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Abstract. The construction of charged sectors in Quantum Electrodynamics
(QED) is analyzed within a framework of algebras of local observables. It is
argued that charged sectors arise by composing a vacuum state with charged *
morphisms of an algebra of (neutral) quasi-local observables. Charged *
morphisms, in turn, are obtained as weak limits of charge transfer cocycles.
These are non-local elements of the algebra of all quasi-local observables
obeying "topologicaΓ commutation relations with the local charge operators.
It is shown that in this framework, charged sectors are invariant under the time
evolution and satisfy the relativistic spectrum condition. The total charge
operator is well defined and time-independent (conserved) on all charged
sectors. Under an additional hypothesis the spectrum of the total charge
operator is shown to be a discrete subgroup of the real line. A generalized
Haag-Ruelle scattering theory for charged infra-particles is suggested, and
some comments on non-abelian gauge theories are described.

0. Introduction

This paper is a continuation of the analysis presented in [1], hereafter referred to
as I. In that paper we have investigated charged sectors in gauge theories with
unconfined, abelian charges, in particular QED, from the points of view of a local,
covariant formulation on an indefinite metric space and of collision theory, using
as one basic input Buchholz' results [2]. Moreover, the construction of charged
states in QED was analyzed heuristically, extrapolating procedures applicable in
lattice gauge theories to the continuum theory. In this paper that analysis is
replaced by a mathematically rigorous one, based on a few general, physical
principles.

The main results of Paper I are as follows:
Asymptotic charged fields (if they exist see Sect. 7 of this paper) are non-local

relative to the asymptotic, electromagnetic field and are not covariant under
Lorentz boosts.
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A rather complete characterization of "scattering representations" of the
algebra generated by bounded functions of the asymptotic, electromagnetic field,
in particular of its representations on charged sectors, was achieved.

Asymptotic, charged one-(infra)particle states were constructed.
Under reasonable hypotheses it was proven that the charged sectors of QED

are not invariant under Lorentz boosts (breaking of the boost symmetry on
charged sectors).

For detailed statements of these and other results we refer the reader to I.
This paper represents a preliminary attempt at extending the Doplicher-Haag-

Roberts (DHR) theory [3] of superselection sectors in standard quantum field
theories to QED - and other gauge theories with an unconfined, abelian charge -
taking into account the conclusions of Paper I and trying to substantiate some of
the hypotheses made there. Our approach is inspired by the general framework of
Haag and Kastler [4] and DHR [3]. Some of the technical details in this paper are
taken from [5] (where the main emphasis is placed on super-selection sectors
labelled by topological charges, i.e. quantum solitons). Some knowledge of [3, 5, 6]
might be helpful to understand the main concepts of the present paper.

The main physical hypotheses upon which the following analysis is based are :

A. Gauss' Law

where ρ is the 0-component (charge density) of the local, locally conserved, electric
current operator, and E(x) = (E1(x), E2(x\ E3(x)) are the components of the
quantized, electric field.

B. Covariance

Charged sectors are space-time translation invariant, i.e. a selfadjoint energy-
momentum operator exists on charged sectors.

C. Additivity of the Electric Charge

Charged sectors can be composed, i.e. the electric charge is an additive quantum
number.

D. Space-like Distant, Localized Charges are not Felt

Charges can be localized (in a sense explained in Sect. 5), and charged states arise
from neutral states (via taking w* limits) by removing a localized charge to space-
like infinity.

Among some of the consequences of these hypotheses are :
The physical mass gap of QED is 0 [7].
Any representation of the algebra of all quasi-local observables determined by

a charged state is disjoint from the vacuum representation, even when restricted to
space-like distant regions a consequence of Gauss' law. Technically, this implies
that charged states cannot be obtained from the vacuum by strictly local *
morphisms of the observable algebra. The DHR approach [3] must therefore be
modified for QED and any gauge theory with unconfined charges (Sect. 2).
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Charged fields (or field bundles) are non-local relative to the interpolating,
electromagnetic field (Sect. 2).

The space-time translation covariance of charged states implies that "charged
field bundles" (* morphisms of the observable algebra) uniquely determine unitary
operators on the vacuum sector, space-time translation cocycles, which describe
the transfer of a localized charge from, say, the origin to some point αeM4

(Sect. 3.1). "Topological" commutation relations between those cocycles and the
local charge operators are derived (Sects. 5 and 7).

These so-challed charge transfer cocycles are non local relative to the
interpolating, electromagnetic field (in a very strong sense) (Sect. 3.2).

On the basis of these results and assuming PCT-invariance we then propose a
tentative framework for the description of charged sectors in QED. Our frame-
work guarantees that charged states can be constructed as w* limits of neutral
states (vector states in the vacuum sector) by removing a localized charge to space-
like infinity (Sects. 4 and 5).

Moreover, in that framework charged states are space-time translation
covariant, and the relativistic spectrum condition holds on all sectors. We then
prove that the total charge operator exists and is conserved on all sectors of the
theory (it is zero on the vacuum sector). Under an additional hypothesis it is
shown that charge transfer cocycles transfer a definite electric charge, and charged
* morphisms carry a definite charge. Then the spectrum of the charge operator on
the total Hubert space is a discrete subgroup of the additive group of the real line
(see Sects. 5 and 6). Our main results are in Sects. 3, 5, 6.2, and 6.3. The main
purposes of a general framework for QED are:

I) To develop specific concepts and explicit procedures for the construction of
sectors labelled by an abelian, unconfined charge in a gauge theory, in particular
QED, the vacuum sector of which is supposed to be given, e.g. in the form of a
sequence of Wightman distributions of gauge-invariant fields satisfying a suitably
modified form of the Wightman axioms. This is attempted in Sect. 3-6.

II) To extend Buchholz' collision theory for massless bosons [2], in QED only
applicable on the vacuum sector, to the electromagnetic field on the charged
sectors of QED.

III) To complement and complete that analysis by constructing a collision
theory for charged infra-particles (see Sect. 7).

Some relevant results can also be found in Sect. 3.3 and 3.6 of Paper I.
IV) To derive the principal hypotheses in Sect. 3.4, 3.5 (or the weaker ones in

Sect. 3.3) of Paper I which would determine the structure of charged scattering
states (generalized coherent states!) quite explicitly, from a few basic, dynamical
hypotheses which are convenient to check in models.

A minimal result of this type is to show that charged sectors determine
representations of the algebra, 9ίas, generated by bounded functions of the
asymptotic, electromagnetic field which are disjoint from the Fock representation
(see Sect. 1 of Paper I). A somewhat stronger result containing that one would be
to prove that the electric charge operator, β, is affiliated with the von Neumann
algebra generated by 2ΓS in the physical representation.

The reader will find out that none of these goals is reached completely in this
paper. We hope it at least clarifies the conceptual basis and the main difficulties
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met in the construction of charged states and supplies some useful first steps
towards a more complete, general theory of the charge super-selection rule (see
also [8, 3]). Readers who think that theorems with short proofs are necessarily
trivial will find this paper trivial. Some of the experts in the field may share this
feeling. We hope some of the ideas developed in the following will be useful.

1. Local Observables and Covariant States

Here we recall some basic notions and concepts of the Haag-Kastler frame-work
[4], the basic theorem of Bisognano and Wichmann [9] and a result of [10]
concerning the existence of local algebras satisfying the Haag-Kastler axioms in a
Wightman field theory. Let & denote a double cone (the intersection of a forward
with a backward light cone) in M4, and let ~& denote its causal complement (all
space-time points which are space-like relative to 0).

Given a double cone 0, let 91(0) be a C* - or von Neumann algebra containing
at least all bounded functions of the interpolating, electromagnetic field, Fμv(/μv),
where the fμv are real- valued Schwartz space functions with support in 0, and
possibly other local observables which are local relative to the electromagnetic
field 1 (such observables have of necessity total charge 0; see [8] and Sect. 2). Let B
be some general, open region in M4. Let 23 denote the family of all bounded double
cones in M4. We define 9ί(£) to be the norm closure of

U W; (i i)
&e<&
&CB

in particular, 91 ΞΞ 9I(J3 = M4) is the algebra of all quasi-local observables of the
theory.

As usual, locality is expressed by the condition that, for arbitrary ,4 e 91(0) and
arbitrary £e9I(~0),

[A,B']=AB-BA = Q. (1.2)

We also assume that the Poincare group, ̂ , is represented on the algebra 91 by a
(strongly continuous) * automorphism group, {τξ:ξe^+}9 such that

τξ(9I(0)) = 9ί(0(ξ)), (1.3)

where &(ξ) is the image of the region 0 under a Poincare transformation ξ (see [4]).
Sufficient conditions - which are quite efficient in models - for the existence of

a net of local algebras {9I(0)}^eS with all the properties, (1.2) and (1.3), listed above
in a Wightman field theory are given in [10].

