also has a single fixed point at
oφ



Gravitational Instanton Symmetries 297

the origin r = n but this time it is an anti-self dual anti-nut with κ1 = — κ2 = 1 and
period 2π.

Another metric of Taub-NUT form is [18]

ds2 = (r2-n2)(r-2nΓ1(r-±nΓίdr2

. (3.16)

The curvature is not self-dual. The Dirac string singularities on the axis can be
removed by identifying τ with period $πn. As before this makes the surfaces of
constant r>2n into 3-spheres. The apparent singularity at r = 2n corresponds to
these 3-sρheres collapsing to a 2-sphere. The isometry group is the same as for the

Λ

self-dual Taub-NUT solution. The Killing vector — has unit magnitude at large r

and has a bolt of area 12πn2 atr = 2n with surface gravity κ = (4n)~1. The Killing

vector — — is a typical generator of the 517(2) group. It has a nut of type (1, 2) at the
oφ

north pole, (0 = 0) and an antinut of type (1, —2) at the southpole.
The multi-Taub-NUT metric [11] can be written in the form

x)2-{-V-1dx dx, (3.17)

where

7-1 = l+Σ2n i | x-x J Γ
1 (3.18)

i

and

curlω-gradίF"1). (3.19)

The X; denote the distances in the 3-dimensional metric dx dx the Γth nut
with parameter nt and the grad and curl operations are also performed in this
metric. The vector field ω(x) will have Dirac String singularities running from each
nut. If the nut parameters nt are equal to a single value n the singularities can all be
removed by identifying τ with period 8πw. A large surface which surrounds all
the nuts acquires the topology of the lens space L(|, s) - a 3-sphere with s points
identified, where s is the number of nuts. Thus the metric is not asymptotically flat
in the usual sense. The curvature is self-dual. In general for s ̂  3 the only Killing

vector will be — . This has unit magnitude at large values of r and a self-dual fixed

point at each nut with κ;1 = κ2 = (4ri)~ί.
Another family of self-dual metrics can be obtained from the multi-Taub-NUT

form by omitting the constant term 1 in V~l in Eq. (3.18) [21]. Again to obtain a
regular metric the nt have all to be equal but in this case they can be made equal to
one by rescaling the coordinates. The topology and the nuts are the same as for the
corresponding multi-Taub-NUT solutions, however unlike the multi-Taub-NUT
case, these metrics are Asymptotically Locally Euclidean (A.L.E.). This means that
they are asymptotic to Euclidean space identified under a discrete sub group of
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SO (4). In fact they are the most general family of self-dual A.L.E. spaces with these
identifications. Other self-dual A.L.E. instantons with different identifications have
been found implicitly by Hitchin [22] but explicit metrics are not yet known.

When s = 1 one obtains flat space. When 5 = 2 one obtains the Eguchi-Hanson
metric [16, 17]. The metric can be written as

r2

-

r2

(3.20)

The apparent singularity atr = a can be removed by identifying ψ modulo 2π
rather than modulo 4π as is usual for Euler angles on S3. The identification makes
the surfaces of constant r >a into RP3, a 3-sphere with antipodal points identified.
At large values of r the metric tends to that of flat Euclidean space, points reflected
in the origin being identified. The surface r = a is a 2-sphere.

The isometry group is l7(2) = (l7(l)xSl/(2))/Z2 the same as for Taub-NUT
space of which this metric is a limiting form. The (7(1) subgroup is generated by

the Killing vector — - which has a bolt on the 2-sphere r = a of area πa2 with
dip

surface gravity κ=l and period 2π. The Killing vector — -, a typical generator of
oφ

the SI/ (2) group, has 2 isolated fixed points, self dual nuts at the north and south
poles of the 2-sphere r = a. These have κί =κ2 and the period is 2π.

We now turn to complete non-singular solutions of the Einstein equations with
positive A term:

Rab = Λgabl Λ>0. (3.21)

These are all compact [23].
The simplest example is a 4-sphere of radius 31 / 2/l~1 / 2 in 5-dimensional

Euclidean space. This is the analytic continuation of de Sitter space [20]. The
isometry group is the SO (5) of rotations about the origin in 5-dimensional space.
These are generated by 5 x 5 anti-symmetric matrices which can have rank 0, 2, or
4. The zero case is trivial. In the case of rank 2 there is a 3-plane through the origin
of R5 which is not moved by the rotation. The intersection of this with the 4-sphere
is a bolt which is a 2-sphere with area ί2πA~l. With the normalization of the
Killing vector from 0(5), the period is 2π, the surface gravity is 1. However for
physical applications [20] it may be convenient to choose the Killing vector to
have unit magnitude on the orbit which is a geodesic. In this case the period is
2π31/2ΛΓ1/2. The surface gravity is (A/3)112. If the matrix is of rank 4, there will be
one direction through the origin in R5 which is left unchanged by the rotation. The
intersection of this direction with the 4-sphere will constitute a nut and an antinut.

