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Abstract. The construction of charged sectors in Quantum Electrodynamics
(QED) is analyzed within a framework of algebras of local observables. It is
argued that charged sectors arise by composing a vacuum state with charged *
morphisms of an algebra of (neutral) quasi-local observables. Charged *
morphisms, in turn, are obtained as weak limits of charge transfer cocycles.
These are non-local elements of the algebra of all quasi-local observables
obeying “topological” commutation relations with the local charge operators.
It is shown that in this framework, charged sectors are invariant under the time
evolution and satisfy the relativistic spectrum condition. The total charge
operator is well defined and time-independent (conserved) on all charged
sectors. Under an additional hypothesis the spectrum of the total charge
operator is shown to be a discrete subgroup of the real line. A generalized
Haag-Ruelle scattering theory for charged infra-particles is suggested, and
some comments on non-abelian gauge theories are described.

0. Introduction

This paper is a continuation of the analysis presented in [1], hereafter referred to
as I. In that paper we have investigated charged sectors in gauge theories with
unconfined, abelian charges, in particular QED, from the points of view of a local,
covariant formulation on an indefinite metric space and of collision theory, using
as one basic input Buchholz’ results [2]. Moreover, the construction of charged
states in QED was analyzed heuristically, extrapolating procedures applicable in
lattice gauge theories to the continuum theory. In this paper that analysis is
replaced by a mathematically rigorous one, based on a few general, physical
principles.

The main results of Paper I are as follows:

Asymptotic charged fields (if they exist; see Sect. 7 of this paper) are non-local
relative to the asymptotic, electromagnetic field and are not covariant under
Lorentz boosts.
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A rather complete characterization of “scattering representations” of the
algebra generated by bounded functions of the asymptotic, electromagnetic field,
in particular of its representations on charged sectors, was achieved.

Asymptotic, charged one-(infra)particle states were constructed.

Under reasonable hypotheses it was proven that the charged sectors of QED
are not invariant under Lorentz boosts (breaking of the boost symmetry on
charged sectors).

For detailed statements of these and other results we refer the reader to 1.

This paper represents a preliminary attempt at extending the Doplicher-Haag-
Roberts (DHR) theory [3] of superselection sectors in standard quantum field
theories to QED — and other gauge theories with an unconfined, abelian charge —
taking into account the conclusions of Paper I and trying to substantiate some of
the hypotheses made there. Our approach is inspired by the general framework of
Haag and Kastler [4] and DHR [3]. Some of the technical details in this paper are
taken from [5] (where the main emphasis is placed on super-selection sectors
labelled by topological charges, i.e. quantum solitons). Some knowledge of [3, 5, 6]
might be helpful to understand the main concepts of the present paper.

The main physical hypotheses upon which the following analysis is based are:

A. Gauss’ Law
V-E(x)=o(x),

where g is the 0-component (charge density) of the local, locally conserved, electric
current operator, and E(x)=(E,(x), E,(x), E;(x)) are the components of the
quantized, electric field.

B. Covariance

Charged sectors are space-time translation invariant, i.e. a selfadjoint energy-
momentum operator exists on charged sectors.

C. Additivity of the Electric Charge

Charged sectors can be composed, i.e. the electric charge is an additive quantum
number.

D. Space-like Distant, Localized Charges are not Felt

Charges can be localized (in a sense explained in Sect. 5), and charged states arise
from neutral states (via taking w* limits) by removing a localized charge to space-
like infinity.

Among some of the consequences of these hypotheses are:

The physical mass gap of QED is 0 [7].

Any representation of the algebra of all quasi-local observables determined by
a charged state is disjoint from the vacuum representation, even when restricted to
space-like distant regions; a consequence of Gauss’ law. Technically, this implies
that charged states cannot be obtained from the vacuum by strictly local *
morphisms of the observable algebra. The DHR approach [3] must therefore be
modified for QED and any gauge theory with unconfined charges (Sect. 2).
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Charged fields (or field bundles) are non-local relative to the interpolating,
electromagnetic field (Sect. 2).

The space-time translation covariance of charged states implies that “charged
field bundles” (* morphisms of the observable algebra) uniquely determine unitary
operators on the vacuum sector, space-time translation cocycles, which describe
the transfer of a localized charge from, say, the origin to some point ae M*
(Sect. 3.1). “Topological” commutation relations between those cocycles and the
local charge operators are derived (Sects. 5 and 7).

These so-challed charge transfer cocycles are non local relative to the
interpolating, electromagnetic field (in a very strong sense) (Sect. 3.2).

On the basis of these results and assuming PCT-invariance we then propose a
tentative framework for the description of charged sectors in QED. Our frame-
work guarantees that charged states can be constructed as w* limits of neutral
states (vector states in the vacuum sector) by removing a localized charge to space-
like infinity (Sects. 4 and 5).

Moreover, in that framework charged states are space-time translation
covariant, and the relativistic spectrum condition holds on all sectors. We then
prove that the total charge operator exists and is conserved on all sectors of the
theory (it is zero on the vacuum sector). Under an additional hypothesis it is
shown that charge transfer cocycles transfer a definite electric charge, and charged
* morphisms carry a definite charge. Then the spectrum of the charge operator on
the total Hilbert space is a discrete subgroup of the additive group of the real line
(see Sects. 5 and 6). Our main results are in Sects. 3, 5, 6.2, and 6.3. The main
purposes of a general framework for QED are:

I) To develop specific concepts and explicit procedures for the construction of
sectors labelled by an abelian, unconfined charge in a gauge theory, in particular
QED, the vacuum sector of which is supposed to be given, e.g. in the form of a
sequence of Wightman distributions of gauge-invariant fields satisfying a suitably
modified form of the Wightman axioms. This is attempted in Sect. 3-6.

IT) To extend Buchholz’ collision theory for massless bosons [2], in QED only
applicable on the vacuum sector, to the electromagnetic field on the charged
sectors of QED.

IIT) To complement and complete that analysis by constructing a collision
theory for charged infra-particles (see Sect. 7).

Some relevant results can also be found in Sect. 3.3 and 3.6 of Paper I

IV) To derive the principal hypotheses in Sect. 3.4, 3.5 (or the weaker ones in
Sect. 3.3) of Paper I which would determine the structure of charged scattering
states (generalized coherent states!) quite explicitly, from a few basic, dynamical
hypotheses which are convenient to check in models.

A minimal result of this type is to show that charged sectors determine
representations of the algebra, 2*, generated by bounded functions of the
asymptotic, electromagnetic field which are disjoint from the Fock representation
(see Sect. 1 of Paper I). A somewhat stronger result containing that one would be
to prove that the electric charge operator, Q, is affiliated with the von Neumann
algebra generated by U* in the physical representation.

The reader will find out that none of these goals is reached completely in this
paper. We hope it at least clarifies the conceptual basis and the main difficulties
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met in the construction of charged states and supplies some useful first steps
towards a more complete, general theory of the charge super-selection rule (see
also [8,3]). Readers who think that theorems with short proofs are necessarily
trivial will find this paper trivial. Some of the experts in the field may share this
feeling. We hope some of the ideas developed in the following will be useful.

1. Local Observables and Covariant States

Here we recall some basic notions and concepts of the Haag-Kastler frame-work
[4], the basic theorem of Bisognano and Wichmann [9] and a result of [10]
concerning the existence of local algebras satisfying the Haag-Kastler axioms in a
Wightman field theory. Let @ denote a double cone (the intersection of a forward
with a backward light cone) in M*, and let ~ @ denote its causal complement (all
space-time points which are space-like relative to ).

Given a double cone @, let () be a C* — or von Neumann algebra containing
at least all bounded functions of the interpolating, electromagnetic field, F, (f*"),
where the f** are real-valued Schwartz space functions with support in @, and
possibly other local observables which are local relative to the electromagnetic
field" (such observables have of necessity total charge 0: see [8] and Sect. 2). Let B
be some general, open region in M*. Let B denote the family of all bounded double
cones in M*. We define (B) to be the norm closure of

U W), (1.1)

0B

0CB
in particular, W=W(B=M*) is the algebra of all quasi-local observables of the
theory.

As usual, locality is expressed by the condition that, for arbitrary 4e (@) and
arbitrary Be A(~ 0),

[A,B]=AB—BA=0. (1.2)

We also assume that the Poincaré group, 21, is represented on the algebra 2 by a
(strongly continuous) * automorphism group, {z,:{e 1 }, such that

T W(O) =W(O(Q)), (1.3)
where O(&) is the image of the region ¢ under a Poincaré transformation & (see [4]).

Sufficient conditions — which are quite efficient in models — for the existence of
a net of local algebras {2(0)} . With all the properties, (1.2) and (1.3), listed above
in a Wightman field theory are given in [10].

Given a state, o, on 2, the G.N.S. construction (see e.g. [ 11]) provides one with
a Hilbert space, #,, a representation, n,, of 2 on 4, and a cyclic unit vector
Qe A, such that

Hy={m,(A)Q,:AcW}",
oA)=(Q,n(4)RQ,), for AeU..

In an unambiguous context, 4 will henceforth denote both, the abstract element of
A and the bounded operator 7 (4) on #, in a given representation ., of A on #,.

(1.4)

1 e.g., observables of the type of the “Wilson loops”
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Let G be an arbitrary, topological group represented on %W by a (strongly
continuous) group of * automorphisms, {r,:ge G} of A.

Definition 1. A state, g, on 2 is said to be G-covariant iff there exists a continuous,
unitary representation, U, of G on #, such that, for all 4e?, gegG,

T (1,(A)=U [(9)*7 (AU (g) on H,. (1.5)

A vacuum state, w, is a state on A which is Poincaré-invariant (hence
21 -covariant), so that

U, (9Q=Q, forall e}, (1.6)

where Q=@ is the physical vacuum, and the spectrum of the generators, (H, P),
the energy-momentum operator, of the translation subgroup {U (a):ae M*},
U, (@=U_,(&=(1,a)), is contained in the forward light cone V.. O

Henceforth we may always assume that the physical vacuum is non-
degenerate, i.e. w is a pure state on U, without loss of generality. This is because of
Araki’s theorem [12]. Then the von Neumann algebra, = (2)", generated by 7, (20)
on the vacuum sector, #,,, coincides with the algebra of all bounded operators on
H#,, B(#,). In the following we assume that we are given an arbitrary, but fixed,
pure vacuum state w on 2 (but see [13, 12, 57).

For the expert we now recall a basic theorem, due to Bisognano and
Wichmann [9] which, we believe, is at least implicitly important in the following
analysis. (The reader can skip this in first reading.) This theorem says that, under
certain technical assumptions (in particular PCT invariance, which are guaranteed
by the conditions of [10]), one can construct from the net {(0)},., another net,
{W(O)} yog» Of local von Neumann algebras on #, such that

AW(O)2UUO) and WO)=n(A(~0O)y L7

(the famous duality condition; see e.g. [3]), for all OeB.

In the following we shall imagine working with the net {3[(0)} ., but we write
again A(0), instead of A(®). We only consider states on A whose restriction to
A(0O) is normal, for all OeB.

DHR consider those states, g, on U as relevant for particle physics which have
the property that

e —w)/W~0,)|-0, as n-c0, (1.8)

for each sequence {0¢,} C®B increasing to M*. Under suitable, technical conditions
this property is equivalent to

o=woo, (0(A)=w-0(A)=w(c(A)),Ae), (1.9)

where ¢ is a * morphism of ? with the property that, for some bounded double
cone @, called the support of o,

g(A)=A, forall AeU(~0). (1.10)

Such morphisms are called local (see [3]).

2 le. 6(AB)=0(A)o(B), a(A*)=0(A)*, o is linear and ||a(4)| =|/A||, for all 4,Bin A
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Lemma 1. Let ¢ be a local * morphism of A and » a vacuum state. Then
K (0)={0(A)Q:AcN} " =H#,.