Given a state, ρ, on 91, the G.N.S. construction (see e.g. [11]) provides one with
a Hubert space, J-fρ, a representation, πρ, of 91 on Jfρ, and a cyclic unit vector

, such that

,

= (ΩQ9πβ(A)ΩQ)9 forβ Q

In an unambiguous context, A will henceforth denote both, the abstract element of
91 and the bounded operator πρ(A) on jjfQ in a given representation πρ of 91 on J4?ρ.

1 e.g., observables of the type of the "Wilson loops"
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Let G be an arbitrary, topological group represented on 21 by a (strongly
continuous) group of * automorphisms, {τg:geG} of 2ί.

Definition ί. A state, ρ, on 21 is said to be G-covariant iff there exists a continuous,
unitary representation, C7ρ, of G on fflQ such that, for all v4e2ί, geG,

πQ(τg(A))=UQ(g)*πe(A)UQ(g) on jfβ. (1.5)

A vacuum state, ω, is a state on 21 which is Poincare-invariant (hence
^ -co variant), so that

Uω(ξ)Ω = Ω, for all ξe<?i+9 (1.6)

where Ώ = Ωω is the physical vacuum, and the spectrum of the generators, (//, P),
the energy-momentum operator, of the translation subgroup {C/ω(α):αeM4},
Uω(a)=Uω(ξ = (l,a)), is contained in the forward light cone V+. D

Henceforth we may always assume that the physical vacuum is non-
degenerate, i.e. ω is a pure state on 91, without loss of generality. This is because of
Araki's theorem [12]. Then the von Neumann algebra, πω(9l)", generated by πω(9I)
on the vacuum sector, J>fω, coincides with the algebra of all bounded operators on
J>fω, B(3Ίfω). In the following we assume that we are given an arbitrary, but fixed,
pure vacuum state ω on 21 (but see [13, 12, 5]).

For the expert we now recall a basic theorem, due to Bisognano and
Wichmann [9] which, we believe, is at least implicitly important in the following
analysis. (The reader can skip this in first reading.) This theorem says that, under
certain technical assumptions (in particular PCT invariance, which are guaranteed
by the conditions of [10]), one can construct from the net {2l(0)}0e25 another net,
{2Ϊ(0)}0e53, of local von Neumann algebras on j^ω such that

91(0)291(0) an<i 21(0) = πω(2Ϊ( ~ 0))' (1.7)

(the famous duality condition; see e.g. [3]), for all 0eS.
In the following we shall imagine working with the net {2t(0)} 6̂S, but we write

again 21(0), instead of 91(0). We only consider states on 21 whose restriction to
21(0) is normal, for all 0e$.

DHR consider those states, ρ, on 21 as relevant for particle physics which have
the property that

||(ρ-ω)/2I(~0Π)HO, as w->oo, (1.8)

for each sequence {0n} C23 increasing to M4. Under suitable, technical conditions
this property is equivalent to

ρ - ω o σ , (ρ(A) = ω ° σ(A) = ω(σ(A}\ A e 2ί) , (1.9)

where σ is a * morphism of 2I2 with the property that, for some bounded double
cone 0, called the support of σ,

σ(A) = A, for all 4ε2I(~0). (1.10)

Such morphisms are called local (see [3]).

2 I.e. σ(AB} = σ(A)σ(B\ σ(A*) = σ(A)*, σ is linear and \\σ(A)\\ ^ \\A\\, for all A,B in
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Lemma 1. Let σ be a local * morphίsm ofΆ and ω a vacuum state. Then

Proof. Let 0e93 denote the support of σ. Then σ(A) = A, for Ae2I(~0). Thus

0)}. (1.11)

By the Reeh-Schlieder property [4, 10, 14], the closure of the r.s. of (1.11) is j^ω

when ω is a vacuum state. D

Remark. The Reeh-Schlieder property has been derived from the Reeh-Schlieder
theorem [14], under suitable conditions, in [10]. Lemma 1 is significant for the
discussion presented in Sect. 3.

We now show that when ρ is a charged state on ϊt and the charge satisfies
Gauss' law (see condition A in the introduction) then properties (1.9) and (1.10)
cannot be fulfilled, hence (1.8) must fail, too. This result is widely known [8,3].

2. Consequences of Gauss' Law

We repeat here, in a more formal way, an argument showing why the DHR theory
of super-selection sectors is not applicable to the charged sectors of QED.

First, we recall the definition of the electric charge operator, Q : Let α(ί) ̂ 0 be a
test function on IR of compact support, with jα(ί)dί = l. Let Σ be a simply
connected, bounded region in IR3 with smooth boundary dΣ. Let fΣ(x) be a test
function on IR3 with the properties

ii) fΣ(x) = l, for all x with the property that (x, t) is in the causal shadow of Σ
(i.e. not space-like to Σ\ for all ίesuppα;

iii) supp/£ compact.
We then define

(2.1)

where ρ(x, t) is the charge density operator. Gauss' law is expressed in the form

(2.2)

where E is the electric field operator.
We assume that

E(F/2®α) is affiliated with 9I(~In0), (2.3)

for some sufficiently large $e93, in accordance with the fact that, for a sufficiently
large 0e23, supp(F/I®α)C^ΣInd?. Then the operator E(F/I(χ)α) is a densely
defined, selfadjoint operator in any locally normal representation of 91. (Property
(2.3) is true under the conditions of [10].)

If Σ is the ball {x : |x| ^R} we denote QΣ by QR, and fΣ by fR.
From locality, (1.2), and (2.3) we get

Lemma 2.

n-]imeisQ*Ae-i8Q* = A, for all ,4e9I, selR.
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We define the electric charge, β, as the generator of

w-limeisQR, seIR, (2.4)
Λ-*oo

in any representation π of 9Ϊ for which the limits (2.4) exist and are continuous in 5.
Then Q is affiliated with π(9l)". This and Lemma 2 show that the electric charge is a
super-selection rule. The analysis of this super-selection rule is the main purpose of
this paper (see also [8]).

It is common to assume that

Q = 0, on tfω9 (2.5)

but see Lemma 14 (Sect. 5).

Proposition 3. Let σ be a local * morphism 0/21. Then the sector 3?σ = 3?ωoσ has the
same electric charge as J^ω, i.e. if

w-lim QRΩ = QΩ = Q (2.6)
R-+OO

then

= 0, far all Ψe^ω and all

Proof. Let Ωσ = Ωωoσ. Then, for arbitrary A and B in (J 91(0),
0e23

(AΩa,QBΩσ)=lim(AΩσ,QRBΩa),
R-+CC

and by (3.8),

- (AΩσ, QRBΩσ) = (ΛΩσ, E(F/Λ ® α)BΩσ) .

For # sufficiently large, E(F/Λ®α) is affiliated with 9l(~suppσ), moreover

E(F/Λ(g)α) and β commute, since Be (J 91(0). Thus, using (1.9), we conclude that,
0e93

for sufficiently large R,

= (σ(A)Ω;σ(B)σ(E(rfR®σ))Ω)

= (σ(B*A)Ω9 E(FfR ® α)β) . (2.7)

As #-»oo, the r.h.s. of (2.7) tends to

(σ(B*A)Ω, QΩ) = 0 [see (2.2) and (2.6)] .

Therefore

(AΩσ, QBΩσ) = lim (AΩ^ QRBΩσ) = 0. D
R-+CQ

Thus, in QED charged states do not arise by composing the vacuum state ω
with local morphisms. Should we give up the idea that charged states can be
constructed by composing the vacuum state with * morphisms of 91? Not only
would such a radical proposal contradict the requirement that charged sectors can
be composed (charged fields can be multiplied) and the electric charge is additive,
but it would also make a general analysis too vague.
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3. Translation Covariant Sectors and * Morphisms of 91

We propose to regard those states ρ on 9Ϊ as relevant for QED which have the
properties

PI) ρ is space-time translation co variant;
P2) ρ = ω°σ, where ω is the vacuum state, and σ is a * morphism of 91.

Remark. The results of Sects. 3.4 and 3.5 in Paper I have cautioned us not to
assume that ρ is Lorentz-covariant in case ρ is a charged state. We may, however,
assume that ρ is also rotation covariant, but this is quite unimportant in the
following. Translation covariance is crucial, because it guarantees the existence of
an energy-momentum operator.

3.i. Transportable and Covariant Morphisms and Cocycles

Definition 2. Let G be a topological group, and {τg :gε G} a representation of G by

a strongly continuous * automorphism group of 9ί. Let ω be a G-co variant state on
91. A mapping Γ:geG-»Γ(g), where Γ(g) is a unitary operator on Jjfω, is called a
G-cocycle on 2tfω iff Γ(g) is (weakly or strongly) continuous in g on 3^ω, and

Uω(g1)*. (3.1)

A * morphism σ on 91 is called G-transportable on 34?ω iff

*ω(V 1 °σ°τβ(A)) = Γfo)*π>μ))Γfo) , (3.2)

where Γ(g) is a G-cocycle on ̂ ω.