The next example is complex projective plane, CP2, with its standard Kaehler
metric [14, 15] which has an anti-self-dual Weyl tensor. This can be realized as
C3 — {0} with coordinates Z15 Z2, Z3 factored by the equivalence relation
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(Z1,Z2,Z3) = (AZ1,AZ2,AZ3), AeC-{0}. The isometry group is S17(3)/Z3 which
acts on the coordinates in the standard manner. This is generated by traceless anti-
Hermitean matrices. Such matrices can be divided into two classes, those with two
equal eigenvalues and those with 3 unequal eigenvalues. In the case one gets an
anti-self-dual antinut which can be taken to be at the "origin" (0, 0, Z3) and a bolt
at "infinity" which is the 2-sphere (Z15Z2,0). In the latter case one gets 3 isolated
fixed points two of which will be antinuts and one a nut. They can be located at the
origin (0,0, Z3), the northpole of infinity (Z1?0,0) and the southpole (0,Z2,0).

One can describe these fixed points in more detail by introducing coordinates.

Z1/Z3 = r cos exp ί(ψ + φ)/2 , (3.22)

Z2/Z3 = r sin - exp i(ψ - φ}/2 . (3.23)

The metric then takes the form

(dθ2 + sin2 θdφ2) . (3.24)

The Killing vector -~— corresponds to a generator of SU(3) with 2 equal

eigenvalues. It has an antiself dual nut at r — 0 with surface gravity κl— — κ2=^ and

period 4π. It has a bolt at r — oo with area 6πΛ~l and κ = \. The Killing vector —-
oφ

corresponds to a generator of S (7(3) with 3 unequal eigenvalues. It has a self-dual
nut at the origin r = 0 with κ1 = κ2 = 1 and period 2π. It is an antinut of type (1, — 2)
at the northpole of the sphere at infinity r = oo, θ = 0 and an antinut of type (1, — 2)
at the southpole r^oo, θ = π.

Our next example is the metric product of two 2-spheres each with radius
Λ~1/2 and area 4πΛ~1. It can be regarded as a limiting case of the Schwarzschild-
de Sitter solution [15] with the surface gravities of the black hole and cosmologi-
cal horizons equal. The isometry group is SO (3)(x) SO (3), the two factors acting on
the 2-spheres independently. A circle subgroup of the full isometry group can be
projected into circle subgroups in the two factors. If one of these projections
consists of the identity only, the corresponding Killing vector has 2 bolts which are
2-spheres of area 4πΛ~l. In the other case there will be 4 isolated fixed points, two
nuts and two antinuts.

The only other known gravitational instanton with positive A is an S2 bundle
over S2 discovered by Page [19] as a limiting case of the Kerr-de Sitter solution.
The metric can be written in the Taub-NUT form:

(3.25)
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where v is the positive root of

3=o (3.26)

which works out to be

0.2817 .

The surfaces of constant ρ, 0<ρ<π, are 3-spheres on which (ψ,θ, φ) are Euler
angle coordinates. The apparent singularities at ρ = 0 and ρ = π are where the
3-spheres collapse to 2-spheres.

The isometry group is C7(2) = (C7(1)®SC7(2))/Z2, the same as for Taub-NUT.

The Killing vector — generates the U(l) subgroup and has bolts at the 2-spheres

ρ = 0 and ρ = π with areas

12π(l-v4)(3 + 6v2-v4)-1yl-1 . (3.27)

The Killing vector ^— -, a typical generator of the Si/ (2) subgroup, has 4 isolated
cφ

fixed points at 0 = 0 or π and ρ=0 or π. Two of these are nuts and two antinuts.
Compact gravitational instantons with negative or zero A are known but they

cannot admit any continuous isometry group. We shall therefore not consider
them in this paper.

Non compact solutions with negative A are also known. These may admit
continuous isometrics but they do not seem to play a role in path integrals.