Proof. Let 0e'B denote the support of 6. Then o(A4)= A, for AeWA(~ O). Thus
H(0)D{AQ: AeU(~O)} . (1.11)

By the Reeh-Schlieder property [4, 10, 14], the closure of the r.s. of (1.11) is 5,
when w is a vacuum state. [

Remark. The Reeh-Schlieder property has been derived from the Reeh-Schlieder
theorem [14], under suitable conditions, in [10]. Lemma 1 is significant for the
discussion presented in Sect. 3.

We now show that when g is a charged state on U and the charge satisfies
Gauss’ law (see condition A in the introduction) then properties (1.9) and (1.10)
cannot be fulfilled, hence (1.8) must fail, too. This result is widely known [8, 3].

2. Consequences of Gauss’ Law

We repeat here, in a more formal way, an argument showing why the DHR theory
of super-selection sectors is not applicable to the charged sectors of QED.

First, we recall the definition of the electric charge operator, Q : Let a(t) =0 be a
test function on R of compact support, with [a(t)dt=1. Let ¥ be a simply
connected, bounded region in IR* with smooth boundary 0. Let f5(x) be a test
function on R® with the properties

D ESNESE

ii) fy(x)=1, for all x with the property that (x,t) is in the causal shadow of ~
(i.e. not space-like to X), for all tesuppa;

iii) supp fy compact.

We then define

Q5= o(x, 1) fy(x)et)d>xdt 1)
where o(x, t) is the charge density operator. Gauss’ law is expressed in the form
0;=V-E(f;@u)=—E(V f;®%), 22

where E is the electric field operator.
We assume that

E(Vf;®a) is affiliated with A(~2ZnN0O), (2.3)

for some sufficiently large Oe B, in accordance with the fact that, for a sufficiently
large 0eB, supp (Ff;®a)C ~Zn0. Then the operator E(Vf;®a) is a densely
defined, selfadjoint operator in any locally normal representation of 2. (Property
(2.3) is true under the conditions of [10].)

If 2 is the ball {x:|x| <R} we denote Q; by Q, and f; by fx.

From locality, (1.2), and (2.3) we get

Lemma 2.

n-lim %% 4e 5% =4 for all Ae¥, seR.

R— 0
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We define the electric charge, Q, as the generator of
w-lim ¢*2®,  seRR, 2.4)

R— 0
in any representation n of U for which the limits (2.4) exist and are continuous in s.
Then Q is affiliated with (2()". This and Lemma 2 show that the electric charge is a
super-selection rule. The analysis of this super-selection rule is the main purpose of
this paper (see also [8]).
It is common to assume that

0=0, on X%, (2.5)
but see Lemma 14 (Sect. 5).

Proposition 3. Let o be a local * morphism of W. Then the sector #,= A, has the
same electric charge as #,, i.e. if

w-lim Q,Q=0Q=0 (2.6)
R— o0

then
Q¥=0, forall Yei, andall Yei,.

Proof. Let Q,=Q, .. Then, for arbitrary 4 and B in U A(0O),

0B

(AQ,,0BQ )= lim (AQ,,0zBR,),
R—>w

and by (3.8),

—(4Q,,0,BQ,)=(4Q,, E(Vf,®%)BQ,).
For R sufficiently large, E(Vf,®a) is affiliated with (~supp o), moreover
E(Vfx®«) and B commute, since Be ( ] 9(0). Thus, using (1.9), we conclude that,

0B
for sufficiently large R,

(AQ_,E(VfR®x)BL,)
=(0(A)Q; o(B)o(E(V fr ®0))€2)
=(0(B*A)Q,E(V f ®2)Q). (2.7
As R— o0, the r.h.s. of (2.7) tends to
(a(B*4)Q2,092)=0 [see (2.2) and (2.6)].
Therefore
(49,,0BQ,)= lim (42,,0,82)=0. O

Thus, in QED charged states do not arise by composing the vacuum state w
with local morphisms. Should we give up the idea that charged states can be
constructed by composing the vacuum state with * morphisms of A? Not only
would such a radical proposal contradict the requirement that charged sectors can
be composed (charged fields can be multiplied) and the electric charge is additive,
but it would also make a general analysis too vague.
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3. Translation Covariant Sectors and * Morphisms of A

We propose to regard those states ¢ on U as relevant for QED which have the
properties

P1) ¢ is space-time translation covariant;

P2) ¢=w-0, where w is the vacuum state, and ¢ is a ¥ morphism of 2L.

Remark. The results of Sects. 3.4 and 3.5 in Paper I have cautioned us not to
assume that g is Lorentz-covariant in case ¢ is a charged state. We may, however,
assume that ¢ is also rotation covariant, but this is quite unimportant in the
following. Translation covariance is crucial, because it guarantees the existence of
an energy-momentum operator.

3.1. Transportable and Covariant Morphisms and Cocycles

Definition 2. Let G be a topological group, and {r,:ge G} a representation of G by
a strongly continuous * automorphism group of 2. Let w be a G-covariant state on
A. A mapping I':ge G—I'(g), where I'(g) is a unitary operator on £, is called a
G-cocycle on #, iff I'(g) is (weakly or strongly) continuous in g on #,, and

I'(g,-92)=1(g,)U ,(g,)I'(g,)U ,(g,)*. (3.1)
A * morphism ¢ on U is called G-transportable on 57, iff
T o(t,- 1009, (A) = T(g)*7 (o (AN (g) (32)

where I'(g) is a G-cocycle on 7.

Remark. If n,00 is an irreducible representation of 2 then Eq. (3.2) alone implies
that I' is a G cocycle, unigue up to a phase. This is not so if 7, o0 is not irreducible.
For simplicity, we require in general that I" in (3.2) be a G-cocycle.

A * morphism ¢ on U is called G-covariant iff woo is a G-covariant state.

We define

K (0)={0(A)Q2:Ac U}~ . (3.3)
Clearly #,(c)C . If o is a local * morphism and w the vacuum then by
Lemma 1, 5, (0)=5#,, but this is not so in general. []

Lemma 4. If I is a G-cocycle on #, then V(g)=TI'(g)U (9) is a continuous, unitary
representation of G on ¥,

Proof. By the definition of G-cocycles, V(g) is clearly unitary and continuous in g
on #,. By (3.1)
V(91-92)=T(9:-92)U (9 95)
=I'g)UG)I'92)U(9,)*U91-95)
=I(g9,)U,(9)I'(g,)U(g,)
=V(g,)Vlg,), forall g,g, in G. O

Theorem 5. Let w be a G-covariant state on W, and o a G-covariant * morphism on
A.
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Then there exists a G-cocycle T (g) on S, with the property that
Vi(9)=T(9)U(g) leaves H, (o) invariant, and

T, (0o T(A) =V, (9)*,, ((A)V,(9)

where ,, , is the representation of () on #, (o). Conversely, suppose that w is
G-covariant and o G-transportable on 3, and assume that #, (o) is invariant under
V(9)=T (9)U(g), for all ge G. Then ¢ is G-covariant.

Proof. We define an isometric isomorphism T:5¢,(g)—#,, by
To(A)Q=AQ,, for AeU. (3.4)

One verifies immediately that T is isometric. Moreover, since Q is cyclic in 5, (o)
for o(2), T extends by continuity to all of /#, (o). By (3.4) and the cyclicity of 2, for
A in A, the range of Tis #,. Thus T~ ! =T* exists and is an isometry from #, to
K, (0).

If w-o is G-covariant there exists a continuous, unitary representation U, of G
on A, such that

7,(t,(4) = U, (9)*n,(A)U (9). (3.5)
Using (3.4) we conclude
U, (9)AQ,=U_(9)To(A)Qe #,, forall geG,

so that
T*U (9)AQ,=T*U (9)To(A)Qe H#, (o),

for all geG. Since T and T* are isometric isomorphisms, and U, is a continuous,
unitary representation,

Vi g)=T*U,9)T (3.6)

can be extended by continuity to all of /(o) and is a continuous, unitary
representation of G on J,(g). We can extend V,(g) to all of 5, by setting e.g.

Vig)=1, on H#, 0K, o).
We then define
I'J(9)=V (DU ,(9)*. 3.7)

Since V, and U, are continuous, unitary representations of G on J,, I' (g) is
clearly a G-cocycle on #, [in particular, (3.1) follows directly from (3.7)].
That

T, o(0°T,(A) =V (9)*1,, J(a(A)V,(g)
follows easily from
U @T=TV,g), on #,o0). (3.8)

This proves the first part of Theorem 5. To prove the second part, notice that,
given V,

U 9)=TV,(9)T*
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defines a unitary group on 5, since, by hypothesis, V,(g) leaves s, (o) invariant,
for all geG. Continuity in g of U, follows from the assumed continuity of I',.
Furthermore, for ¥ =BQ_ and &=CQ_,
(¥, 7,(4)P)=(0(B)R, 6(1,(A))o(C)€)
=(V(9)a(B)Q, 6(A)V,(9)o(C)R)
=(U,(9)BRQ,, AU (9)CQ,)
=(¥,U,(9)*AU (9)®).
This completes the proof of the theorem. [
Corollary 6. 1) Suppose that, for each Ye#,, the state (V,a(-)¥) on W is
G-covariant. Then there exists a G-cocycle I' (g) on 5, such that
Hp(0)={c(A)V AU}~
is invariant under V (g)=1I (g)U ,(9), for all geG, for all ¥, and
n,(0°1,(A) =V (9)*n(a(A))V,(9), (3.9

and o is G-transportable.

2) Suppose that #, (c)=#,, i.e. Qs cyclic for a(U). Then ¢ is G-covariant if and
only if it is G-transportable.

3) Suppose w is a vacuum state and ¢ a local * morphism. Then o is G-covariant if
and only if it is G-transportable.

Proof. 1) Defining w'(4)=(¥, A¥), Ye#,, one sees that w’ and ¢ satisfy the
hypotheses of the first part of Theorem 3.1. Now, we first choose ¥ =Q. Then we
choose ¥ =¥ e #,0#,(0), then ¥ =¥ ,e #, 0K, (0)OHy (0), etc. By iterating
this procedure we obtain I' (g) and V_(g) such that (3.2) is satisfied on 7.

2) Since K, (0)=#,,, H#,(0) is automatically invariant under V. (g)=1I_(g9)U (9),
for any G-cocycle I',.. Thus 2) follows from Theorem 5.

3) This follows immediately from Lemma 1 and Corollary 6, 2). O

Remark. If n o0 is irreducible then clearly J#, (0)=,,

3.2. Localization Properties of Translation Cocycles

If G is the (space-time) translation subgroup of 21 and w is a vacuum state on A
then Theorem 5 says that if a state ¢ =wogo is translation covariant there exists a
translation cocycle, I'(a)=TI,(a), ae M*, such that

oo1,(A)=U (a)*I'(a)*a(A) (@)U (a), (3.10)

on (o).
We propose to determine the localization properties of I for the case when weo
is a charged state. For this purpose we consider the space-translation cocycles. Let
B, ={a=(x,0):|x|=¢}.

Let I'(a) be an arbitrary translation cocycle on J,. Suppose that, for some ¢>0 )
and all xeB,, I'(x)=I'((x,0))e A(0), for some bounded double cone 0.
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Pick an arbitrary yeIR® with |y|=ye, y=0,1,2,..., and set n=y~ 'y, so that
In| =e. Then, by iterating the cocycle identity (3.1), we obtain

y—1
I'(y)= IJO U, (m)I (m)U ,(jn)*. (3.11)
Hence
I(y)e(0,), (3.12)

where O _ is the smallest, connected, convex union of double cones containing both
0O and O((y, 0)). Clearly the “transverse width” of O is bounded uniformly in y. As
noted in [5] (Theorems 2.8 and 2.9), the cocycle identity (3.1) and some additional,
more technical arguments (see also [3, 6]) then imply that there exists a bounded
double cone O such that

Ia)eWOru0a), forall aeM*, (3.13)
and (see Theorem 2.9 of [5] and [3,6])
o(A)=lim I'(a)AT'(a)* (3.14)

exists, for all 4e A, whenever a tends to oo in a space-like direction, and the limit is
independent of that direction. Moreover ¢ is a local * morphism with support
supp 6 =0,. By Proposition 3, w-o has the same charge as w. Thus we have
proven

Theorem 7. Let w be a vacuum state on W of charge 0. Let ¢ be a * morphism on A
such that weo is a charged, translation covariant state. Let I'(a)=1T (a) be the
corresponding translation cocycle on #,, (constructed in Theorem 5 ).