Remark. If πω°σ is an irreducible representation of 91 then Eq. (3.2) alone implies
that Γ is a G cocycle, unique up to a phase. This is not so if πω°σ is not irreducible.
For simplicity, we require in general that Γ in (3.2) be a G-cocycle.

A * morphism σ on 91 is called G-covariant iff ω°σ is a G-co variant state.
We define

jίfω(σ) = {σ(A)Ω:Aeyi}-. (3.3)

Clearly Jtfω(σ) £ J^ω. If σ is a local * morphism and ω the vacuum then by
Lemma 1, 3^ω(σ) = ̂ ω, but this is not so in general. D

Lemma 4. If Γ is a G-cocycle on J^ω then V(g) = Γ(g)Uω(g) is a continuous, unitary
representation of G on J^ω.

Proof. By the definition of G-cocycles, V(g) is clearly unitary and continuous in g
on $eω. By (3.1)

= Γ(g1)Uω(g1)Γ(g2)Uω(g1)*Uω(g1 g2)

= Γ(g1)Uω(g1)Γ(g2)Uω(g2)

^ for all gl9g2 in G. D

Theorem 5. Let ω be a G-coυariant state on 91, and σ a G-covariant * morphism on
21.
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Then there exists a G-cocyde Γσ(g) on J^ω with the property that
Vσ(g) = Γσ(g)Uω(g) leaves j f j σ ) invariant, and

where πω σ is the representation of σ($ί) on J^ω(σ). Conversely, suppose that ω is
G-covariant and σ G-transpor table on &ω, and assume that fflω(β) is invariant under

) = Γσ(g)Uω(g\for all geG. Then σ is G-covariant.

Proof. We define an isometric isomorphism T:J^ω(σ)-+Jjfσ, by

AΩσ, for 4e2I. (3.4)

One verifies immediately that T is isometric. Moreover, since Ω is cyclic in «^ω(σ)
for σ(2I), T extends by continuity to all of $fω(σ). By (3.4) and the cyclicity of Ωσ for
91 in j^σ, the range of Tis Jfσ. Thus T" 1 = T* exists and is an isometry from Jfσ to

•#»-
If ω°σ is G-covariant there exists a continuous, unitary representation Uσ of G

on Jf such that

). (3.5)

Using (3.4) we conclude

Uσ{g)AΩσ=Uσ(g)Tσ(A)ΩeJlfσ9 for all geG,

so that

T* Uσ(g)AΩσ = T* t/σ

for all geG. Since Tand T* are isometric isomorphisms, and Uσ is a continuous,
unitary representation,

Vσ(g) = T*Uσ(g)T (3.6)

can be extended by continuity to all of J^ω(σ) and is a continuous, unitary
representation of G on 3tfω(σ). We can extend Vσ(g) to all of J"fω by setting e.g.

= , on

We then define

Since Fσ and Uω are continuous, unitary representations of G on J^ω, Γσ(gf) is
clearly a G-cocycle on 3tfω [in particular, (3.1) follows directly from (3.7)].
That

follows easily from

on *». (3.8)

This proves the first part of Theorem 5. To prove the second part, notice that,
given Vσ,
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defines a unitary group on fflσ, since, by hypothesis, Vσ(g) leaves J^ω(σ) invariant,
for all geG. Continuity in g of Uσ follows from the assumed continuity of Γσ.
Furthermore, for Ψ = BΩσ and Φ = CΩσ,

(Ψ, τg(A)Φ) = (σ(B)Ω9 σ(τ g(A))σ(C)Ω]

= (Vσ(g)σ(B)Ω, σ(A)Vσ(g)σ(C)Ω)

= (Uσ(g)BΩσ,AUσ(g)CΩσ)

= (Ψ,Uσ(g)*AUσ(g)Φ).

This completes the proof of the theorem. Π

Corollary 6. 1) Suppose that, for each Ψe^fω, the state (Ψ,σ( )Ψ) on 21 is
G-covarίant. Then there exists a G-cocycle Γσ(g) on Jj?ω such that

is invariant under Vσ(g) = Γ σ(g)U ω(g\ for all geG,for all Ψ, and

) = Vσ(g)*πω(σ(A))Vσ(g) , (3.9)

and σ is G-transportable.
2) Suppose that ^fω(σ) = J^ω, i.e. Ω is cyclic for σ(2I). Then σ is G-covariant if and

only if it is G-transportable.
3) Suppose ω is a vacuum state and σ a local * morphism. Then σ is G-covariant if

and only if it is G-transportable.

Proof. 1) Defining ω'(A) = (Ψ,AΨ\ ΨeJ^ω, one sees that ω' and σ satisfy the
hypotheses of the first part of Theorem 3.1. Now, we first choose Ψ = Ω. Then we
choose Ψ=Ψ1eJ4fωθ^ω(σ\ then Ψ =Ψ2e^ωQ^ω(σ)Q^Ψ^(σ\ etc. By iterating
this procedure we obtain Γσ(g) and Vσ(g) such that (3.2) is satisfied on J^ω.

2) Since tfω(σ) = jeω, 3fω(σ) is automatically invariant under Vσ(g) = Γσ(g)Uω(g\
for any G-cocycle Γσ. Thus 2) follows from Theorem 5.

3) This follows immediately from Lemma 1 and Corollary 6, 2). D

Remark. If πω°σ is irreducible then clearly J^ω(σ) = J^ω.

3.2. Localization Properties of Translation Cocycles

If G is the (space-time) translation subgroup of £P\ and ω is a vacuum state on 21
then Theorem 5 says that if a state ρ = ω°σ is translation co variant there exists a
translation cocycle, Γ(a) = Γσ(a\ αeM4, such that

σ°τa(A)= UJa)*Γ(a)*σ(A)Γ(a)Uω(a), (3.10)

on jeω(σ).
We propose to determine the localization properties of Γ for the case when ω°σ

is a charged state. For this purpose we consider the space-translation cocycles. Let

ββ = {α = (x,0):|x|=ε}.

Let Γ(α) be an arbitrary translation cocycle on 2tfω. Suppose that, for some ε > 0
and all xe£ε, Γ(x) = Γ((x,0))e 21(0), for some bounded double cone 0.
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Pick an arbitrary yelR3 with |y|=yε, y = 0, 1,2, ..., and set n = y~iy, so that
|n|=ε. Then, by iterating the cocycle identity (3.1), we obtain

Γ(γ) = yγiUω(jn)Γ(n)Uω(jn)*. (3.11)
7 = 0

Hence

Γ(y)e«l(0y), (3.12)

where &y is the smallest, connected, convex union of double cones containing both
Θ and 0((y, 0)). Clearly the "transverse width" of Θy is bounded uniformly in y. As
noted in [5] (Theorems 2.8 and 2.9), the cocycle identity (3.1) and some additional,
more technical arguments (see also [3, 6]) then imply that there exists a bounded
double cone ΘΓ such that

for all aeM4, (3.13)

and (see Theorem 2.9 of [5] and [3, 6])

σ(A) = lim Γ(αμΓ(α)* (3. 14)
α->oo

exists, for all Aε 91, whenever a tends to oo in a space-like direction, and the limit is
independent of that direction. Moreover σ is a local * morphism with support
suppσ = 0Γ. By Proposition 3, ω°σ has the same charge as ω. Thus we have
proven

Theorem 7. Let ω be a vacuum state on 31 of charge 0. Let σ be a* morphism on 9ί
such that ω°σ is a charged, translation covariant state. Let Γ(a) = Γσ(a) be the
corresponding translation cocycle on ^fω (constructed in Theorem 5).

Then, for arbitrary ε>0, there exists no bounded double cone (9 such that
Γ((x,0))eSI(0),/or all x with |x|=e.

Remarks. 1. Assume, in addition, that σ is space-rotation covariant (an assumption
that is compatible with the conclusions of Sects. 3.4 and 3.5 of I). In this case, one
can choose σ such that it commutes with the space-rotation automorphisms. It
follows that, for an arbitrary space rotation R, Γ(Rx)=Uω(R)Γ(x)Uω(R)*.
Combining this with Theorem 7 we conclude that for arbitrary Oφx, Γ(x)φ<Ά(&)l

2. Theorem 7 remains true if {α:α = (x,0), |x| =ε} is replaced by {a:aεΣ, \a\ = ε},
where Σ is an arbitrary space-like hyperplane.

3. It is natural to view the translation cocycles Γ(α) as the formal continuum
limit of coherent superpositions of (charge transfer) string operators in lattice
gauge theories. Theorem 7 then substantiates the claims made at the end of
Sect. 3.5 of Paper I. The absence of localization properties of Γ(a) might make the
construction of these cocycles very difficult in models.

4. Assuming that charged, translation covariant states exist, we can refer to a
result of Swieca [7] that says that in such a situation the physical mass gap of the
theory is 0 (see also Sect. 2 of I). Assuming a sharper version of this result, namely
that Fμv couples the vacuum Ω to a 0-mass one-particle state, the photon, one
concludes that the positive metric formalism developed here is incompatible with
the existence of a local vector potential whose curl is F . In addition, Proposition
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3 and Theorem 7 prove that there are no charged fields and no charge transfer
operators that are local relative to Fμv.