4. Topological Invariants

There are two topological invariants which can be expressed as integrals of the
curvature of a 4-dimensional metric. For a compact manifold these are the Euler
number

χ = (128π2)- 1 j ^R^^R"^ ]/jd*x (4.1)
M

and the signature (sometimes called the index)

τ = (96π2)- 1 f Rabcdε^R"b

ef\/g^x . (4.2)
M

For non compact manifolds there are additional boundary terms. For χ these
are [24]

]/hd*x , (4.3)

where na is the outward directed normal to the boundary 8M9 Kab = nc.dh
c

ahb is the
second fundamental form and hab = gab — nanb is the induced metric on dM. For τ
the boundary terms are [25]

- 2(96π2)- 1 J Rabcdε
cdefnaneK

b

f }/hd3x - η(0) , (4.4)

where η(s) is a quantity constructed from the eigenvalues of a certain differential
operator on the boundary dM.



Gravitational Instanton Symmetries 301

The Euler number in the alternating sum of the Betti numbers

x[M] = "lVl)^, (4.5)
p=0

where the p'th absolute Betti number, Bp, is the rank of the p'th absolute homology
group Hp(M). It is also the rank of the 4 — p'th relative cohomology group
H4~p(M,dM). These cocycles may be represented by closed 4 — p forms which
vanish on the boundary dM and which are not the exterior derivative of a 4 — p— 1
form which itself vanishes on the boundary. For a compact manifold without
boundary B0 =B4 = 1 and Bί = B3. B1 =0 if the manifold is simply connected as in
all our examples. If there is a boundary J30 = l and B4 = 0. In a compact
manifold without boundary Bp is equal to the number of linearly independent
harmonic p-forms.

In the case of a compact manifold without boundary τ may be defined as the
signature of the quadratic form on H2(M) given by the intersection number
between two 2-cycles, i.e. the number of times they intersect, intersections being
counted positive or negative according to whether or not the orientation of the
tangent space of the intersection point agrees with the orientation arising from the
tangent planes to the two 2-surfaces. In the case of the intersection number of a
cycle with itself one slightly distorts one copy of a representative of the 2-cycle so
that it intersects the other copy transversely. A necessary and sufficient condition
that the manifold admit a spinor structure is that the self intersection numbers of
the 2-cycles must be even for simply connected manifolds [26].

τ is also equal to the quadratic form on H2(M) defined by the cup product. If
one represents two elements of H2(M) by closed 2-forms, then the cup product
is just

From this it follows that τ is equal to the number of linearly independent self-dual
harmonic 2-forms minus the number of antiself dual ones.

In the case of a manifold with boundary dM, the cup product may be defined
between H2(M) and H2(M, dM) by the above formula, i.e. between closed 2-forms
which are not the exterior derivatives of 1 -forms and closed 2-forms which vanish
on dM. With the natural injection H2(M, dM) into H2(M), this defines a quadratic
form on H2(M, dM). The quadratic form may have zero eigenvalues but τ may be
defined as the number of positive eigenvalues minus the number of negative
eigenvalues [25]. The definition of τ by homology for manifolds with boundary is
simply the dual of the above. One can define the intersection number between a
cycle in the absolute homology group H2(M) and one in the relative homology
group H2(M, dM) i.e. the group of equivalence classes of 2-chains whose boun-
daries lie in dM and which are not the boundaries of 3-chains. With natural
injection of H2(M) into H2(M, dM) this defines a quadratic form on H2(M). The
quadratic form will have zero eigenvalues corresponding to elements of H2(M)
which are homologous to elements of H2(dM) but τ will be equal to the number of
positive eigenvalues minus the number of negative eigenvalues.
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The values of χ and τ for the examples in the previous section are

Schwarzschild and Kerr χ = 2 τ = 0

Self-dual Taub-NUT χ = 1 τ = 0

Multi-Taub NUT χ = s τ = s - 1

Non self dual Taub-NUT χ = 2 τ = l

Eguchi-Hanson χ = 2 τ = 1

S4 χ = 2 τ = 0

CP2 χ = 3 τ = - l

S 2 xS 2 χ = 4 τ = 0

Twisted S 2 xS 2 χ = 4 τ = 0 .