Then, for arbitrary ¢>0, there exists no bounded double cone O such that
I'((x,0))e A(0O), for all x with |x|=e.

Remarks. 1. Assume, in addition, that ¢ is space-rotation covariant (an assumption
that is compatible with the conclusions of Sects. 3.4 and 3.5 of I). In this case, one
can choose ¢ such that it commutes with the space-rotation automorphisms. It
follows that, for an arbitrary space rotation R, I'(Rx)=U_(R)I'(x)U_(R)*.
Combining this with Theorem 7 we conclude that for arbitrary 0=4x, I'(x)¢2(0)!

2. Theorem 7 remains true if {a:a=(x,0), |x| =¢} is replaced by {a:ac X, |a|=¢},
where X is an arbitrary space-like hyperplane.

3. It is natural to view the translation cocycles I'(a) as the formal continuum
limit of coherent superpositions of (charge transfer) string operators in lattice
gauge theories. Theorem 7 then substantiates the claims made at the end of
Sect. 3.5 of Paper 1. The absence of localization properties of I'(a) might make the
construction of these cocycles very difficult in models.

4. Assuming that charged, translation covariant states exist, we can refer to a
result of Swieca [7] that says that in such a situation the physical mass gap of the
theory is O (see also Sect. 2 of I). Assuming a sharper version of this result, namely
that F,, couples the vacuum £ to a 0-mass one-particle state, the photon, one
concludes that the positive metric formalism developed here is incompatible with
the existence of a local vector potential whose curl is F . In addition, Proposition
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3 and Theorem 7 prove that there are no charged fields and no charge transfer
operators that are local relative to F,,.

5. We summarize the main conclusions: If weo is a charged, translation-
covariant state on 2 then o is non-local and there exists a translation cocycle
I' =T on #, with the property that I' (a) is non-local in the sense of Theorem 7
and Remarks 1 and 2.

In this situation

1) it is not necessarily true that

H(0)=H,, (3.15)

i.e. Q need not be cyclic in #, for a(A). Therefore a transportable ¥ morphism o (i.e.
one that is G-transportable, with G the translation group), does not necessarily
give rise to a translation covariant state (see Theorem 5).

2) It is not necessarily true that

o(4)="lim" [(@)AT(a)*, for Aed, (3.16)

with a— oo in a space-like direction, as would be the case if o were a local *
morphism [see (3.14)].

3) (Composition Property) The composition of translation covariant * mor-
phisms is not necessarily translation covariant.

However, the results of Paper I suggest that (3.15), (3.16) and the Composition
Property which expresses the additivity of the electric charge are valid in QED.
Therefore we propose to develop a framework for the construction of charged
states in QED with the property that (3.15), (3.16) and the Composition Property
are satisfied. [Condition (3.15) will be seen to be related to some locality properties
of o; Sect. 6.] The relativistic spectrum condition will then automatically be
satisfied on the charged sectors. On these grounds a tentative theory of the
“asymptotic statistics” of charged sectors will be outlined in the last section. It
permits us to set up a generalized Haag-Ruelle scattering theory for charged infra-
particles.

4. Transportable * Morphisms and Translation Cocycles

In this section we attempt to implement the ideas that charged states are weak *
limits of states in the vacuum sector, as a localized charge is moved to space-like
infinity, and that a charge localized in a space-like distant region has only a
negligible effect on measurements done in a bounded space-time region (. In the
following, w is a fixed, pure vacuum state on 2.

Definition 3. A representation © of A is a called locally normal iff

n(A(O))" =7 (A(O))’, for all OeB. Let {A,} be some net of operators in 2. In the

following “w-lim A, = A” means that 4, converges weakly to 4, as a— 00, in every
o 00

locally normal representation of 2. 4 * morphism ¢ of 2 is called locally normal
iff 70 is locally normal.
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In the following, “a—oco” means that a tends to oo in some space-like,
asymptotic direction. A translation cocycle I' on #, is called quasi-local iff
I'(@)AI(a)*e, for all ae M*, and for all Ae () A(O),

(=]

(1) ord)=w-lim F(@AI(a)* exists, (4.1)

is independent of the direction in which a— oo, and is a locally normal * morphism
of . (Notice that o, is automatically locally normal if the local algebras A(0),
0e®B, are of type IIl and #,, ., is separable; a theorem of Takesaki, see [15].)

) wlim _ (I (b)r(A)[(b)*)=A. (4.2)

atb—ow
We also define o, =1_,°0°1,, ac M*, where ¢ is an arbitrary * morphism of A. [J

Remarks. 1. A translation cocycle I' is called quasi-local in norm iff I'(a)AI'(a)*e U,
for all Ae N, ae M*, and

r‘zz-llgl T_ (L)t (AT(b)*)=A4. 4.3)

a+b— o
Then o (4)= n-lim I'(a)AI'(a)* exists, is independent of the direction in which
a— oo
a— o0, and is a transportable * morphism of A with the property that

n-limop. (A)=A, forall Ae?A. 4.4)

a— o

Conversely, suppose that ¢ is a transportable * morphism of U with the properties
that the corresponding translation cocycle I', obeys I' (a)ATI (a)*€ U, for all A,
ae M*, and that

n-limo (A)=A.
a— o

Then I',(a) is quasi-local in norm, and ¢ =0 . Le. there is a i—1-correspondence
between * morphisms ¢ with the above properties and translation cocycles that are
quasi-local in norm. The proof of this theorem is given in Appendix 1. At first
sight, it seems to offer an attractive extension of the DHR theory. We have
however good reasons to reject translation cocycles which are quasi-local in norm
(which may be interesting e.g. for statistical mechanics) as a suitable framework for
the description of charged sectors in QED, rather we base our analysis on the
quasi-local cocycles introduced in Definition 3.

2. Clearly, the * morphisms ¢ arising from quasi-local translation cocycles, I',
are in general not local, so that the states weo may be charged (see Sect. 5). (This
would even be so for morphisms arising from translation cocycles which are quasi-
local in norm.)

Proposition 8. Let I be a quasi-local translation cocycle. Then the * morphism o . of
A (see (4.1)) is transportable, with

orda)=T(a)*o(A)](a), (4.5)
and

w-limop, (4)=A. (4.6)
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Proof. By the cocycle identity (3.1)

T_ (L) (AL (b)*)=T(a)*I'(a+b)AT'(a+Db)*I'(a).
Taking b—oo on both sides of this equation, applying (4.1), yields (4.5). In
particular, g is transportable. Moreover,

O, A) =y T b2 (A (5)

= wlimz_,(T(b)z ()T (b))

which converges weakly to A4, as a— oo, for all AeUA(0), by (4.2). O

Theorem 9. Let g, and o, be * morphisms of W arising from quasi-local translation
cocycles I'y and T, as in (4.1). Suppose that I'y(a)e W, for all ac M*.
Then o0, is a transportable * morphism, and the corresponding translation
cocycle, I, ., ., is given by
I, . (@=0(ya)(a), acM*.
Proof. Since I',(a)e ¥, for all ae M*, we have
T—aoal O0.2 D"Ca(A) = T—aoal O‘Cu(‘c—-aOGZ oTa(A))
=1_,00,°7,(I,(a)*c,(A)[,(a)), by Proposition &,
=T (a)*c ([, (a)*o,(A)y(a@),(a), by Proposition 8
=(0(Fy(@) (@) *0, o0y (A)a, (T (@)l (a).

To complete the proof we must show that a,(I'y(a))I';(a) is a cocycle : Continuity of
o ,(F,(a))I;(a) in a follows from the continuity of I'; (@) and I'y(a) in a and the local
normality of ;. By the cocycle identity (3.1) applied to I', and I,

0,(Iy(a+ b)) (a+b)
= 0,(T@)_ (L) (a)e_ (T, (b)
= 0, (@), @@, (r_ (BN (@) (T, (b)
=0, (L @)y (@)t (o, (T,B)T4(b),

since g, is transportable. Recalling that U (a)* implements 7_, on 5, , we see that
this equation is just the cocycle identity (3.1) for I, ... [

5. Charged, Transportable * Morphisms, and Charge Transfer Cocycles

We are interested in those * morphisms ¢ which have the property that, when w is
a vacuum state woo is a translation-covariant, charged state on 2 [see P1) and
P2), Sect. 3]. Such * morphisms are called charged.

Since we require, on physical grounds, that charged morphisms and the
compositions of charged morphisms are transportable, and charged states are
weak * limits of neutral states, as a localized charge is removed to space-like
infinity, the analysis of Sect. 4 suggests to consider only those charged *
morphisms, g, which are of the form

6=0p,°...°0p , (5.1)
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where I}, ..., T, are quasi-local translation cocycles, with I; (a)e 2, for all ae M*,
and k=1, ...,n. We must therefore isolate those quasi-local translation cocycles, I',
with the property that weo is a charged state. By Lemma 2, Sect. 2, we know that
the representations n, and =, of A are disjoint. [In the terminology of [5] this
means that the cocycle I' is “non-trivial”, in the sense defined in [5] for the case of
cocycles generating the soliton sectors in two dimensional theories, i.e. I'(a) is not
of the form VU (a)VU ,(a)*, with VeB(s£,).]

Let X be some simply connected, bounded region in R?® with piecewise smooth
boundary 0. Let Q, be the local-charge operator introduced in Sect. 2, with the
property that 2 (0), for some sufficiently large 02 X.

Let 2(R3) be some family of bounded subsets of IR* with piecewise smooth
boundaries, containing a covering of R® by simply connected, disjoint sets and
closed under finite unions.

In order to make our subsequent analysis more elegant, we assume henceforth
that the test functions f; and « in the definition of Q; (Sect. 2) can be chosen such
that for arbitrary, disjoint sets X, and X, in 2(R?),

Qz,w:z:Qx1 +Q:2 P

with (5.2)
eisQ):1 eitQ):z — eithzeistl

for all real s and ¢.

Definition 4. A one-parameter family {y.(s) :seR} of unitary operators contained
in A is called a local-charge cocycle if yy(s) is strongly continuous in s, in every
locally normal representation of 2, and the cocycle identity

V(s +1)=75(s)e’*C=y (t)e~ *¢= (53)
is satisfied, for arbitrary real s and t. (Here Xe2(R3).) O

Remark. Let o be some locally normal * morphism of 2. Then
V3(s) = o(e*=)e ™ 50= (5.4)

is clearly a local-charge cocycle. We define suppo to be the smallest region in R?
belonging to Z(IR?) with the property that, for all £e2(R?) with X C(suppo)° (the
complement of suppo)

y¥(s)=1, for all real s; (5.5)

suppo is called the “support of ¢”.
Let 2’ =(suppo)uZX, e Z(R%), X C(suppo). Then, by (5.2) and (5.5)

VE,(S) = O.(eisQ(suppa)uz)e— isQ(suppo)uz
— o.(eiSquppa)a(e ist)e —isQr,~isQsuppa
- 0_( eistuppa).y;(S) e~ isQsuppo
=VsuppalS) (5.6)
ie. for 2'Dsuppa, X'e P(R3), y5.(s)=7°(s) is independent of X'!
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A simple calculation shows that for a=(a,0), a space translation

y;“(s) =T —a(’yg(a)(s)) ’
hence suppo®=(suppo)(—a), and

Ys)=7_,(y°(s)). (5.7
Lemma 10. Let ¢ be a locally normal, transportable * morphism of .