5. We summarize the main conclusions: If ω°σ is a charged, translation-
covariant state on 91 then σ is non-local and there exists a translation cocycle
Γ = Γσ on J^fω with the property that Γσ(d) is non-local in the sense of Theorem 7
and Remarks 1 and 2.

In this situation
1) it is not necessarily true that

Jfω(σ) = J?ω, (3.15)

i.e. Ω need not be cyclic in J^ω for σ(9I). Therefore a transportable * morphism σ (i.e.
one that is G-transportable, with G the translation group), does not necessarily
give rise to a translation covariant state (see Theorem 5).

2) It is not necessarily true that

σ(A) = "lim" Γ(a)AΓ(a)*, for A e 91, (3.16)
«->00

with a-* oo in a space-like direction, as would be the case if σ were a local *
morphism [see (3.14)].

3) (Composition Property) The composition of translation covariant * mor-
phisms is not necessarily translation covariant.

However, the results of Paper I suggest that (3.15), (3.16) and the Composition
Property which expresses the additivity of the electric charge are valid in QED.
Therefore we propose to develop a framework for the construction of charged
states in QED with the property that (3.15), (3.16) and the Composition Property
are satisfied. [Condition (3.15) will be seen to be related to some locality properties
of σ; Sect. 6.] The relatίvίstic spectrum condition will then automatically be
satisfied on the charged sectors. On these grounds a tentative theory of the
"asymptotic statistics" of charged sectors will be outlined in the last section. It
permits us to set up a generalized Haag-Ruelle scattering theory for charged infra-
particles.

4. Transportable * Morphisms and Translation Cocycles

In this section we attempt to implement the ideas that charged states are weak *
limits of states in the vacuum sector, as a localized charge is moved to space-like
infinity, and that a charge localized in a space-like distant region has only a
negligible effect on measurements done in a bounded space-time region (9. In the
following, ω is a fixed, pure vacuum state on 91.

Definition 3. A representation π of 91 is a called locally normal iff
π(9l(0))''^πω(9I($))", for all 0e93. Let {AΛ} be some net of operators in 91. In the
following "w-limA=A" means that A converges weakly to A, as α-^oo, in every

α-»oo

locally normal representation of 91. A * morphism σ of 91 is called locally normal
iff πω°σ is locally normal.
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In the following, "α-»oo" means that a tends to oo in some space-like,
asymptotic direction. A translation cocycle Γ on ^ω is called quasi-local iff
Γ(α)AΓ(α)*e2I, for all αeM4, and for all Aε (J 91(0),

&e®

(1) σΓ(A)= w-limΓ(α),4Γ(α)* exists, (4.1)
α-> oo

is independent of the direction in which α-» oo, and is a locally normal * morphism
of 21. (Notice that σr is automatically locally normal if the local algebras 21(0),
$e23, are of type III and ^fωoσr is separable; a theorem of Takesaki, see [15].)

(2) w-lim τ_a(Γ(byta(A)Γ(b)*) = A. (4.2)
α-»oo

a + b^ co

We also define σ α Ξτ_ α °σ°τ f l , αeM4, where σ is an arbitrary * morphism of 21. D

Remarks. 1. A translation cocycle Γ is called quasi-local in norm iff Γ(α)^4Γ(α)*e2l,
for all .4 e 21, αeM4, and

n-]ίmτ_JtΓ(bϊca(A)Γ(b)*) = A. (4.3)
α^oo

α + b— >• oo

Then σX4)= n-limΓ(α)AΓ(α)* exists, is independent of the direction in which
fl-»00

α-»oo, and is a transportable * morphism of 21 with the property that

n-lim σr (A) = A, for all 4 e 21 . (4.4)
α-»oo '

Conversely, suppose that σ is a transportable * morphism of 21 with the properties
that the corresponding translation cocycle Γσ obeys Γσ(α)^4Γσ(α)*e2ί, for all AεVt,
αeM4, and that

n-lim σa(A) = A .
α-»oo

Then Γσ(a) is quasi-local in norm, and σ = σΓσ. I.e. there is a 1—1 -correspondence
between * morphisms σ with the above properties and translation cocycles that are
quasi-local in norm. The proof of this theorem is given in Appendix 1. At first
sight, it seems to offer an attractive extension of the DHR theory. We have
however good reasons to reject translation cocycles which are quasi-local in norm
(which may be interesting e.g. for statistical mechanics) as a suitable framework for
the description of charged sectors in QED, rather we base our analysis on the
quasi-local cocycles introduced in Definition 3.

2. Clearly, the * morphisms σr arising from quasi-local translation cocycles, Γ,
are in general not local, so that the states ω°σr may be charged (see Sect. 5). (This
would even be so for morphisms arising from translation cocycles which are quasi-
local in norm.)

Proposition 8, Let Γ be a quasi-local translation cocycle. Then the * morphism σr of
21 (see (4.1),) is transportable, with

(4.5)

and

w-limσΓa(A) = A. (4.6)
α-> oo '
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Proof. By the cocycle identity (3.1)

τ_a(Γ(b)τa(A)Γ(bY) = Γ(α)*Γ(α + b)AΓ(a + 6)*Γ(β) .

Taking b-χχ> on both sides of this equation, applying (4.1), yields (4.5). In
particular, σr is transportable. Moreover,

= τ_ α vv-
D-» oo

= W-limτ_a(Γ(b)τa(A)Γ(b)*)
b-* oo

which converges weakly to ,4, as α->oo, for all 4e[/SΪ(0), by (4.2). D

Theorem 9. Let σί and σ2 be * morphίsms of 91 arising from quasi-local translation
cocycles Γv and Γ2, as in (4.1). Suppose that Γ2(α)e9l, /or α// αeM4.

Then σ1°σ2 is α transportable * morphism, and the corresponding translation
cocycle, Γσίθσ2, is given by

Proof. Since Γ2(α)e2l, for all αeM4, we have

)), by Proposition 8,

= Γ1(α)*σ1(Γ2(α)*σ2(>l)Γ2(α))Γ1(α), by Proposition 8

To complete the proof we must show that σ-^Γ^α))/^) is a cocycle : Continuity of
σ1(Γ2(α))Γ1(α) in a follows from the continuity of Γ^a) and Γ2(a) in a and the local
normality of σr By the cocycle identity (3.1) applied to Γ2 and Γ19

= σ1(Γ2(a)τ_a(Γ2(b)))Γ,(a)τ_a(Γ1(b))

= σί(Γ2(a))Γ1(a)τ_a(σ1(Γ2(b))Γί(b)) ,

since σ1 is transportable. Recalling that t/ω(α)* implements τ_a on J^ω, we see that
this equation is just the cocycle identity (3.1) for Γσ^σ2. Π

5. Charged, Transportable * Morphisms, and Charge Transfer Cocycles

We are interested in those * morphisms σ which have the property that, when ω is
a vacuum state ω°σ is a translation-covariant, charged state on 91 [see PI) and
P2), Sect. 3]. Such * morphisms are called charged.

Since we require, on physical grounds, that charged morphisms and the
compositions of charged morphisms are transportable, and charged states are
weak * limits of neutral states, as a localized charge is removed to space-like
infinity, the analysis of Sect. 4 suggests to consider only those charged *
morphisms, σ, which are of the form

σ = σΓ^...°σΓn, (5.1)
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where Γ19 ... ,ΓΠ are quasi-local translation cocycles, with /^(0)e9I, for all αeM4,
and k = 1, . . . , n. We must therefore isolate those quasi-local translation cocycles, Γ,
with the property that ω°σr is a charged state. By Lemma 2, Sect. 2, we know that
the representations πω and πωoσr of 91 are disjoint. [In the terminology of [5] this
means that the cocycle Γ is "non-trivial", in the sense defined in [5] for the case of
cocycles generating the soliton sectors in two dimensional theories, i.e. Γ(ά) is not
of the form 7C7ω(α)7t/ω(α)*, with Fe£pfω).]

Let Σ be some simply connected, bounded region in IR3 with piecewise smooth
boundary dΣ. Let QΣ be the local-charge operator introduced in Sect. 2, with the
property that eίsβ£e9I(0), for some sufficiently large (92Σ.

Let ^(IR3) be some family of bounded subsets of IR3 with piecewise smooth
boundaries, containing a covering of IR3 by simply connected, disjoint sets and
closed under finite unions.

In order to make our subsequent analysis more elegant, we assume henceforth
that the test functions fΣ and α in the definition of QΣ (Sect. 2) can be chosen such
that for arbitrary, disjoint sets Σί and Σ2 in

with (5.2)

for all real 5 and ί.