The relevance of χ and τ to our nuts and bolts classification is given by various
fixed point theorems which relate them both to the zeros of vector fields on the
manifold. For isometries these theorems take particularly simple forms [27-30].
On a compact manifold the Euler number is given by

+χ χ ί . (4.6)

Where N+ and N_ are the number of nuts and antinuts and χ. is the Euler number
of the ϊ'th bolt. In all our examples χ. = 2. Indeed this will necessarily be the case if
the manifold M is simply connected and if the bolt can not be continuously
deformed to a point (it can be so deformed in S4 but not in the other examples).
This is the analogue of the theorem that the horizon of a black hole metric with
Lorentz signature ( — h + + ) must have an event horizon that is topologically
spherical [31]. This formula also holds for manifolds with boundary dM provided
that the Killing vector field is either everywhere tangential to the boundary (as it is
in all our examples) or is everywhere transverse. The theorem for signature is
rather more complicated. On compact manifolds

τ = £ -cotanpθcotanqθ + £ 7cosec2θ , (4.7)
nuts bolts

Y is the self intersection number of a bolt and 29 is the group parameter.
Equation (4.7) holds for all values of θ. If one expands in powers of θ the first

two terms give

Σ -(M)~I+ Σ r=o, (4.8)
nuts bolts

Σi(P9~1+9P~1) + i Σ Y = * (4-9)
nuts bolts

Λ

Applying (4.8) to the Killing vector — in CP2 which has an antinut with

—p=q—\ and a bolt one finds that the self intersection number of the bolt must be
— 1. This shows that CP2 does not admit a spin structure though it can have a
generalized spin structure [32-33].

In the case of a non compact there is an additional boundary term η(θ, 0) in Eq.
(4.7). The quantity η(θ9s) is formed out of the eigenvalues of a certain differential
operator on the boundary dM [25].
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5. Duality

Λ

The action of the group G with Killing vector K = — defines a fibering π : M
oτ

— C->£ where C is the fixed point set of μτ. In other words 5 is the 3-dimensional
space of non-trivial orbits of G. The manifold B inherits a metric

h^βo-V-1^, (5.1)

where V = KaKa. The metric gab on M can then be written locally in the form

ds2 = V(dτ + <Vx1)2 -f V~ 1yijdxίdxj , (5.2)

where {x1'} are coordinates on B,yij=Vhij and ωt are independent of the fourth
coordinate τ. The vector field ωi in B is defined up to a "gauge transformation"

f) (5.3)

under which

ω;=ω<~δ7A (5'4)

The twist field Hij = dίωj — djωί is gauge invariant. It can be expressed as

Hab = 2K^hlhfaV-1 . (5.5)

For the rest of this section we shall work in the 3-dimensional space B. Indices
ij, k etc. will be raised or lowered by ytj and covariant differentiation with respect
to y.j will be denoted by ||. Using the 3-dimensional alternating tensor one can
define a twist vector Hi by

. (5.6)

This obeys the conservation equation

#'„ = < > . (5.7)

One can therefore define the nut charge within a 2-surface L by

N = (8πΓ1 f /W' (5.8)
L

In the case of a nut of type (p, q)

N = (SπpqΓlβ. (5.9)

For a bolt with self intersection number Y

β (5.10)

These formulae are obtained by expanding the metric in a Taylor series in
normal coordiaates about the fixed point set. From them one can see that Eq. (4.8)
is an expression of the fact that a compact mamfoki has zero total nut charge.
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One can project the field equations, Rab = Λgab, into B

i , (5.11)

kiogv

ίj, (5.12)

(5.13)

where 3^^ is the Ricci tensor of the metric ytj.
Adding (5.11) and (5.12) one obtains an expression for the 4-dimensional action

of the metric

- 2Λ) - - I K }bd*x (5. 14)
loπ M oπM oπ dM

16πέ

~~— I K, y C Cl X ? (^.Ijj
°π dB

where frflb is the induced metric and K = Ka

ais the trace of the second fundamental
form of dM in the metric gab and ctj is the induced metric and k = fc[ is the trace of
the second fundamental form in the metric γtj. To obtain the field Eqs. (5.11)-(5.13)
one requires that / be stationary under variations of y^ , V and Hi subject to the
constraint (5.7). That expresses the fact that H is the curl of ωf. One therefore
defines a new quantity / by adding the constraint multiplied by a Lagrange
multiplier

(5 16)
Variation of Hi gives the equation

F2H. = [7.φ. (5.17)