1) Let ZDsuppo. Let ac M* be such that X C (suppa,). Then

€52 [ (a)e™ 2= =y(s)*I(a). (5.8)
2) If X C(suppo), ZDsuppo, then

0T (a)e ™% I (a)y"™(s). (59)
3) If 2Dsuppa, ZDsuppoa, then

€UO=T (a)e ™05 =y ()4 (a) _(°(5)) . (5.10)
4) If X C(suppo)’, 2 C(suppao,)

€"[ (a)e™ "= =T (a). (5.11)

Proof. By the definition of transportable * morphisms, we have
o (A)=T(a)*a(A)T (a),
for AeA and ae M*. Thus
I (a)*o(e"2%)e ™ 525!505 (q)e ™~ 152=
=0, (e)e 50z,
Le.
y5(s)e =T (a)e™ “%= =T (a)y3e(s). (5.12)

Under the hypothesis of 1), y34(s) =1, and y§(s) =y(s), whence (5.8). The proof of 2) is
similar. Under the hypotheses of 3) y(s) =y?(s) and y§(s) = y7«(s) =t _ (y?(s)), by (5.7).

Thus (5.10) follows. Finally, in the situation of 4) y°(s)=y’«(s)=1. [

Next, we prove a converse to Lemma 10. For this purpose we consider a quasi-
local translation cocycle, I', with the property that, for a=(a, 0), withaeR*,and some
region X e 2(R3),

€0 (a)e ™05 = yy(s)* I (), (5.13)
for some local-charge cocycle y,(s) (see Definition 4) with the properties that

ys(s)=7(s), independent of X,
if (5.14)

2pC2 and Zp(@)CZXc,
and

ys(s)=1 (5.15)
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if

2Cxy, XCXpaF.
We call X the charge support of I'.

Lemma 11. If I is a quasi-local translation cocycle satisfying (5.13)«5.15) then o -
defined in (4.1) — has the properties that

op(€F)e™ " =y(s), for XDZX,, (5.16)
and (suppo)SZ;.
Proof. By (4.1), (5.13), and (5.14), we have, for 2D % and a,=(a,, 0) with |a,| large
enough,

) =T (ag)e™ %I )"

= w-lim €*%=["(a)e ~*2=["(a)*

aw
=e"0g (e”52x),
Next, for all ¥e 2(R?) with X C X% and for a, =(a,, 0) with |a,| large enough [so that
2 C2ao)]
1=e"2"[(a,)e ™ 2= (a,)*
= w-lim 2T "(a)e ™ *%=["(a)*

a—

=e"%g (e705), [

Lemma 12. Let yy(s) be alocal-charge cocycle with the property that, for some bounded
2. e P(RY), p5(s)=1(s) is independent of X, for all £DX.,. Then y(s) is a unitary
one-parameter group in W. In particular, if o is a locally normal * morphism of W of
compact support then y°(s)e o(A) NA.

Proof. By the cocycle identity
s +8)=7(s)e*C=y(t)e "%,
it 2>X,. Using Lemma 2, Sect. 2, and the fact y(t)e 2, for all ¢, we conclude that

lim, e,
Ye?(R3)

so that y(s+1t) =p(s)y(t).
By Lemma 2 and the definition ofgy’(s),

y"(s)a(A)y”(- S) — 21?1}33 e—isto.(eist)o.(A)o.(e— ist)eist

— 1} —isQx isQx —isQrx) ,isQs
lim e a(e**4e )e

StR3
= lim e "25g(4)e"%=, for Ae | W0),
I1R3 0eB

=0(A), as o(A)eUA, for AeU.
Since y°(s)e 2, this implies that y°(s)e o(A)' NA. [
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Lemma 12 permits us to characterize locally normal * morphisms ¢ of compact
support by the unitary group y°(s).

If ¢ is a * automorphism of A then, clearly,

oAy nA={1-1; 1eC},
hence

y°(s)=e"1, for some gelR. (5.17)
Ifoisirreducible,i.e. 7, cgisanirreducible representation of &, then

7, (o(W) ={A-1:4eC},

so that _(y°(s))=e™4, for some geR.
Since 7, is faithful,

yo(s) =€, (5.18)

Next suppose that the action of ¢ is local in the sense that, given a double cone
0 e B, there exists some O, e B such that o(W(O)) CA(O,). Suppose, in addition, that
supp ¢ is compact. Then for some bounded Xe Z(R?)

Y(s) = oleP2z)e %0,

By Sect. 2, €22 (0,), for some double cone ;& B containing X and all seR. Thus

Y(s)e W0y ,L05). (5.19)
Suppose now that y°(s) is translation invariant, i.e.

T, (y°(s)=7"(s), forall a=(a,0), aeR>. (5.20)
Then

Y(8)e WO A Wl (a), =0, ,00;.

Choosing a large enough, we conclude using locality and the fact that () is a factor
that y°(s) = €', for some gelR.

In all three cases, the physical interpretation of g is the one of total charge of the *
morphism g, and we then say that o is a localized, charged * morphism of charge q.

The analysis presented above proves that for y?(s) not to be of the form &%, ge R, it
isnecessary that ¢ be not irreducible and (assuming the action of ¢ is local) y°(s) be not
translation invariant.

Next, we merely suppose that y?(s) is translation invariant. Then, for all a =(a, 0),
aclR3,

U (@)*7(s)2=1,(y(s)R2=7"(s)2,

ie. y°(s)Q is a translation invariant vector in J£,. Since we have assumed that the
vacuum is non-degenerate, we conclude that yo(s)Q = e™*1Q.

By Lemma 12,

Y7(8)0(A)Q2 = a(A)y*(s)2 = e a(A)Q2,
ie.

V) H ()= 14 s (5.21)

for some geR.
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If #, ()=, then (5.21) implies that y%(s)=€"* and o is a localized, charged *
morphism of charge g (see also Sect. 6).

The following result relates the translation covariance properties of y°(a) to the
cocycle I',.

Lemma 13. Let g be atransportable, localized * morphismwith I’ (a)e U, for all a. Then
T (77 (8) =y7(s) =T ,(@)*y°()] ,(a) ,
for all a=(a,0), acR>.
Proof. Given a=(a,0), we choose X so large that X > supp ¢ and X(a) Dsupp ¢. Then
T, (y°(5)) =1 _ (o(e” )e” 2%
= g (€59 @)e ™ 5Qx@ (5.22)
is independent of X. Hence
0, (e 2)e™ 4050 —yre(s) = _ (37(s).
But
Ua(eisQE(a))e_isQE(a) — Fo'(a)* a(eis Q:m) Fa(a)e_isQ”‘“)
— F,(a)* [O-(eiSQz<a))e = iSQz(a)]eist(a)rd(a)e* isQx(a)
=T (a)*y°(s)e” L[ (a)e” 2@, (5.23)
Since I' (a)e ¥,
n-lime"2=@[ (a)e~ *2*@ =T (a), (5.24)

ItR3

by Gauss’ law (see Lemma 2).
Combining (5.22)~(5.24) and letting X1IR3, we arrive at

T_(y°(8) =y7(8) =T J(a)*y°(s)[ ,(@). [J

Lemmas 10, 12, and 13 yield the following “topological” commutation relations :

Let o be a transportable, localized * morphism of 2l of compact support, supp o,
with translation cocycle I' (a). Then

y(s) = lim o(e's¢=)e~sQ=
I1R3

exists and is a unitary one-parameter group in o(A)NA (the charge cocycle
associated with o), and

(A) €T (a)e”¥2=9°(s)*I'(a) if suppo <X Csuppds
[see (5.8)];

(B) €49 (a)e”¥2==97(s)[ (a) if suppo,SXCsuppo®
[see (5.9) and Lemma 137;

(C) &I, (@e 5% =T (a),
otherwise [see (5.10) and Lemma 13].
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Lemma 11 is the converse to this.
Next, weattempt to constructa total charge operator, Q,onthesectors #, , in the
case where o is a localized * morphism, with the help of the local-charge cocycle y(s).

Lemma 14. 1) Suppose that s-lim Q,Q exists and (5.2) is valid. Then
S1R3

s-lime®*22Q=Q.
I1R3

2) Ifoisalocalized * morphism and the hypotheses of 1) hold then s-lim e's 2> = ¢'s@
Z1R3

exists on A, and is a unitary group in the center of n . (U)".

3) Under the same hypotheses, if o, and ¢, are localized, charged * morphisms of
charge q,, q, resp., with g, #q, then the representations n,,., and 7., of U are
disjoint.

Proof. 1) By Duhamel’s formula and (5.2),

a a

(€597 —e2)Q = [ ¢! 25e =12 (Q . — Q,.)Qdt .
0

Hence
(e 2= —e*2=)Q| <Is|[(Q5s— ORI,
which tends to 0, as X, 2'1IR3. Thus

s-lime* 2= Q=¥ exists, for all seR.
ITR3

Next
U (@)*¥,=U,(a)*s-lim *2=Q
SRS

=s-lim U (a)*e*2=Q
ST R3

=s-lim 7 (e9*)Q
IR

=s-lime*%=-0Q =Y
ITR3

for all a=(a,0), acIR?®; i.e. ¥, is space-translation invariant. Since the vacuum Q is
unique,

Y =eQ, b, real.
Clearly

eSLQ— Q= [e"22Q,Qdt,
0
and the Ls. tends to (s —1)Q, as ZTIR?. Hence

e —112(Q, @) =lim (e~**—1) [ (e ™92, 0,Q)d . (5.25)
1IR3 0
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Next,
l(e™"2=Q,0,0Q)| < 0,2l <const,
uniformly in X, since s-lirgl 0,Q exists by hypothesis. Thus, for arbitrary ¢ >0and X
large enough (depend?rgﬂ; on g).
l((e™*2=~e"?-9)Q, 0;Q)| <e,
by the strong convergence of e~ “2=Q to ¢®-*Q. Therefore

lim (e™2:Q,Q_Q)=e~"~:lim (Q,0,Q). (5.26)
1IR3 ZtR3

By Gauss’ law,
—(2,0,29=(QEVf,Qx0)Q). (5.27)

Since Q2 is Poincaré-invariant, the r.s. of (5.27) vanishes. Combining (5.25)~5.27), we
conclude that

e — 11(Q, @) = lim (e~ —1) [ (e~"2=2, 0, Q)dt =0,
ITR3 0
i.e. e®*=1. This completes the proof of 1).

2) Using the operator T: ., (0)—,,,, constructed in the proof of Theorem S,
we have, for arbitrary Ae,

€522 4Q_ =2 To(A)Q = To(e*2%)a(A)Q = T)°(s)e™* %=a(4)Q,
if Z>supp o. Moreover

€5%6(A)Q =" %g(A)e 2= 2=Q

and
n-lim e %=g(A)e 52 =g(A4), as oa(A)e,
FtR3
s-lime*2=Q=0Q, by 1).
1IR3
Thus
s-lim %22 4Q_=s-lim To(e*2%)o(A)Q = Ty%(s)a(A)R2 .
I1R3 S1R3

Notice that, by Lemma 12,
P (8)o(A)Q=0a(A)y°(s)2,
ie.

s-lim €522 4Q_=e"24Q_=To(A)y’(s)Q. (5.28)

I1R3

Since 2= is a continuous, unitary group, for all bounded X, so is ¢*2. Moreover,
es2zc U, for all bounded X and all seR. Hence

e*Cem, (Y. (5.29)
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ByLemma?2,e*?isalsoinn,, (2),henceitisin the center ofz,,, (2A)". Thiscompletes
the proof of 2).
3) This follows from 2) and a standard theorem [11, 15]. [

Remark. Assuming only that w-lim e2=Q exists, one can prove that w-lim e** 2= exists

Z1R3 It R3
on . ,and if w-lim Q,Q exists and y°(s)Q is differentiable then w-lim Q Q2 =0and
ITR3 ItR3

w-lim Q,AQ_=To(A) i 1°(s=0)Q2
S1R3 ds

(see also Sect. 2 of Paper I).