Definition 4. A one-parameter family {yΣ(s) iseIR} of unitary operators contained
in 91 is called a local-charge cocycle if yΣ(s) is strongly continuous in 5, in every
locally normal representation of 91, and the cocycle identity

is^ (5.3)

is satisfied, for arbitrary real s and ί. (Here Σe^(IR3).) D

Remark. Let σ be some locally normal * morphism of 91. Then

(5.4)

is clearly a local-charge cocycle. We define suppσ to be the smallest region in IR3

belonging to ^(IR3) with the property that, for all Γe^(IR3) with Σc(suppσ)0 (the
complement of suppσ)

yσ

Σ(s) = l for all real 5; (5.5)

suppσ is called the "support of σ".

Let Γ = (suppσ)u2;, Γe^(IR3), Γc(suppσ)c. Then, by (5.2) and (5.5)

y ,($) = (j(eis®(supp σ^Σ)e ~ ίs°~(supp σ^Σ

— σ(g«Qsupp <r)σ(g ίs°~Σ\e ~ is°-Σe ~ ίsβsupp σ

= σ(^/sQsupp σ)yΣ(s)e ~ ίsβsupp σ

=ys»ppσ(
s)> (5 6)

i.e. for Σ'D suppσ, Γe^(IR3), yσ

Σ>(s) = yσ(s) is independent of I"!
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A simple calculation shows that for a = (a,Q), a space translation

7?(s) = τ_fl(^(a)(s)),

hence suppσ" = (suppσ)(— a), and

y"(s) = τ_Jiy'(s)). (5.7)

Lemma 10. Let σ be a locally normal, transportable * morphism of 9ί.

1) Let ΣDsuppσ. Let αeM4 be such that ΣC(suppσα)c. Then

eisQΣΓa(a)e-ίsQΣ=γσ(s)*Γσ(a) . (5.8)

2) // ΓC(suppσ)c, ΓDsuppσa then

e**ΓJ(a)e-l**=ΓJ(ayy"(s). (5.9)

3) // ΓDsuppσ, £Dsuppσα then

eis^Γa(a)e ~ ̂  = /(S)*Γ»τ _β(/(s)) . (5. 10)

4)IfΣC(suppσγ,ΣC(suppσJ

efaβ«Γ<r(fl)β-ta^ = Γff(α). (5.11)

Proof. By the definition of transportable * morphisms, we have

σa(A) = Γσ(a)*σ(A)Γσ(a)9

for AεW and αeM4. Thus

Γσ(α)*σ(β/sβ£)e ~ ίsQΣeίsQΣΓσ(a)e ~ ίsQΣ

= σa(eisQΣ)e-ίsQΣ,

i.e.

(s). (5.12)

Under the hypothesis of 1), y^a(s) = 1, and y^(s) = yσ(5), whence (5.8). The proof of 2) is
similar. Under the hypotheses of 3) y°(s) = yσ(s] and y£α(s) = yσ«(s} = τ_ a(yσ(s)\ by (5.7).

Thus (5.10) follows. Finally, in the situation of 4) γσ(s) = γσ*(s) = L D
Next, we prove a converse to Lemma 10. For this purpose we consider a quasi-

local translation cocycle, Γ, with the property that, for a = (a, 0), with ae IR3, and some
region 2Γ

eisQΣΓ(a)e ~ ίsQΣ = yΣ(s)*Γ(a) , (5. 1 3)

for some local-charge cocycle yΣ(s) (see Definition 4) with the properties that

yΣ(s) = y(s) , independent of Σ ,

if (5.14)

ΣΓCΣ and ΣΓ(a)CΣc,

and

yΣ(s) = l (5.15)
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if

ΣCΣC

Γ, ΣcΣΓ(a)c.

We call ΣΓ the charge support of Γ.

Lemma 11. // Γ is a quasi-local translation cocycle satisfying (5.13)-(5.15) then σr -
defined in (4.1) - has the properties that

σΓ(eisQΣ)e-ίsQΣ = γ(s), for Σ^ΣΓ, (5.16)

and (supp σr) g ΣΓ.

Proof. By (4.1), (5.13), and (5.14), we have, for Σ^ΣΓ and α0 = (a0,0) with |a0| large

enough,

y(s)* = eίsQΣΓ(a0)e-ίsQΣΓ(a0)*

= w-limeίsQΣΓ(a)e-ίsQΣΓ(a)*
a.-* oo

= eisQΣσΓ(e~isQΣ).

Next, for all Σe ̂ (IR3) with Σ C ΣC

Γ and for α0 - (a0, 0) with |a0| large enough [so that

ί=eίsQεΓ(a0)e-isQΣΓ(a0)*

= w-limeisQΣΓ(a)e-isQΣΓ(a)*
a—* oo

= eίsQΣσΓ(e-ίsQΣ). D

Lemma 12. Let γΣ(s) be a local-charge cocycle with the property that, for some bounded

I\,E^(IR3), γΣ(s) = γ(s) is independent of Σ, for all Σ^Σy. Then y(s) is a unitary
one-parameter group in 9ί. In particular, if σ is a locally normal * morphism of 21 of

compact support then /yσ(s)eσ(9ί)'n9I.

Proof. By the cocycle identity

γ(s + ή = y(s)eί sQΣy(f)e ~ ίsQΣ ,

if Σ^Σy. Using Lemma 2, Sect. 2, and the fact y(ί)e9I, for all ί, we conclude that

lirn eίsQΣy(t)e-ίsQΣ = y ( t ) , '
Je^(IR3)

so that γ(s + ί) = y(s)γ(t).
By Lemma 2 and the definition oi$yσ(s),

y σ(s)σ(A)yσ( -s)= lirn e ~ isQΣσ(eίsQΣ)σ(A)σ(e ~ ίsQ^e

ίsQΣ

- lim e ~ isQΣσ(eisQΣAe " isQ^}e

ίsQΣ

it iR 3

- \\me~ isQΣσ(A)eisQΣ, for Aε U
I|IR3 ^693

= σ(A), as σ(y4)e2I, for

Since 7σ(5)e2ί, this implies that yσ(s)eσ(2l)'n2l. D
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Lemma 12 permits us to characterize locally normal * morphisms σ of compact
support by the unitary group yσ(s).

If σ is a * automorphism of 3ί then, clearly,

hence

γσ(s) = e

ίsq , for some q e R . (5.17)

If σ is irreducible, i.e. πω ° σ is an irreducible representation of 91, then

so that πω(γσ(s)) = eisq, for some
Since πω is faithful,

y(s) = έ?ίs«. (5.18)

Next suppose that the action of σ is local in the sense that, given a double cone
0e93, there exists some $σe93 such that σ(9l(0)) C 9I(0σ). Suppose, in addition, that
suppσ is compact. Then for some bounded

By Sect. 2, eisQΣe $l(ΘΣ)9 for some double cone ΦΣe 93 containing Σ and all seR Thus

yσ(s)eW(ΦΣtσvΦΣ). (5.19)

Suppose now that yσ(s) is translation invariant, i.e.

τa(yσ(s)) = yσ(s)9 for all α = (a,0), aeR3. (5.20)

Then

yσ(s)e 91(0) Λ 9I(0(α)) , Φ = ΦΣtσvΘΣ .

Choosing a large enough, we conclude using locality and the fact that 9ί(0) is a factor
that yσ(s) = eίsq, for some

In all three cases, the physical interpretation of q is the one of total charge of the *
morphism σ, and we then say that σ is a localized, charged * morphism of charge q.

The analysis presented above proves that for γ σ(s) not to be of the form eis q, q e IR, it
is necessary that σ be not irreducible and (assuming the action of σ is local) yσ(s) be not
translation invariant.

Next, we merely suppose that yσ(s) is translation invariant. Then, for all a = (a, 0),
aeR3,

Uω(a)*y*(s)Ω - τa(yσ(s))Ω = y«(s)Ω ,

i.e. yσ(s)Ω is a translation invariant vector in jΊfω. Since we have assumed that the
vacuum is non-degenerate, we conclude that yσ(s)Ω = eίsqΩ.

By Lemma 12,

yσ(s)σ(A)Ω = σ(A)yσ(s)Ω = eίsqσ(A)Ω ,

i.e.

for some
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If JΊ?ω(σ) = Jfω then (5.21) implies that yσ(s) = eίsq, and σ is a localized, charged *
morphism of charge q (see also Sect. 6).

The following result relates the translation covariance properties of yσ(a) to the
cocycle Γσ.

Lemma 13. Let σbea transportable, localized * morphism with Γσ(a)e 91, for all a. Then

τ - «(/(*)) = 7σa(s) = Γσ(a)*y«(s)Γσ(a) ,

for α / / α = (a,0), aeIR3.

/ Given α = (a, 0), we choose Σ so large that Σ D supp σ and Γ(α) 3 supp σ. Then

= (Tβ(^ta«))e-i-to-) (5.22)

is independent of Σ. Hence

ffa(ei* Qw)e ~ * Q*(«> = y *«(s) = τ _ β(y *(5)) .