We shall therefore call ψ the nut potential. The fact that the nut potential exists is
equivalent to the field equation RabK

ahb

c — 0. One then rewrites / as

-loπ

Variation of V and γtj in (5.18) gives the field equations

RabK
aK» = ΛV and Rabh°hb

d =
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Variation of ψ in (5.18) gives the constraint

f7*(j7-2v;.) = 0 . (5.19)

One can therefore regard (5.18) as the effective action for a 3-dimensional relativity
theory with metric ytj on B and non-linear fields ψ and K

The term

(5.20)

in (5.18) is the Lagrangian of an 0(2, 1) non-linear σ model. That is (5.20) can be
regarded as the metric on 2-dimensional de Sitter space with coordinates V and ψ.
This metric has the 3-parameter group of isometries SL(2R) which can be realized
as the following :

1. Translations ψ-+ψ + a (5.21)

F^F; (5.22)

2. Dilations ip^bip (5.23)

V-*bV (5.24)

3. The Ehlers Transform [34,35]

(5-26)

(ί-bψ)2~b2

V

Corresponding to these 3 symmetries of (5.20) there will be three Noether currents

Ji

τ=-V~2Viιp , (5.27)

Jί

D=V-ίrίV-ιpV-2Vίιp , (5.28)

Ji

E = 2ψV-ί7ίV-V-2(ψ2 + V2)7iψ . (5.29)

If A = 0, these are symmetries of the effective action / and so the Noether currents
are all conserved in the metric ytj

ΛH^ΛH^II^O. (5.30)

If A is non zero, it breaks the symmetry under the dilation and Ehler's transforms.
Thus

4||i = 0, (5.31)

Jΐ ) | | i = 27-1/l, (5.32)

4 | | j = 2φ7-1yl. (5.33)

In the vacuum case the symmetry under the 3-parameter group expresses the
duality between the electric aspects of gravity, characterized by V, and the
magnetic or nut aspects characterized by ψ. A particularly simple case is when
V = ψ. Then γtj is the flat metric and one obtains the two families of multi Taub-
NUT metrics.
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6. Action and Entropy

In the case of a compact manifold M integration of Eq. (5.32) gives the total action,

(6 2)

The boundary B will consist of a disjoint set of 2 spheres around each nut and each
bolt. Thus

where the dialation charge of the rc'th nut and bolt is

βn= J JiA;. (6.5)
dBn

The Qn's are not invariant under the translation ψ^np + a but in the case of a bolt
one can define an invariant quantity

Mn = SπQn-ΨnNn, (6.6)

where ιpn is the value of the nut potential at the n'th bolt and Nn is its nut charge.
The quantity Mn can be regarded as the "mass" of the π'th bolt. It can be
represented as an integral of the 2-form over the bolt

Mn = ̂ \K^dΣcd. (6.7)

Mn obeys the Smarr relation

2βMn = An. (6.8)

An is the area of the n'th bolt. Thus

ϊ= Σ -K- Σ ΪΨnNnβ+ Σ -ΪΨnNnβ
bolts bolts nuts

- - Y - . (6.9)
bolts 4 " bolts 16π nuts I6πpq

This generalizes the formula

I=-$A (6.10)

which was found for 54 [12].
Equation (6.9) can be interpreted thermodynamically in at least two ways. In

the first approach one regards the A term as part of the dynamics of theory. One
then defines the partition function Z for the canonical ensemble.

where \gny is an orthonormal basis of states for the gravitational field with the
given value of A. In this case, unlike the normal thermal canonical ensemble, there
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is no externally imposed temperature or chemical potential. The partition function
Z simply counts the total number of states |gn>. Since each of these is equally
probable, the probability Pn = Z~ 1 and thus the entropy 5 = — Σ Pn log Pn = log Z.
The partition function Z can also be represented as a path integral over all metrics
g on a compact manifold M

Z=f<*[0]exp -/[</]. (6.12)
By the stationary phase approximation one would expect the dominant contri-
bution to come from metrics near a solution, g0, of the classical Einstein field
equations and the value of Z to be given approximately by exp — /[00]. Thus

Σ K+ Σ (6,3)
bolts bolts loπ

+ Σ ~ (6.14)

This shows that not only do bolts have an entropy equal to J of their area, as was
found for de Sitter space [12, 20], but there is also a contribution from the NUT
charges of both nuts and bolts. Because of the translational freedom ψ-^>ψ + a9 this
latter contribution to the entropy cannot be attributed to individual nuts and
bolts, but its total value is invariant, since the sum of the NUT charges is zero for a
compact manifold.