Definition 5. A * morphism o of W is called a localized, charged * morphism of charge g
iff yo(s) = €**%. A quasi-local translation cocycle I'is called a charge-transfer cocycle of
charge q iff I'(a)e A, for all ae M*, and I satisfies (5.13)~5.15), with X, compact and
H9=et. O

We summarize a part of our findings (Lemmas 10-14) in

Theorem 15. 1) If " is a charge-transfer cocycle of charge q then o (definedin(4.1))
is a localized, charged * morphism of W of charge q (Lemma 11).

2) Ifoisatransportable,localized * morphism with the property that I (a)e U, for
all ac M* then

(7)) =T (@)*y°(s)I ,(a)

(Lemma 13), and if ¢ has charge q then I is a charge-transfer cocycle of charge q
(Lemma 10).

3) If 6,,...,0, are localized, charged * morphisms with charges q,, ...,q, then
G40...00, is a localized, charged * morphism with charge q,+ ... +q, (the proof is
a simple exercise).

4) If s-lix? Q,Qexists (neutrality of thevacuum, Lemma 14 ) and o has charge q then

IR

Q=q-1, on K, , and

if o, and o, have charge q,, q,, resp., with q, #q,, then n,, . and m,,. . are disjoint
representations of W (Lemma 14).

6. Space-Time Translation Covariant, Charged * Morphisms

In this section we study a class % of quasi-local translation cocycles with the property
that,forI'y,...,I',in%,n=1,2,3, .. ,thestatewoo o ... oo, isspace-timetranslation
covariant (see Definition 1, Sect. 1),and to each I' e % there exists a conjugate cocycle
I'e®% such that the representation .., of 9 contains the representation r,,
exactly once. Thislast property can beinterpreted asPCT invariance of the theory (see

[3D.
6.1. Translation Covariant * Morphisms

Let o be an arbitrary, transportable * morphism of 2 with translation cocycle I',.
From Theorem 5 (Sect. 3) we know that weo is translation covariant iff the subspace

K, (0)={0(A)Q:Ac U}~ CH,
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is invariant under the group
V(a)=T (a)U,(a), acM*.

There are thus two approaches to proving translation covariance of woo:

1) Show that S (o) is invariant under V,(a).

2) Show that J# (0)=,,

It appears that approach 1) is the natural one. We try to elucidate this by the
following discussion : Let @ be a bounded double cone and T a positive number. We
define

MTE {aE]M4 :a:(ao, a)a 'ao' é T’ Ial é T} H
and

0T= ) 0(a).

aeMr

We now assume that the space-time translation automorphisms z, of 2 have locally
correct generators : Given 0e B and T >0, there exist O(0, T)e B with O(0, T)2 0T
and operators U, ((a)e W(O(O, T)) such that, for all 4eA(¢) and ae M,

Ug,1(0)* AU g, (@) =7,(4). (6.1)

The existence problem of operators U, r(a) with these properties can be reduced to
showing that, for each OB and r> 1, there exists a factor N, , of type I, such that

AO)CN, ,CA(~"0), (6.2)

where "0 = {xeM*:r~'xe 0}, [16].

Property (6.2) has been established for the free, scalar field by Buchholz [17], but it
is believed to be a general property of the local nets {2(0)} .y, Of relativistic quantum
field theories.

We now assume, in addition, that

s-lim U, (a)2=2Q, (6.3)
01 M4 ’

for all ae M and all T < c0.
Next, we study those * morphisms o of 2 which have the property that

s-lim (U, (@)U, 1(a)* (6.4)
01 M4

exists on #,, for all T < co. We leave it to the reader to check that the limit in (6.4)
defines a translation cocycle in the sense of Definition 2, Sect. 3.

Lemma 16. Assume(6.1) and (6.3). Let o be a* morphismof Wwith the property that (6.4)
is satisfied. Then o is transportable, with

I'(a)=s-lima(U, (a)U, (a)*, (6.5)
ot M4

for all aeMy; V(a)=T (a)U (a) leaves H#, (o) invariant, and w-c is space-time
translation covariant.
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Proof. Let Ae | ) (0). Then, for ae M, and arbitrary T,

0eB

t_go0°t(A)=nlim U, (a)o(U, (a)*AU, (@)U, ((a)*.
01 M4

since Ae ) A(0), and o(t,(4))e .
0B

The first part of Lemma 16 and (6.5) follow by writing out the r.s. of this equation
and applying (6.4).
Next, we prove invariance of 5, (o) under V (a): For all Ae, ae M,

I' (@)U (@)o(4)Q=T (a)t_,(c(A))L2
=slim o(Ug, (@)U, r(@)*c_(o(A)2, by (6.5)
01 M4

= _Z-TILI? o(Uy (@)U, a)*t_ (a(A))U, (@2, by (6.3)
=s-lima(U, (a)4)Q. (6.6)
23 e

For all 0e®B, T < o0, o(U, (a)4)Qe H#, (o). Since #,(0) is closed, (6.6) implies that
I' (a)U (a)o(A)Qe K, (o).

The space-time translation covariance of weg now follows from Theorem 5. [
Onthebasis of Lemma 16 one might conjecture that,in general, 5, (o)isinvariant
under V,(a), whenever ¢ is a transportable * morphism.
Wedefine %, tobe theclass ofall those quasi-local translation cocycles which have
the property that, for I'y,...,I', in ¥, n=1,2,3,...,#, (o, ° ... oo, ) is invariant
under V, . .,,.(a), acIM*, where

Ver,ooeor,@=0p,° ... oop, _ (I'(a) ... op (I (@) (@)U (a) 6.7)

(see Theorem 9, Sect. 4). By Lemma 16, it suffices that o ... co. satisfies (6.4).
Next, we discuss conditions which guarantee that

K (0)=K,,.
Let g be a localized * morphism of compact support, i.e.
O.(eisQ‘:)e—isQ):= 1 , (6.8)

for all X Csupp o° (see Sect. 5).

Physically, Eq. (6.8) says that the charge carried by ¢ is localized in the compact
region supp o CIR3.

From Proposition 3 (Sect. 2) we know that this does not imply that g islocal in the
sense of DHR [3], in the contrary, ¢ is not local unless its charge is 0.

However, one might expect that ¢ is quite close to acting trivially on 2(0),
provided 0O is a bounded double cone which is space-like distant from supp ¢. [One
might expect, moreover, that for such morphisms (6.4) is true.] A possible way of
expressing that is as follows: There exists some compact region X, CIR3, with
2, 2supp o, such that for arbitrary 0B with OC ~2,

a(W(0)=U(0). (6.9)
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Clearly, (6.9) implies that J (c)=2¢,. (This follows from the Reeh-Schlieder
property, as noted in the proof of Lemma 1, Sect. 1.)
If o is transportable and O C ~(X,0X, ), for some acIM?*, then by (6.9)

A(O) = o(W0)) =0, (WO) =T '(a)*a(WONI (a) =T'(a)* WO (a).
[Note, however, that the condition
A(O)=T'(a)* WO (a),
for O C ~(Z(I'VX(I')a)), for some compact region X(I')CIR? only implies
{w-lim I'(a)AT(a)*: Ae QI(@)} CA),

a— o

ie. it appears difficult to characterize those localized * morphisms o which satisfy
(6.9) entirely in terms of the cocycle I'.]

We let %, be the class of all those quasi-local translation cocycles, I', which have
the property that

o (W) =AU(0), (6.10)

for all Oe®B with OC~2_ .
Let I'y,...,I', be in %, and let 0B, with OC~(Z, v ...uZ, ). Then

Gr,o 00 (WO) =0y 0 ... oap, (WO)= ... =0, (AWO))=A(O). (6.11)

Hence, by the Reeh-Schlieder property,
H(op©...o0p )=H,, ' (6.12)

for arbitrary I'y,...,I', in %,, so that weoo ... oo is space-time translation
covariant.
Next, we introduce a class %, of quasi-local translation cocycles:

re%, iff I'a)eod), (6.13)

for all acIM*.
We say that a quasi-local translation cocycle I is irreducible iff I'(a)e (o ())".
(Clearly, if I'e %, then I is irreducible.)

Lemma 17. Let I' be a quasi-local translation cocycle.

1) IfT isirreduciblethenoisanirreducible * morphismof W, i.e.n  is anirreducible
representation of o ().

2) If I'y,...,I, are in €5 then oy o ... oo is irreducible.

Remarks. The converse of 1) is of course trivial. By 2) we have # (o o ... oo )=,
forarbitrary I';, ..., I',in ¢ ;. Hence the state w0 ... oo isspace-time translation
covariant.

Proof of Lemma 17. 1) Since I' is irreducible, I'(a)e (o ()", for all a. Hence, for all
Ae | ) Wo),

0eB

O-I", a(A) =1 —a OO‘FOTa(A) = F(a)*GF(A)F(a)e nw(o-l‘(m))u .
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By Proposition 8, Sect. 4,

w-limo. (A)=A.

a— oo

Since 7, (a ()" is weakly closed, Aem, (o (A))". Hence (o (A))"D () A(0), and
0B
therefore
(o (W) =7,(A)",

ie. m, is an irreducible representation of o ().
2) Ifr,,.... I, are in %, then

Or,° .. °0r,._,°0r,.,a(A)=Un° oo’,"_I(Fn(a)*arn(A)Fn(a))eorlo oo (A),

forall Ae | ) W(0). As a— oo, we obtain, using Proposition 8 and the local normality
0B

of the morphisms o ,...,00, _,

n,(0p ... cop _ (A)enr(op o ... cop (N))",

1.€.
n(op,o ... cop (W) 2n(op 0 ... cop, _ (W).
Proceeding in this manner we conclude, after n steps, that
Tof0r,o . oor, (WY 27, (),

ie.

Ty,o0p © ... 00
is irreducible. [

Remarks.1.Let I be a quasi-local translation cocycle. Then ¢ .is a * automorphism if
and only if

Ha)=oI"(a), (6.14)

forsome quasi-local translationcocycle I'. (The proofis givenin Appendix 2.) Clearly
a cocycle I satisfying (6.14) is in €.

2. The fact that, for I'y,...,I', in %;, the * morphism o c... oo, of A is
irreducible will imply that the sectors weo ., I'e ¥ 5, have necessarily ordinary Fermi-
or Bose-statistics, i.e. parastatistics is automatically excluded.

Thus, the hypothesis that the charged sectors of a theory be generated by all *
morphisms {¢:I'€ ¥} might be appropriate in QED, but cannot be valid in more
general gauge theories with an unconfined, abelian charge and parastatistics.

Section 6.1 can besummarized asfollows:LetI",, ..., I', be quasi-local translation
cocycles in one of the classes €,, 4,, €5 [see (6.7), (6.10), (6.13), resp.]. Then
o0y °... o0 s space-time translation covariant.

Our discussion leaves the problem open to characterize those localized charged *
morphisms which arespace-time translation covariantentirelyin terms of quasi-local
translation cocycles.
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6.2. Existence of Conjugate Sectors

In this section we discuss the following problem: Suppose I' is a quasi-local
translation cocycle. Does there exist a quasi-local translation cocycle I' such that
Ty . epeqp CONtains 7, precisely once ? In the DHR theory, the answer to this is yes (see

[3,6]).

In our case, however, where the basic ¥ morphisms, o, generating the charged
sectors are necessarily non-local, this is not clear, at all.

Thefirst problem onemeetsis that, given o, the existence of aleftinverseto g, @ [i.e.
®(0(A))= A, for all Ae U] is not automatic. One has only

Proposition 18. Let I be a quasi-local translation cocycle with I'(a)e U, for all ac IM*.
Then, for some sequence {a,}, a,— o0, as n— oo,

wrdA)=lim w(I'(a,)*Al(a,)) exists,

n— o0

and wp(o(A))=w(A4), for all AeU. If
w-lim (I'(a + b)*AI'(a+b)— I'(a)*AI'(a))=0, (6.15)

for all be M, then wy. is a translation covariant state on .
Remarks. The existence of w . follows from a general compactness argument. Next,
wrdap(4)) =11n30 o(l'(a,)*o(A)](a,))
= lim w(o7.,,(4) = (4).

by Proposition 8. Finally, using the cocycle identity (3.1) and (6.15) one shows that
oAt (B)C)= oI (a)t_ (A)Bt_(C)(@)¥),

so that the unitary group U, _(a), defined on %, , by
Uy @)AQ,  =1_ (AT (a)*Q

implements t,. (Details of the proof of Proposition 18 are left to the reader.)
In the DHR theory [3]

n-lim I'(a,)*AI'(a,) = P(A)

n—oo

wrx?

existsalways, for some sequence {a,},and @ isaleftinverse of g (with the same support
as o).