But

^(e* toα))e - fc Q^α) = rσ(a)*σ(eis QΣ^)Γσ(a)e ~ ίs Q™

= Γ»* lσ(eίs QΣ^)e ~ ίs QΣ^ eίs QΣ^Γσ(a)e ~ ίs QΣ^

= Γσ(a)*yσ(s)e ~ ίs QΣ^Γσ(a)e ~isQ™. (5.23)

Since Γσ(α)e 91,

n-\imeisQΣ^Γσ(a)e ~ is Q**> = Γσ(a) , (5.24)
itR3

by Gauss' law (see Lemma 2).
Combining (5.22)-(5.24) and letting Σ|R3, we arrive at

τ _ a(yσ(s)) - yσ«(s) = Γσ(a)*yσ(s)Γσ(a) . D

Lemmas 10, 12, and 13 yield the following "topologicaΓ commutation relations :
Let σ be a transportable, localized * morphism of 9ί of compact support, supp σ,

with translation cocycle Γσ(a). Then

yσ(s)=\imσ(eίsQΣ)e-ίsQΣ

itiR3

exists and is a unitary one-parameter group in σ(9I)'n9ί (the charge cocycle
associated with σ), and

(A) eisQΣΓσ(a)e-isQΣ = yσ(s)*Γσ(a) if supp σ ς Σ C supp <

[see (5.8)];

(B) eίsQΣΓσ(a)e-ίsQΣ = yσ(s)Γσ(a) if supp σα £ Σ C supp σc

[see (5.9) and Lemma 13]

(C) e^Γσ(a)e-^ = Γσ(a)9

otherwise [see (5.10) and Lemma 13].
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Lemma 11 is the converse to this.
Next, we attempt to construct a total charge operator, β, on the sectors ̂  0 σ in the

case where σ is a localized * morphism, with the help of the local-charge cocycle yσ(s).

Lemma 14. 1) Suppose that s-limQΣΩ exists and (5.2) is valid. Then
itiR3

s-limeίsQΣΩ = Ω.
itR3

2) Ifσ is a localized * morphism and the hypotheses 0/1) hold then s-lim elsQΣ = elsQ

£tiR3

exists on ^fωoσ and is a unitary group in the center o/πωoσ(2I)".

3) Under the same hypotheses, if σ t and σ2 are localized, charged * morphisms of

charge q1, q2 resp., with qi+q2 then the representations πω o σ ι and πωθ(T2 0/91 are
disjoint.

Proof. 1) By DuhameΓs formula and (5.2),

(eίsQΣ - eίsQΣ')Ω = J eίtQΣeί(s-t}QΣ' (QΣ - QΣ,)Ωdt .
o

Hence

which tends to 0, as Σ, Σ;|IR3. Thus

s-lim eis QΣΩ = Ψs exists, for all s e IR .
itR3

Next

[7(α)*5-lim eίsQΣΩ

= s-lim Uω(a)*eίsQΣΩ
ITIR3

= s-\imτa(eίsQΣ)Ω
itR3

= s-lim eίsQΣ<-<*Ω=Ψ

for all α = (a,0), aeIR3 i.e. Ψsis space-translation invariant. Since the vacuum Ω is
unique,

Clearly

eisQεΩ-Ω=]eitQΣQΣΩdt,
o

and the Is. tends to (eίΦs-l)Ω, as ΓfJR3. Hence

|^φs_ i|2(0jQ)= lim (β-iφ._ i) Γ (e-*teΩ9QΣΩ)dt. (5.25)
ITIR3 0
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Next,

uniformly in Σ9 since s-lim QΣΩ exists by hypothesis. Thus, for arbitrary ε > 0 and Σ
itiR3

large enough (depending on ε).

\((e-*te-eiφ-*)Ω9QΣΩ)\<ε9

by the strong convergence of e~itQΣΩ to e^-'Ω. Therefore

lim (e~itQΣΩ9Q Ω) = έΓίφ-*lim (Ω9QΣΩ). (5.26)
Σ

By Gauss' law,

- (Ω, QΣΩ) = (Ω, E(F£®α)Ω) . (5.27)

Since Ω is Poincare-invariant, the r.s. of (5.27) vanishes. Combining (5.25)-(5.27), we
conclude that

|eίφ -l|2(Ω,Ω)=lim (έΓίφ -l)f (e-iiQa«,e^)df = 0,
ItR3 0

i.e. elφs = l. This completes the proof of 1).
2) Using the operator T:J^ω(σ)-^J^ωoσ constructed in the proof of Theorem 5,

we have, for arbitrary AeSΪ,

eisQΣAΩσ = eίsQΣTσ(A)Ω = Tσ(eisQΣ)σ(A)Ω = Tγσ(s)eίsQΣσ(A)Ω ,

if Σ D supp σ. Moreover

eίsQχ,4)Ω = eisQΣσ(A)e-ίsQΣeίsQΣΩ ,

and

-ίsQj; = σ(A), as

-Ω, by 1).
itR3

Thus

s-lim eίsQMΩσ = s-lim Tσ(eisQΣ)σ(A)Ω = Tf(s)σ(A)Q .

Notice that, by Lemma 12,

i.e.

s-lim eίsQMΩσ = eisQAΩσ = Tσ(A)f(s)Ω . (5.28)
itR3

Since gίsQz is a continuous, unitary group, for all bounded Σ, so is eisQ. Moreover,
eίsβ2;e2l, for all bounded Γ and all seR Hence

eisQeπωΰσ(^γ . (5.29)



244 J. Frόhlich

By Lemma 2, eίs Q is also in πω 0 σ(9I)', hence it is in the center of πω 0 σ(2I)". This completes
the proof of 2).

3) This follows from 2) and a standard theorem [11, 15]. D

Remark. Assuming only that w-lim eίsQΣΩ exists, one can prove that w-lim eίsQΣ exists
JtR3 2TIR3

on J4?ω 0 σ, and if w-lim QΣί2 exists and γσ(s)Ω is differentiate then w-lim QΣΩ = 0 and
I|R3 STIR3

w-lim βΣAΩσ - Tσ(A) — yσ(s =

(see also Sect. 2 of Paper I).

Definition 5. A * morphism σ of 21 is called a localized, charged * morphism of charge g
iff yσ(s) = eisq. A quasi-local translation cocycle Γ is called a charge-transfer cocycle of
charge q iff Γ(α)e9l, for all αeM4, and Γ satisfies (5.13)-(5.15), with ΣΓ compact and
γ(s) = eίs«. D

We summarize a part of our findings (Lemmas 10-14) in

Theorem 15. 1) IfΓ is a charge-transfer cocycle of charge q then σr (defined in (4. 1) )
is a localized, charged * morphism 0/21 of charge q (Lemma 11).

2) Ifσ is a transportable, localized * morphism with the property that Γσ(a)e 2ί,/0r
all αeM4 then

(Lemma 13), and if σ has charge q then Γσ is a charge- transfer cocycle of charge q
(Lemma 10).

3) Ifσi,...,σn are localized, charged * morphisms with charges ql,...,qn then
σ 1°...°σn is a localized, charged * morphism with charge q^ + ... +qn (the proof is
a simple exercise) .

4) Ifs-lim QΣΩ exists (neutrality of the vacuum, Lemma 14) and σ has charge q then
I|1R3

β = « l, on Jfω o σ, and

if *σί and σ2 have charge q{, q2, resp., with qΐ+q2, then πωoσι and πωθ(T2 are disjoint
representations 0/21 (Lemma 14).

6. Space-Time Translation Covariant, Charged * Morphisms

In this section we study a class ̂  of quasi-local translation cocycles with the property
that, for Γ1, . . ., ΓnmΉ,n = 1, 2, 3, . . ., the state ω°σΓι ° . . . oσ^ is space-time translation
cp variant (see Definition 1, Sect. 1), and to each Γe^7 there exists a conjugate cocycle
Γe^7 such that the representation nωΰσ-oσr of 91 contains the representation πω

exactly once. This last property can be interpreted as PCT in variance of the theory (see

[3]).

6.1. Translation Covariant * Morphisms

Let σ be an arbitrary, transportable * morphism of 91 with translation cocycle Γσ.
From Theorem 5 (Sect. 3) we know that ω ° σ is translation co variant iff the subspace
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is invariant under the group

) = Γσ(a)Uω(a),

There are thus two approaches to proving translation co variance of ω°σ:
1) Show that 3fω(σ) is invariant under Vσ(a).
2) Show that «^ω(σ) = Jfω.
It appears that approach 1) is the natural one. We try to elucidate this by the

following discussion : Let G be a bounded double cone and Ta positive number. We
define

and

= \J
aeMT

We now assume that the space-time translation automorphisms τα of 91 have locally
correct generators: Given $e33 and T>0, there exist 0(0, T)e33 with 0(0, T)^ΘT

and operators Uφ (Γ(α)e 91(0(0, T)) such that, for all A e 21(0) and αeMτ,

I(a) = τa(A). (6.1)

The existence problem of operators U&> T(a) with these properties can be reduced to
showing that, for each 0e93 and r > 1, there exists a factor N& r of type 1^ such that

where |P0 = {x;eM4:r-1xe0}, [16].
Property (6.2) has been established for the free, scalar field by Buchholz [ 1 7] , but it

is believed to be a general property of the local nets {2ϊ($)}0e33 of relativistic quantum
field theories.