One can also regard the A term as not being part of the field equations but as
Lagrange multiplier or chemical potential for the 4-volume K In this case, one can
form the partition function for the volume canonical ensemble as

AV
k> (6.15)

As before, one can represent Z[_A] as a path integral over all metrics and by the
stationary phase approximation one expects the dominant contribution to logZ
to be — /[#0] where g0 is a solution with the given value of A. On dimensional
grounds

<«•'«>
where / may depend on the topology of the manifold and on the particular class of
solutions (if there is more than one) but it is independent of A From Z\_A\ one can
calculate the expectation value of the volume in the ensemble

<F>=-8π^logZ. (6.17)

With the stationary phase value for log Z one obtains
<Vy = V0. (6.18)

One can also form an "entropy" for the canonical ensemble

sv=-ΣPnι°BPn> (6 19)
where the probability of being in the rΐth state, Pn, equals

(6.20)
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Thus

Sv=-Λ2£-(Λ-llogZ) (6.21)
oΛ

using the stationary phase value one obtains

. (6.22)

This differs by a factor 2 from entropy in the canonical ensemble in which A was
regarded as part of the field equations.

A physical interpretation of Sv can be obtained in the following way. Let
N(V)dV be the number of states of the gravitational field with volumes between V
and V + dV. Then Z[/t] can be regarded as the Laplace transform of N(V)

00 / AV\
Z[Λ]= f tf(F)exp- hr-UK. (6.23)

o \ o π /

Thus N(F) is the inverse Laplace transform
(6 24)

The contour in Eq. (6.24) should be taken to pass to the right of the essential
singularity at A = Q. The dominant contribution to N(V) will come from the
stationary points of (6.24) which occurs at

Λ = Λ8 (6.25)

for which

V dlogZ /V\

8π=~ ~dΓ = W (6 26)

The value of the integrand at the stationary phase point is exp Sv. Thus

logN(V)πSv. (6.27)

In the case of a compact manifold the dilation symmetry was broken by the
presence of the A term. In the non-compact case one is interested in situations
where the metric is asymptotically flat, either in the 3 or 4 dimensional senses.
Both these require that A = 0. In the 4-dimensional case, the boundary conditions
are dilation invariant. This means that the change of the action under a dilation is
just given by the total dilation charge

= μί

Ddσί (6.29)

= QD (6.30)

= 0 . (6.31)

However, under a dilation gab ^>k2gab, Ϊ[k2gab] = k2ϊ[gab]. This shows that the
action /[#] must be zero for a solution of the field equations that is asymptotically
flat in the 4-dimensional sense. The Positive Action Theorem [36-41] then implies
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that the metric is flat if it is asymptotically Euclidean i.e. it approaches the
standard flat metric on R4 outside some compact subset in which the topology
may differ from that of R4. If the metric is asymptotically locally Euclidean, i.e.
outside of a compact subset it approaches the standard flat metric on R4 identified
under some discrete subgroup 80(4} which acts freely, then the Generalized
Positive Action Conjecture [42, 43] implies that metric must be self-dual or anti-
self-dual.

One is also interested in metrics which the "spatial" metric approaches a flat
3 -dimensional metric and in which V approaches some constant value which can
be normalized to unity by an appropriate choice of β.

The boundary condition V=i at infinity is not preserved under the dilation
transformation. To impose this constraint one can define a new quantity

μ7}/^2x, (6.32)

where μ is a Lagrange multiplier. If one requires Γ to be stationary under
variations of V which do not vanish on the boundary one obtains

μ=-Vin
iV-2 . (6.33)

Then

-

VfiV-iycd2x (6.36)

(6.37)

where

MM = - -̂ ί Vfl'V- 1 \Γcd2κ . (6.38)
Oft oo

Thus

. (6.39)

This generalizes the results obtained in reference [12] and it can also be applied to
spaces such as Taub-NUT which are not asymptotically flat in the usual sense be-
cause the boundary surface at infinity cannot be embedded (even locally) in flat
space. For Taub-NUT it gives a value of 4πN2 in agreement with an unpublished
calculation by Lincoln Davis. As in reference [12] one obtains an entropy equal to
1/4 the area of the event horizon for the Schwarzschild and Kerr solutions.

One can also integrate the divergence of Ehler's current over the manifold. For
a compact manifold this gives :

f ψΛ ]/gd4x= X %πψnMn- £ 4πψ2

nNn . (6.40)
bolts

We have not found a physical application for this result.
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