LetI'beasinProposition 18. Suppose that wp..=w-®,where ¢ isa * morphism of
Aand aleft inverse of o . Using (6.15) and the cocycle identity (3.1) one can show that

T_ 2Pt (A) = P(I(@)AT'(a)*) = D(I'(a) D(A)D(I'(@))*)).

Thus @ is transportable, and I' 5(a) = D(I (a)*)e (). This motivates the study of the
class %, introduced in Sect. 6.2. (In the present case, 6 and @ =0 ! are actually *
automorphisms of 2 ; see Appendix 2).

Lemma 19. If @ is a left inverse of a localized, charged * morphism o then @ is localized,
with supp ® =supp o, and if ¢ has charge q then ® has charge —q.
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Proof. Let X Csupp a¢, i.e. y3(s)=1. Since @ is a left inverse of o, we have
1 = D(a(e's2=))e ~i52=
= Dy5(s)e*2)e
= P(e"59%)e 592 =4 %(s).
Thus, supp @ =supp o.
Next, let XD supp o=supp @, and suppose that y°(s)=e*%. Then
1 = P(a(e'$2=))e 2=
= D(ys)e’*@)e 0
=y%(s)e*, ie. ys)=e 1. O
Incontrast tothesituationmetinthe DHR framework [ 3], neither the existence of
left inverses nor the one of conjugate morphisms appear to be automatic, in the
present framework. Therefore, in the absence of general results which guarantee that,

given a quasi-local translation cocycle I', there exists a transportable * morphism &
such that the representation

Ty.5.0, Of U contains 7, precisely once, (6.16)

w

onemust attempt to formulate a plausible principle which ensures that (6.16)is valid.
Such a principle is suggested by the “topological” commutation relations (A)—(C),
subsequent to Lemma 13 (Sect. 5), and the identity

YIR(s)=0p, (Y7 (s)y T (s) - (6.17)
" Henceforth we assume that

s-lim Q,Q exists, (6.18)

1IR3

so that the total electric charge operator exists on all sectors generated by localized *
morphisms of A (see Lemma 14).

Conjugation Principle. 1) Let I' be a quasi-local translation cocycle satisfying the
“topological” commutation relations (A)~(C), for some local-charge cocycle yr.
Then there exists a quasi-local translation cocycle I” satisfying the commutation
relations (A)~(C), for a local-charge cocycle y* with the property that the unitary
group
{o7(y"(s))y"(s)} has eigenvalue 1. (6.19)

2) All super-selection sectors of the theory of total electric charge 0 are generated
by strictly local, transportable * morphisms of 2, in the sense of DHR, [3]. [
Using (6.19) and the fact that

op(y" (s (s)e AUNoproo (AY,

for all s (see Lemma 12), one verifies easily that the representation =,,. ., of A
contains a subrepresentation of U of total charge 0. Part 2) of the Conjugation
Principle then says that that subrepresentation is of the form r,,,,, , where o, is a
local * morphism of 2, in the sense of DHR. Their results then imply that there
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exists a * morphism &,,, such that z contains r,, precisely once. Therefore,

the morphism conjugate to o is
O =010 0 (6.20)

W °Floc °Oloc

Since 7,,, and o are transportable,sois o (see Theorem 9). Moreover, 5 is uniquely
determined by its translation cocycle I'; , given by

[, (@) =5, ([(@)F 5, (a),
as is easy to check (see (4.1) and [3]).

Thus, the Conjugation Principle guarantees (6.16). If the morphisms o -and g are
irreducible then

Yr(s)=7°r(s) =€,
and

YT (s)=7°T(s) = €T, (6.21)
for some g and § in R [see Lemma 11 and (5.18)]. The Conjugation Principle then
implies that

Y(s)=yT(s)* =™, (6.22)
because ) )
oy (' (s)=1, or y(s)=apy"(s)*). (6.23)

In this case, the sectors #,,, .., and %, ., have both total electric charge 0.

Naturally, (6.23) suggests a converse problem. Suppose that

Y () =0y (s)%). (6.24)
By Lemma 13,
©_07(5) =T (s (s)'(a)
=T (ay*op(y"(s)*)I(a)
=07 (v (5)*). (6.25)

Proposition 8 gives

w-limoz (0()*)=y"(s)*, on .

Thus,

w-limt_ (y’(s)) exists. (6.26)
Clearly,

w-limz_ (7 (s)em, (A . (6.27)

But y(s)*e A. Combining this with (6.25)~(6.27), we conclude, using the irreduci-
bility of =, that

w-lim T_ (YT (s)e U, (AY = {il: AeC},

ie.
yr(s)=e1=yT(s)*, (6.28)
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for some geR. Therefore
yEo) =y () = 1,

ie. opoop and opeo carry electric charge 0. Part 2) of the Conjugation Principle
then implies

OF°0r=0j4c5
for some local * morphism o,,, of 2. By [3], there exists a conjugate morphism ,,,
such that n,.; ., - contains m, precisely once, and therefore, with 6,.=a,, 07,
one has that =, . contains n, precisely once, i.e. (6.16) holds.

Thus, we have proven

Lemma 20. Suppose that the Conjugation Principle and Eq. (6.24) are true. Then
Y= =yT(s)*,

for some qeR, and there exists a local, transportable * morphism &, such that
Or=0,,,°0 IS conjugate to o, in the sense of (6.16). Moreover G . is transportable.

If the vacuum sector, H#,, is the only super-selection sector of the theory of total
electric charge 0, then

=7

~u
ﬂ:ww'roof- -

w"o‘i’""dr:

7 (6.29)

w?
o and o are * automorphisms of A, and I' can be so chosen that op=oy .

Remarks. 1. To prove the last part of Lemma 20, we note that (6.29) follows
from part 2) of the Conjugation Principle and the absence of non-trivial, local *
morphisms (i.e. o, =identity), and that, by (6.29), o°0 and oo are both *
automorphisms of 2 given by unitary operators on %,.

2. The situation expected in QED is that all * morphisms o, o, ... satisfy
(6.24), and that the vacuum sector is the only sector of total electric charge O.
-In this case, the last part of Lemma 20 says that o, o5, ... are * automorphisms of
A, i.e. all sectors of QED are generated by charged * automorphisms of U, a rather
interesting conclusion! In this case covariance follows from transportability.

6.3. Relativistic Spectrum Condition, Charge Conservation
and Additivity of the Electric Charge

We use the results of Sects. 6.1 and 6.2 as motivation for

Definition 6. A quasi-local translation cocycle I' is said to be PCT covariant if and
only if
I'a)eW, for all acM*;

I' is in one of the classes €, j=1,2,3, introduced in Sect. 6.1 (the same for all
I'); and

there exists a quasi-local translation cocycle I” with the same properties as I’
such that «,,., .., contains r, precisely once. []

We remark that, assuming the Conjugation Principle is valid, the analysis of
Sect. 6.2 shows that the cocycle I is the translation cocycle I’ 5, of the morphism -
conjugate to o which is given by

I; (@)=G,([(a)l;, (a) (6.30)
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(see Sect. 6.2). Definition 6 is a strengthened version of the Conjugation Principle
in so far as it hypothesizes that I'=T, 5, 1s @ quasi-local translation cocycle in a
class €, so that 6,=o0F is not only transportable, but space-time translation
covariant.

We have

Theorem 21. 1) If I',...,I, are PCT covariant translation cocycles then
We0 °...o0p IS space-time translation covariant, and the relativistic spectrum
condition is satisfied on ., . ., ie. the spectrum of the generator of

{U (a):aeIM*}

(see Theorem 5) is contained in V..
2) Ifry,...,I',arePCT covariant charge transfer cocycles, with charges q,, ..., q,,

and s-limQ;Q exists then s-lime*®*=e"? exists on #,., . ... , and
ItR3 STR3 1 n
Q0=(q,+ ... +q,)1, in particular, Q is conserved.
3) If the total, physical Hilbert space is spanned by the spaces %ﬂwmomem,
where I'y, ..., I, are PCT covariant charge transfer cocycles, n=0,1,2, ..., then the
total charge operator Q has pure point spectrum which is a discrete subgroup of the

additive group of the real line.

°or,

Wear;°...°0r,

Proof. 1) Since I';, ..., I, are PCT covariant, I';, ..., I, are in a class %, for some
j=1,2,3. The space-time translation covariance of weo . ..., can thus be
inferred from Sect. 6.1. In particular, if I" is PCT covariant then weo, w-oF and
wooFoo are space-time translation covariant, and

weogoar=Aw+(1—-2)g,

for some 2€(0, 1], and some state ¢ with the property that z, is disjoint from =,
The proof of the spectrum condition is now as in [3].

) n

2) By hypothesis, y”i(s)=e"%, for some q;eR, j=1,...,n. If ZC () suppaf,
then J=1
orpc... Oo.rn(eist)e— isQy

=0y, 0...00p, (7 (s)e%=)e~9¢=

=0p,0...00p, (€99%)e~ e

=..=1,
ie.

suppor,e...oop, &

-

suppor, .

1

If > () suppo;, then
i=1 !

Op,°...00 (€¢%)e 0=
=op0...00p, (775 (s)e’*2=)e ~isCx
=0y, °...o0p, (€%F)e ™ Qzgisdn
— st

ie.
'))61'1 ° ... °‘7Fn(s)=eis(ql +...+qn) .
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By Lemma 14, 2), e*@=¢@* "4 on ¥, . ., . But weope...o0 is
space-time translation covariant. Therefore Q is conserved.

3) From 2) it follows that the spectrum of Q is a discrete semigroup in R
However, since the charge of I' is opposite to that of I', it is in fact a discrete

subgroup of R. [
Remarks. Let I'y,..., I, be PCT covariant translation cocycles, and assume that

s-lim QQ exists. Then by Lemma 14, 2), e¢ exists on #,,., . ... .,. andisa
ITR3 1 n

continuous, unitary group in the center of Tegr, o ... oo, ()" By Theorem 21, 1),
the relativistic spectrum condition is fulfilled on #,.,, . . .,.. Asaconsequence, the
center of ., . ., (W)"is space-time translation invariant; a general theorem of
Borchers. Hence, the charge operator Q is conserved.

The charge cocycle of o ¢...o0 is given by

P ) =0y, oo, (7)) - o, (RO, (6.31)

as is easy to check.

Furthermore, if I' is irreducible then o} is irreducible (Lemma 17), so that
7°7(s) = €', for some geR [see (5.18)]. If I' is PCT covariant,and 7,(y°7(s)) = y°*(s)
then y°7(s)=e"%, qeR [see (5.19) and (5.20)].

Finally, Theorem 21 remains valid in theories in which charged sectors arise by
composing the vacuum with charged * morphisms that may not arise from PCT
covariant cocycles, provided covariance and the relativistic spectrum condition
are known. We also recall that Proposition 3 and Theorem 7 say that if y°r(s)#1
then ¢, and I' are non-local.

In conclusion, we may tentatively view the problem of constructing the
charged sectors in QED as the problem of constructing all possible, PCT covariant
charge transfer cocycles.

The following problems remain to be analyzed:

1) What is the statistics of charged sectors? Is the spectrum of the total charge
operator related to the statistics of the sectors?

2) Do the charged sectors determine well-defined representations of the
algebras, A*, generated by bounded functions of the asymptotic, electromagnetic
field (which Buchholz only constructs on the vacuum sector [2])? Are the charged
representations of A* disjoint from the Fock representation, i.e. are they “infrared
representation”?