We now assume, in addition, that

s-liml/0 Γ(α)β = β, (6.3)
0tM4

for all aeMT and all T< oo.
Next, we study those * morphisms σ of 21 which have the property that

s-\imσ(U&>τ(a))U&>τ(ά)* (6.4)
&ΪM4

exists on J>fω, for all T< oo. We leave it to the reader to check that the limit in (6.4)
defines a translation cocycle in the sense of Definition 2, Sect. 3.

Lemma 16. Assume (6. 1) and (6. 3). Let σbea* morphism 0/21 with the property that (6.4)
is satisfied. Then σ is transportable, with

Γσ(a) = s-lim σ(Ue τ(a))υe Γ(α)* , (6.5)
&ΪM4

for all aeMT; Vσ(a) = Γ σ(ά)U ω(a) leaves J^ω(σ) invariant, and ω°σ is space-time
translation covarίant.
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Proof. Let Ae (j 21(0). Then, for aeMT and arbitrary T,
0e93

τ_ f l°σ°ταG4) = n-lim Uβ τ(a)σ(Ue τ(a)*AUe τ(a))Uβ Γ(α)*.
0tM4

since Ae (j 21(0), and σ(τβ(4))e2l.
0e93

The first part of Lemma 16 and (6.5) follow by writing out the r.s. of this equation
and applying (6.4).

Next, we prove in variance of ^ω(σ] under Vσ(a): For all ,4e2I, aeMT,

= s-limσ(U& T(a))U& Γ(α)*τ_>μ))Ω, by (6.5)
0tM4

=s-lim σ(Ve T(a))Ue τ(a)*τ_a(σ(A))υe T(a)Ω, by (6.3)
0TM4

- s-lim σ(UΘ τ(ά)A)Ω . (6.6)
C?tM4

For all 0e23, T< oo, σ(U&τ(a)A)Ωe^fω(σ). Since JTJσ) is closed, (6.6) implies that

Γσ(a)Uω(a)σ(A)Ωe^ω(σ).

The space-time translation co variance of ω°σ now follows from Theorem 5. D
On the basis of Lemma 16 one might conjecture that, in general, J^ω(σ) is invariant

under Vσ(a\ whenever σ is a transportable * morphism.
We define ̂  to be the class of all those quasi-local translation cocycles which have

the property that, for Γ1? ...,ΓW in #15 n = 1,2,3, ..., ̂ ω(σΓι° ... °crΓn) is invariant
under Vσr^ aσr(a\ αeM4, where

)C7» (6.7)

(see Theorem 9, Sect. 4). By Lemma 16, it suffices that σΓι° ... °(jΓn satisfies (6.4).
Next, we discuss conditions which guarantee that

Let σ be a localized * morphism of compact support, i.e.

σ(eίsQΣ)e-ίsQΣ = l, (6.8)

for all Σ C supp σc (see Sect. 5).
Physically, Eq. (6.8) says that the charge carried by σ is localized in the compact

region suppσClR3.
From Proposition 3 (Sect. 2) we know that this does not imply that σ is local in the

sense of DHR [3], in the contrary, σ is not local unless its charge is 0.
However, one might expect that σ is quite close to acting trivially on 21(0),

provided 0 is a bounded double cone which is space-like distant from supp σ. [One
might expect, moreover, that for such morphisms (6.4) is true.] A possible way of
expressing that is as follows: There exists some compact region ΣσClR3, with
Zσ2suppσ, such that for arbitrary 0eS with 0C ~Σσ

σ(2I(0)) = 2I(0). (6.9)
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Clearly, (6.9) implies that ^fω(σ) = ̂ ω. (This follows from the Reeh-Schlieder
property, as noted in the proof of Lemma 1, Sect. 1.)

If σ is transportable and (9C ~(ΣσuΣσa), for some αeM4, then by (6.9)

21(0) - σ(9I(0)) - σβ(9I(0)) - Γ(α)*σ(9I(0))Γ(α) - Γ(α)*9I(0)Γ(έi) .

[Note, however, that the condition

9l(0) = Γ(0)*9l(0)Γ(α),

for (DC ~(Σ(Γ)vΣ(Γ)(a)\ for some compact region Γ(Γ)cIR3 only implies

ί w-lim Γ(a)AΓ(ά)* : ̂  e 91(0)1 £ 91(0) ,
-+00 J

i.e. it appears difficult to characterize those localized * morphisms σr which satisfy
(6.9) entirely in terms of the cocycle Γ.]

We let ̂ 2 b
e tne class of all those quasi-local translation cocycles, Γ, which have

the property that

(6.10)

for all 0e» with ΘC~Σσr.
Let Γ l 5 . . . ,Γ π bein^ 2

r andlet 0e», with 0c~(Σσr ιu ... ̂ Σσr). Then

(6.11)

Hence, by the Reeh-Schlieder property,

for arbitrary Γ l 9...,Γn in ^2, so that ω°σ Γ ι <>. . . o^ is space-time translation
covariant.

Next, we introduce a class ^3 of quasi-local translation cocycles :

iff Γ(α)eσr(9I), (6.13)

for all αeM4.
We say that a quasi-local translation cocycle Γ is irreducible iff Γ(α)eπω(σΓ(2I))".

(Clearly, if Γe^3 then Γ is irreducible.)

Lemma 17. Lei Γ be a quasi-local translation cocycle.
1) IfΓ is irreducible then σr is an irreducible * morphism o/9I, i.e. πω is an irreducible

representation of σr(9I).
2) If Γί9 ...,Γn are in ̂ 3 ί/zen σΓι° ... °σΓn is irreducible.

Remarks. The converse of 1) is of course trivial. By 2) we have ̂ ω(σΓί ° ... °
σrn}

 = ̂ ω >
for arbitrary Γ1? ...,Γn in ̂ 3. Hence the state ω°σΓ ιo ... °σΓnis space-time translation
covariant.

Proof of Lemma ϊ 7. 1) Since Γ is irreducible, Γ(α)e πω(σr(2ί))", for all α. Hence, for all

^e U «ϊ(0),
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By Proposition 8, Sect. 4,

vv-lim σr a(A) = A .
α-» oo

Since πω(σr(9I))" is weakly closed, Aeπω(σr(*Ά))" Hence π>r(2I))" D (J 91(0), and
0e33

therefore

i.e. πω is an irreducible representation of
2) If r i ? . . .,r narein ^3 then

for all Ae \J $!($). As α->oo, we obtain, using Proposition 8 and the local normality
0e93

of the morphisms σΓι, . . ., σΓn ι?

Proceeding in this manner we conclude, after n steps, that

i.e.

πω°σΓι° ... °σΓn

is irreducible. D

Remarks. 1. Let Γ be a quasi-local translation cocycle. Then σr is a * automorphism if
and only if

Γ(α) = σΓ(Γ(α)), (6.14)

for some quasi-local translation cocycle Γ'. (The proof is given in Appendix 2.) Clearly
a cocycle Γ satisfying (6.14) is in ̂ 3.

2. The fact that, for Γ l 5...,Γn in ^3, the * morphism σΓ ι°... °σΓn of 51 is
irreducible will imply that the sectors ω °σr, Γe ̂ 3, have necessarily ordinary Fermi-
or Bose-statistics, i.e. parastatistics is automatically excluded.

Thus, the hypothesis that the charged sectors of a theory be generated by all *
morphisms {σr :Γe^3} might be appropriate in QED, but cannot be valid in more
general gauge theories with an unconfined, abelian charge and parastatistics.

Section 6.1 can be summarized as follows: Let Γl9...,Γnbe quasi-local translation
cocycles in one of the classes ^1? ^2, ̂ 3 [see (6.7), (6.10), (6.13), resp.]. Then
ω°σΓ ι°... °σΓn is space-time translation co variant.

Our discussion leaves the problem open to characterize those localized charged *
morphisms which are space-time translation co variant entirely in terms of quasi-local
translation cocycles.
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6.2. Existence of Conjugate Sectors

In this section we discuss the following problem: Suppose Γ is a quasi-local
translation cocycle. Does there exist a quasi-local translation cocycle Γ such that
πω ° σ- ° σ contams π

ω precisely once ? In the DHR theory, the answer to this is yes (see
[3,6])/

In our case, however, where the basic * morphisms, σ, generating the charged
sectors are necessarily non-local, this is not clear, at all.