3) Is there a generalized Haag-Ruelle theory for charged (infra-)particles?

Some answers are sketched in the last section.

7. Generalized Haag-Ruelle Theory and a Remark
on Non-abelian Gauge Theories

In this section we outline a collision theory for the theories described in Sects. 5
and 6, in particular QED. We assume that the photon is a stable, neutral particle of
zero mass, ie. in the vacuum sector #, there are stable one-photon states.

Under these hypotheses, Buchholz [2] has constructed, on the vacuum sector
#,, free, asymptotic, electromagnetic fields, Fi;, = F%,, as strong limits of a family
of local observables, as t— =+ 0.
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Buchholz’ construction only works on the vacuum sector or on sectors
generated by strictly local (hence neutral) * morphisms of , as is easy to check
(see [2]). A priori, it does not apply to the charged sectors of the theory. However,
under various, rather plausible technical conditions of dynamical character (e.g. a
condition that says that, away from “small frequencies and momenta” charged
representations of A look like the vacuum representation) one may hope to extend
Buchholz’ collision theory to the charged sectors. Our starting point is as follows:
Let () be the class of all PCT covariant cocycles. The analysis presented in
Sects. 5 and 6 justifies defining the total Hilbert space, 5, of the theory as the
smallest Hilbert space with the property that all states weo o...cop , I'y,..., [, in
BN, n=0,1,2,..., are given by unit rays in #.

By Theorem 21, there exists a densely defined, selfadjoint energy-momentum
operator (H,P) on & such that spec(H,P)CV,, and on #

,L.a(A):ei(aOH—a‘P)Ae—i(aOH—aP)’ (71)

a=(a%a), for all 4eU.
We note that the results of [ 7] and [2] imply that

spec(H,P)=V, ,
as
spec(H,P)t #,=V, . / (7.2)

We now assume that, on all sectors in J#, one can prove a strong convergence
asymptotic condition for the electromagnetic field (see [2]) yielding free, asym-
ptotic fields F3;, as= + or —, with the following properties:

1) For f*e ¥, (R%

TFASH+A(f),

for some finite constant A(f) only depending on f={f*"};

2) %, satisfies the standard free-field canonical commutation relations. [In this
context, the results of [18] might be important; see also [2] and Paper 1.]

As remarked in I (Proposition 3.1), the operators

{eiF%sv(f“") e xeal(mﬂ}
then generate Weyl algebras 2, and

7 QTR = PRV (7.3)
where
f1x) =(2m) "2 [d*pe'r =e'’Ipl=ap) fuv(p) (7.4)

These results have been established for the boson field in models with infra-
particles [19]. The whole circle of problems obviously requires further
investigation.

In Theorem 3.2 of Paper I it is shown that the relativistic spectrum condition
for (H,P) and (7.3) and (7.4) permit to decompose (H,P) into an energy-
momentum operator (H?!,P??) affiliated with the von Neumann algebra A*

as?
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generated by U* on # which describes the dynamics of the asymptotic,
electromagnetic field (ie. the free time evolution of asymptotic fields), and an
operator (H:,P¢) affiliated with *" which describes the dynamics of the

asymptotic charge and of fields without electromagnetic interactions. [ There is an
explicit expressions of (HZ:, P2?) in terms of F&, (see I).] Moreover

spec(HP", P")=V_, spec(H,,P%)CV, . (7.5)

We now specialize to theories, such as QED of electrons and positrons, which have
the property that

Y () =0y (5)%) (7.6)

and that the only sector of 0 electric charge is the vacuum sector. In Lemma 20,
Sect. 6.2, we have shown that, under these hypotheses,

ys)=e " 1=yT(s)*, 1.7)
and o is a * automorphism of U, for all I'e #(A). For a suitable choice of T,
orl=o0r. (7.8)

From Theorems 9 and 5 we then infer that there are isometries T, which
intertwine the representations =,,., . . of o (A) with the representations

°ar,
nwvarl °..o0r,°0r Ofﬂ[

for arbitrary I';,...,[, and I' in (). Since we have specialized to those

op which are * automorphisms of A, T, maps K., .. . .., O
Hoear,o ... sor,oors a0 T =Tp, by (7.8). Thus

domain(T;)=range(T;) = . (7.9)
We define

T5(x) = @/ °His "X PR ~iGHss ~x Ph) (7.10)

The second basic assumption of this section is that, for I' and I'"" in €(2),
LT, T s, ry =0, (7.11)

provided (x — y)* <d(I',I") <0, for some finite d(I",I""). Here 6(I",]")= +,and [-,- ]
denotes the commutator, resp. anti-commutator. We note that higher statistics (see
DHR [3]) is automatically excluded, in this set up, because we have specialized to
those o, which are * automorphisms of . Moreover, because of (7.7) and
Theorem 21, the spectrum of the total charge operator Q on J# is a discrete
subgroup of IR. (This is generally true if the statistics is ordinary Bose- or Fermi-
statistics.) The physical interpretation of (7.10) and (7.11) is that when the
asymptotic positions of the charges created by T;2%(x), T2%(y), resp., are space-like
separated by at least a square distance d(I', I'), the field bundles T32%(x) and TZ(y)
commute, resp. anti-commute.

Assumptions (7.10) and (7.11) are in perfect agreement with the results of I and
general wisdom concerning QED. But of course they are quite ad hoc and require
further justification.
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We regard (7.10) and (7.11) and the result below as a challenge to develop a
theory of the “asymptotic statistics” of sectors, along the lines of [3], for general
theories such as described in Sects. 5 and 6, where higher (para-Bose or para-
Fermi) statistics is not excluded. [The main difficulties met in such attempts are
that expi(a®H¢,—a-P¢ ) does not necessarily implement an automorphism group
of % and that the charged * morphisms {o,: I'e 4(N)} are not local.]

On the basis of (7.3)«7.5) and (7.10) and (7.11) one can now construct a
generalized Haag-Ruelle scattering theory for charged infra-particles (see also
Sects. 3.2 and 3.6 of I):

Suppose that, for some I', ..., I, in (), the operators T¥(x),j=1,...,n, have
non-vanishing matrix elements between the vacuum £ and one-(infra-)particle
states, i.e., eigenstates of (H,)*> —(Ps,)* of eigenvalue m?, (m;>0 is the mass of the
infra-particle (see Proposition 3.4, Sect. 3.2 of Paper I). Typically, ', =... =I,=1T,
Iiyy=...=T,=T, for some I'e4(A), m;=m, for j=1,...,n).

The standard spectral hypothesis is that the mass shells I—/mj are isolated in the
spectrum of (HZ, P¢). .

Let fi(x)=(2m)~2 [d*pe’*fi(p)e VP> *mi where fi(p) is a test function the
support of which has non-empty intersection with I_/mj but no intersection with
spec (H, PV, -

One then prolves as in [14].

Theorem 22. Under the hypotheses stated above

s-lim e*#= TT T (f)Q

t=>t o Jj=1
exists.

Remarks. General scattering states are obtained by applying operators from A™,
resp. A7, to the limits constructed in Theorem 22 (and taking the closure in 7).

One convinces oneself that the states so obtained can indeed be interpreted as the
scattering states of the theory; e.g. the obvious intertwining relations are valid. The
theory described here has one unconventional aspect: In general

T (NQ+T7 (HL,

i.e. charged one-infra-particle states will in general scatter, due to the emission and
absorption of photons.

Remark. Preliminary results (indicating that the total charge operator, Q, is in the
center of the algebra N*°) suggest that, within a slight extension of the framework
developped in this paper, one can prove that representations of W** of different charge
are disjoint, in particular, charged representations of 0** are disjoint from the Fock
representation constructed in [2]. This would represent a stronger version of the
result reported in Sect. 2 of Paper 1.

The whole circle of problems touched upon in this section and some further
results, involving deriving and applying the Maxwell equations in the framework
developped in this paper, ought to be studied in a separate article.

We conclude with some comments concerning
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Non-abelian Gauge Theories

Within the framework introduced in Sects. 1, 2, and 5 we consider an idealized, non-
abelian gauge theory with gauge group some compact Lie group G. (For simplicity
we assume that G is simple, but this is unimportant.) The center of G —which will turn
out to play the main role — is denoted Z(G).
The theory is described in terms of an algebra A = { | A(0O) of quasi-local, neutral
0eB

(i.e. uncoloured) observables with the general properties described in Sect. 1.

As usual, » denotes some pure physical vacuum state on 2, and S, the vacuum
sector, assumed to be given. The object of the study is the question whether there are *
morphisms, o, of A with the property that the state w-o has colour, ie. 5, ,  carries a
non-trivial representation of G.

We start with some preliminary considerations concerning non-abelian, local
charges.

For this purpose, we assume temporarily that, given any bounded, open set
X CIR3 [e.g. Xe 2(IR3), see Sect. 5] and an arbitrary space-time translation covariant
morphism o of 2, there exists a representation {Q%5} of the Lie algebra of G on the
sector /., in terms of selfadjoint, local charges Q¢ satisfying local Gauss laws ; here
the superscript alabels the elements of a basis in the Lie algebra of G. This assumption
may be considered a part of the conventional lore about non-abelian theories. In a
positive metric framework, it is however not on safe grounds, since the local charges
Q4% cannot be elements of the observable algebra 2, for all Y€ 2(R?) and all a, unless
they vanish.

To see this we suppose that, on the sector J, ., the limits

w-lim e" Q¢ = s 2 (7.12)

It R3
exists, for all real s and all a.
By Gauss’ law,

eLem, Ay, foral a. (7.13)

In the abelian case, we have shown in Sect. 5 thate*2isin thecenter of z, (2)". In the
non-abelian case this is only possible if the representation of G determined by {2}
on#, . isthe trivial representation (i.e. 7, ., hasno “colour”), because the center ofa
von Neumann algebra is abelian, whereas the operators {2} generate a non-
abelian algebra whenever the representation of G they determine is non-trivial.

We say that =, is a coloured representation of U iff (7.12) holds and the
representation of G on #, ,  determined by {¢2°} is not trivial. In this case it then
follows that ¢s2¢ cannot be in U, for all e 2(IR3), all s and all a. This proves our
contention. By (7.13), =, () contains a non-abelian algebra, whenever 7. is
coloured, i.e. coloured representations of U are necessarily reducible. Moreover, only
the Casimir operators of G may be in U, but not the colour charges.

One expects, formally, that for a suitable choice of {Q%} and some a, ..., a,,, the
operators {exp2niQ% - | generate a unitary representation of Z(G), for arbitrary
Ye 2(R3). Since these operators then commute with ¢*%, for all a, seR and
>'e 2(R3), they are “colourless”, i.e. neutral. For this reason it is safe to assume that

{exp2nmiQy}™ , CA, forall ZeP(R3).

i=1
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Without loss of generality we now specialize to the case where Z(G) is generated by a
single element, i.e. m=1 [e.g. G=SU(n), Z(G)=Z,]. We abstract the discussion
presented above, by simply assuming that, for each bounded region X e 2(IR?), there
exists an operator Zye 2 with the following properties:

1) Z, generates a unitary representation of Z(G).

2) There exists a bounded double cone ¢;D X such that

Z,eW~2n0;) (Gauss law). (7.14)
3)If X, and X, are disjoint subsets of 2(IR?)
Ly, o5, =25, Zs,. (7.15)

Let Z(G)={e,g,9%....,9" ', g"=e}.

In analogy to the abelian case (see Sect. 5) we may now introduce cocycles
{ys(g™:Ze 2(R3)} with the following properties: For all e 2(R3)

a) y(g™Me, for all m=1,2,...,n.

b) 7" =1x(g" 259" NZ5 ", (7.16)

forall k=1,2,....m—1, and

¢) 7;(g™)isindependentof 2, forall X2 X', where 2 is some bounded setin P(R3),
and all m=1,2,...,n.

One then shows as in Sect. 5 that

2(g™)=n-lim y»(g™)
I1R3
exists, and
g™ =g =",

forallm=1,2,...,n,1e.y generates a unitary representation of Z(G) (see Lemma 12).

Let b be a path in IM* parametrized by a real variable se [0, 1], with end points
b(0), b(1). Given xe IM*, let ¥ _be the intersection of the light cone with vertex at x with
the hyperplane {x=(x°x):x°=0}. Let Z*= {Ix:xe X }, for some 1> 1. We define

Uif Z},CZ, S tE
b, Z)=1—1 if Z}oCZ, Zh,¢X (7.17)
0, otherwise.

We now suppose that there are operators
I':b—TI(b),

with I'(b)e U, for arbitrary smooth, bounded paths b, which satisfy the following
“topological” commutation relations:
For some finite A>1 and arbitrary smooth, bounded paths b CIM*,

Z,[(b)ZF =y D (D). (7.18)

The operators I'(b) are the correct generalizations of the charge transfer cocycles
{I'(a):acIM*} studied in Sects. 5 and 6 to non-abelian theories. The problem of
proving confinement of “colour” (in particular quark confinement) can now be
formulated as follows:



260 J. Frohlich

Show that the topological commutation relations (7.18) do not admit any
solution I" such that I' is a translation cocycle, i.e. I'(b) = I'(b(1), b(0)) only depends on
the end points b(0) and b(1) of b.

One possible way of proving this would be to show that any solution I" of (7.18)
also solves’t Hooft’s “topological” commutation relations [20] (expressing “electric-
magnetic duality”), so that, for closed paths b, I'(b)+1 if b is not a point, so that I
cannot be a translation cocycle.

Assuming, however, that (7.18) does have a solution I" which is a (quasi-local)
translation cocycle then all results of the present paper can be extended to this theory,
in particular I'(a) is non-local, for allae IM*, etc. ... . Assuming, in addition, that (7.12)
and (7.13) hold one concludes that the morphisms o obtained from cocycles I
obeying (7.18) are necessarily reducible. Hence I'¢n (o ()" (see Lemma 17); in
particular, I cannot be of class &, (see Sect. 6.1). Applying moreover the results of
Sect. 6.2 we arrive at the following

Alternative

Either the composition of ¢, with its conjugate morphism 77 is not neutral (in
particular not irreducible) [i.e. y* # o #(y""), see (6.24)], or there must exist non-trivial,
neutral (colourless) super-selection sectors disjoint from the vacuum sector, with
higher (i.e. para) statistics.

Hence, even if colour were not confined, the resulting super-selection structure
would presumably have rather unconventional features.

Compared to Wilson’s confinement criterion [21], our confinement criterion, as
formulated above, has the advantage of being mathematically precise and stating a
necessary and sufficient condition for confinement, but the considerable disadvan-
tage of not being very constructive. Our criterion strongly suggests that a proof or
disproof of colour confinement is a dynamical, rather than a kinematical problem.

Acknowledgements. The stimulus for this paper derived from a very enjoyable collaboration with G.
Morchio and F. Strocchi on [1]. It would never have been written without it. I thank both colleagues for
valuable discussions and comments and the joy of collaboration.

Appendix 1

At the beginning of Sect. 4 we have introduced translation cocycles which are quasi-
local in norm and stated their main properties. Here those properties are proven.

We recall that a translation cocycle, I', is said to be quasi-local in norm iff
I'(@)AI'(a)*e Y, for all Ae A and acM*, and

n-lim ©_ (I (b)r (A)T(b)*)=A.
atbae

A * morphism, g, of U is called quasi-local in norm iff ¢ is transportable, I'  has the
property that I' (a)Al(a)*e ¥, for all 4e A and aeM?, and

n-limo,(A)=A4.

a— o
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We propose to prove
Theorem Al. If I is quasi-local in norm then
o(A)=n-limI'(@)AT (a)* exists,

for all Ae W, and defines a transportable * morphism of W which is quasi-local in norm,
and I, _=1T". Conversely, if o is quasi-local in norm then I, is quasi-local in norm, and
o, =0.

For the proof of this theorem we require
Lemma A2. Let I be a translation cocycle. Then the following are equivalent

1) n-lim t_ (I'(b)r (A (b)*)=A,

a i;foo
2) n-lim (I'(a+b)AI'(a+b)*—T'(a)AI'(a)*)=0,

a— oo
atb-w

3) n-lim I'(a)Al(a)* exists and is independent of the space-like, asymptotic
direction in which a— co.
Proof. Since I'(a) is unitary, we have, using the cocycle identity (3.1),
Il (a+b)AI (a+b)* —T'(a)AL(a)*||
=@t (I'(b)r (AL (b)*)— A1l (a)*|
=[1_ L)y (AT (b)*)—A|,
from which the equivalence of 1) and 2) follows. Next, we note that 3) clearly implies
2). Now we show the converse: If a=Jle, b= pe, where e is some fixed, space-like

vector and A and p are e.g. positive integers then 2) implies that, for arbitrary Ae 2,
{I'(Ze)AI'(Ae)*},_, 5. 3, is a Cauchy sequence in the operator norm. Thus

n-lim I'(a)AI'(a)* exists for a=Je,

a— o

A=1,2,3,.... Applying 2) once more, we now see that the limit is independent of the
space-like asymptotic direction in which a—oco. []

Proof of Theorem Al. If I' is quasi-local in norm then

n-lim I'(a)AI'(a)* exists,

see Lemma A2, 1)=3). Since for all aeIM* and arbitrary Ae, I'(@) Al (a)*e A,
n-lim I'(a)AI'(a)* =0 (A)e .

Next (I'(@)AT'(a)*)* =I'(a)A*I'(a)*, so that g(4)* =0 (A*). Moreover,
(I'(@)AT(a)*(I"(a)BI (a)*)=T(a)ABI (a)*.

By taking norm limits on both sides of this equation we obtain
or(A)or(B)=0(A4-B).

Finally, o is obviously linear, and | o (A4)|| =||A||. Thus o, is a * morphism of 2.
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Or, o =T_z°0°T,(A)

=n-limt_ (I(b)r (A)I'(b)*)
b— 0

=n-lim I'(@)*I'(a+b)AT'(a+b)*I'(a), by the cocycle identy (3.1),

b—

=I'(a)*c(A) (a), ie T, =TI. (A.1)

ar
Finally, if a— oo in some space-like, asymptotic direction e, let b= 1e. Then

n-lim o, (A)=n-lim n-lim ©_ (T (b)z (A)T(b)*)

a— o a—->o A-w©

= nlim ©_(F(b)r (AT (b)*)=A,
atbow

by the definition of cocycles which are quasi-local in norm. Now we prove the second
part of Theorem Al: We assume that ¢ is transportable and n-lim ¢,(4) = A4, for all

AeU. Using the unitarity of I (a), for all ac IM*, we get o
IT(@)AT (a)* — a(A)|
= I (@LA—=1_,co°t, (A, (@)
=[A—1_geao°1(A)l=[A—0(A).
Thus
n-im I' (a)AT (a)*=0(A4) exists (A2)

a— o

and is independent of the space-like, asymptotic direction in which a— co. Applying
Lemma A2, 3)=1) we conclude that I is quasi-local in norm, and this and (A.2)
show s=0,. [

Remark. Let I be quasi-local in norm, and I'(a)e o (), for all ae IM*. Then g isa *
automorphism.

Proof. By (A.1) and the hypothesis,
or,A)=Ta)*o (A (a)e o ().

By Theorem Al, g is quasi-local in norm. Hence

n-limop (A)=A, forall AcU.

a— oo

Since op(A) is closed in norm, we conclude that g (U)2WA. Thus o, is a *
automorphism, which concludes the proof.

This remark is relevant for the understanding of the class %, of cocycles
introduced in Sect. 6.
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Appendix 2

We propose to prove

Theorem A 3. Let I be a quasi-local translation cocycle, such that I'(a) = o (I (a)*), for
some quasi-local translation cocycle I'" with I'(a)e U, for all acIM*. Then o is a *
automorphism of U, and or ' =op.

Proof. Since o is locally normal (see Definition 3, Sect. 4), we have in each locally
normal representation of U

oro0p (A) =0 (I"(a)*o (A" (a))
= v\gllgl o (I"(a)*I"(b)AT"'(b)*I""(a))
= wlim F(@I BV o (AT @)*, since o((@)*)=T(a),
= m;;hg I'(a)or (A (a)*
=TI'(a)AT'(a)*, by Proposition 8, Sect. 4.

In particular, o o0,, =identity, since I'(0) = 1. Thus o (o .(I'(a))) = I'(a), so that using
I'(a)* =0 (I"(a)*)*=0I"(a)) we conclude that

op(opl(@)"(@) =T (@) (a)*=1.

Multiplying both sides of this equation from the left by I'(b)* and from the right by
I'(b) we obtain

orlop(l(@)I'(@)=I(b)*Ib)=1,
and by taking the limit b— co (see Proposition 8)
op(F(@)"(a)=1
ie. (A.3)
I"a)=op(I'(a)*).
The first part of the proof thus implies that also
o oo =identity,

hence o7 '=0y, so that o, is a * automorphism of U and, by (A.3), I"(a)
=or '([(a)*). O

Finally we wish to show that a cocycle I'(a) of class €, i.e. I'(a)e (), for all
aeIM*, has the form

I'a)=ap(I"(a)*),
for some cocycle I''(a)e 2, for all a.
Proof. Since, for each a, I'(a)e o (W), there exist operators B¥e U, for all g, such that
I'(a)=0or(B]).
By Proposition 8,
B = wlim o, ,(BY)= w-lim (b)*a (BT (b).
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Next

or,y(Biy)=T(b)*I'(a+ )l (b)
=I(b)*I'(a)t_ (I'(c)I'(b), by the cocycle identity
=[G I (@I BT (b)*t_ (I()I(b)]
=0 (B (b)*t_ (o (BX)I'(b)
=or (BOI()* I(@)*or(t_ (B (@)I'(b)
=0, o(BI(b)*o(B,1_(BX)BI)I()
=0r,y(t_o(BY)BY).

Thus, by taking the limit b— oo, we obtain

ie.

B2<+c =T—a(B:‘k)B;k s
I'"(a)= B, satisfies the cocycle identity. [

Remark. It is unknown whether I is a quasi-local translation cocycle.
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Note Added in Proof

1) The following reference relevant to this paper had escaped our attention: Roberts, J.E.: Perturbations
of dynamics and group cohomology. In: Les méthodes mathématiques de la théorie quantique des
champs. Guerra, F., Robinson, D.W., Stora, R. (eds.), éditions du C.N.R.S., Paris 1976

2) G. Morchio has pointed out that the hypothesis of Lemma 14 (1) is presumably too strong.
We note, however, that the conclusions of this paper also follow from the much weaker assumptions
stated in the Remark subsequent to Lemma 14 and the condition that yY(s) converges, as ZTIR.

3) We wish to emphasize the following consequence of our results in Sects. 6.1 and 6.2:

Theorem. Consider a theory with the properties that
A) all its charged sectors arise by composing the vacuum with transportable, charged * morphisms o
of the algebra N with y°(s)=%1, and to each morphism o there exists a conjugate morphism & with

Y2(s)=G(y"(s)*) (CP)

B) there are no non-trivial, neutral * morphisms of U. Then all morphisms ¢ are * automorphisms
of W, y°(s)=e'*%0, for some q,€IR, and all these automorphisms and arbitrary compositions thereof are
translation covariant. The relativistic spectrum condition is satisfied on all sectors of the theory and the
charge operator has pure point spectrum. [

This result shows that the understanding of the charged sectors of ordinary QED is satisfactory,
up to a derivation of condition (CP) from first principles. It suggests the conjecture that, in general,
all charges * morphisms ¢ are of the form ¢ =g, 00, where ¢ is a transportable, charged * automorphism,
and oy, is a transportable, localized * morphism, in the sense of DHR [3], hence neutral. Then ¢
satisfies the Conjugation Principle and is covariant.