The first problem one meets is that, given σ, the existence of a left inverse to σ, Φ [i.e.
Φ(σ(A)) = A, for all AeSI] is not automatic. One has only

Proposition 18. Let Γbea quasi-local translation cocycle with Γ(α)e 9ί,/or all αe M4.
Then, for some sequence {an}, 0Π— >oo, as π— »oo,

ωΓ,(A) = lim ω(Γ(an)*AΓ(an)) exists,
n-* oo

and ωΓ*(σΓ(A)) = ω(A),for all AεM. If

\v-lim (Γ(a + b)*AΓ(a + b)- Γ(a}*AΓ(ά)} = 0 , (6. 1 5)
α->oo

for all beM4, then ωr* is a translation covariant state on 91.

Remarks. The existence of ωr* follows from a general compactness argument. Next,

ωΓ*(σΓ(A)) = lim ω(Γ(an)*σΓ(A)Γ(an))

by Proposition 8. Finally, using the cocycle identity (3.1) and (6.15) one shows that

ωΓ*(Aτa(B)C) = ωΓ*(Γ(a)τ_a(A)Bτ_a(C)r(a)*) ,

so that the unitary group UωrJ(a), defined on 3?ωr* by

implements τα. (Details of the proof of Proposition 18 are left to the reader.)
In the DHR theory [3]

n-limΓ(an)*AΓ(an) = Φ(A)
n-> CQ

exists always, for some sequence {α J, and Φ is a left inverse of σ (with the same support
as σ).

Let Γ be as in Proposition 1 8. Suppose that ωr* = ω°Φ, where Φ is a * morphism of
91 and a left inverse of σr. Using (6. 1 5) and the cocycle identity (3.1) one can show that

τ_a°Φoτa(A) = Φ(Γ(a)AΓ(a)*) = Φ(Γ(α))Φ(^)Φ(Γ(α))*)) .

Thus Φ is transportable, and Γφ(a) = Φ(Γ(α)*)e Φ(9I). This motivates the study of the
class ^3 introduced in Sect. 6.2. (In the present case, σr and Φ = σf 1 are actually *
automorphisms of 91 see Appendix 2).

Lemma 19. IfΦ is a left inverse of a localized, charged * morphism σ then Φ is localized,
with supp Φ = supp σ, and if σ has charge q then Φ has charge — q.
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Proof. Let ΣCsuppσc, i.e. yσ

Σ(s) = l. Since Φ is a left inverse of σ, we have

l = Φ(σ(eίsQΣ))e-ίsQΣ

= Φ(yσ

Σ(s)eίsQΣ)e~isQΣ

= Φ(eisQΣ)e-isQΣ = yf(s).

Thus, supp Φ = supp σ.
Next, let Σ 3 supp σ = supp Φ, and suppose that γσ(s) = eisq. Then

l = Φ(σ(eisQΣ))e-ίsQΣ

= Φ(yσ

Σ(s)eίsQΣ)e-ίsQΣ

= yφ(s)eίsq, i.e. yφ(s) = e-
ίsq. D

In contrast to the situation met in the DH R framework [3] , neither the existence of
left inverses nor the one of conjugate morphisms appear to be automatic, in the
present framework. Therefore, in the absence of general results which guarantee that,
given a quasi-local translation cocycle Γ, there exists a transportable * morphism σ
such that the representation

πω°σ°σ r °̂  ̂  contains πω precisely once, (6.16)

one must attempt to formulate a plausible principle which ensures that (6.16) is valid.
Such a principle is suggested by the "topological" commutation relations (A)-(C),
subsequent to Lemma 13 (Sect. 5), and the identity

>(s). (6.17)

Henceforth we assume that

s-UmQΣΩ exists, (6.18)
ΣtR3

so that the total electric charge operator exists on all sectors generated by localized *
morphisms of 91 (see Lemma 14).

Conjugation Principle. 1) Let Γ be a quasi-local translation cocycle satisfying the
"topological" commutation relations (A)-(C), for some local-charge cocycle yr.

Then there exists a quasi-local translation cocycle Γ satisfying the commutation
relations (A)-(C), for a local-charge cocycle yr with the property that the unitary
group

{&f(yr(s))yr(s)} has eigenvalue 1 . (6.19)

2) All super-selection sectors of the theory of total electric charge 0 are generated
by strictly local, transportable * morphisms of 91, in the sense of DHR, [3]. D

Using (6.19) and the fact that

for all s (see Lemma 12), one verifies easily that the representation πω o σ~o σ. r of 91
contains a subrepresentation of 91 of total charge 0. Part 2) of the Conjugation
Principle then says that that subrepresentation is of the form πωoσioc, where <τloc is a
local * morphism of 9ί, in the sense of DHR. Their results then imply that there
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exists a * morphism σloc such that πω θσ l o coσ i o c contains πω precisely once. Therefore,
the morphism conjugate to σr is

<7r = ̂ ioc°σf (6 2°)

Since σloc and Of are transportable, so is σr (see Theorem 9). Moreover, σr is uniquely
determined by its translation cocycle Γ-r, given by

as is easy to check (see (4.1) and [3]).
Thus, the Conjugation Principle guarantees (6. 1 6). If the morphisms σr and σf are

irreducible then

and

for some q and q in IR [see Lemma 11 and (5.18)]. The Conjugation Principle then
implies that

/(s) = /(s)* = £Γ ίs*, (6.22)

because

~s) = l, or /(sH<jf (/(s)*). (6.23)

In this case, the sectors ^ωoσ~oσr and ̂ ωoσrθσ^ have both total electric charge 0.
Naturally, (6.23) suggests a converse problem. Suppose that

/(s) = cτf(/(s)*). (6.24)

By Lemma 13,

τ-β(/(s)) = f(s)*/(s)f(α)

= Γ(a)*σf(γΓ(S)*)f(a)

= σf, „(/(*)*). (6.25)

Proposition 8 gives

(/(s)*) = 7r(s)*, on #.

Thus,

w-lim τ _ α(yr(s)) exists . (6.26)
α-> oo

Clearly,

w-lim τ_α(/(s))eπω(2I)'. (6.27)
a— > oo

But );Γ(s)*e9I. Combining this with (6.25)-(6.27), we conclude, using the irreduci-
bility of πω, that

w-lim τ_β(

efa» = /(s)*, (6.28)
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for some geR Therefore

i.e. σf°σr and σr°σf carry electric charge 0. Part 2) of the Conjugation Principle
then implies

σΓ°σΓ = σioc>

for some local * morphism σloc of 91. By [3], there exists a conjugate morphism σloc

such that πωo- ioc0σioc contains πω precisely once, and therefore, with <7Γ = σ loc°σf,
one has that πωo-roσr con tains πω precisely once, i.e. (6.16) holds.

Thus, we have proven

Lemma 20. Suppose that the Conjugation Principle and Eq. (6.24) are true. Then

for some geIR, and there exists a local, transportable * morphism σloc such that
&r — ̂ ioc°σf ιs conjugate to σr, in the sense of (6.16). Moreover σr is transportable.

If the vacuum sector, 34fω, is the only super-selection sector of the theory of total
electric charge 0, then

πωoσ~ 2*πωoσroσ~^πω9 (6.29)

σr and σ^ are * automorphisms of 91, and Γ can be so chosen that σf = σ^1.

Remarks. 1. To prove the last part of Lemma 20, we note that (6.29) follows
from part 2) of the Conjugation Principle and the absence of non-trivial, local *
morphisms (i.e. σloc = identity), and that, by (6.29), σf°σr and σr°σf are both *
automorphisms of 91 given by unitary operators on ̂ ω.

2. The situation expected in QED is that all * morphisms σr, σ p , . . . satisfy
(6.24), and that the vacuum sector is the only sector of total electric charge 0.

-In this case, the last part of Lemma 20 says that σr, σr,... are * automorphisms of
91, i.e. all sectors of QED are generated by charged * automorphisms of 91, a rather
interesting conclusion! In this case covariance follows from transportability.

6.3. Relativίstic Spectrum Condition, Charge Conservation
and Additivity of the Electric Charge

We use the results of Sects. 6.1 and 6.2 as motivation for

Definition 6. A quasi-local translation cocycle Γ is said to be PCT covariant if and
only if

Γ(α)e9I, for all αeM4;

Γ is in one of the classes ^.,7'= 1,2,3, introduced in Sect. 6.1 (the same for all
Γ);and

there exists a quasi-local translation cocycle Γ with the same properties as Γ
such that πωoσf oσr contains πω precisely once. D

We remark that, assuming the Conjugation Principle is valid, the analysis of
Sect. 6.2 shows that the cocycle Γ is the translation cocycle Tδr of the morphism σr

conjugate to σr which is given by
j-r / \ — / T-I/ \\ T-t / \ //• <Λr\\
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(see Sect. 6.2). Definition 6 is a strengthened version of the Conjugation Principle
in so far as it hypothesizes that Γ = Γ5r is a quasi-local translation cocycle in a
class ΉJ, so that σr = σ^ is not only transportable, but space-time translation
covariant.

We have

Theorem 21. 1) // Γl9...,Γn are PCX covariant translation cocycles then
ω°σΓι°...°σΓn is space-time translation covariant, and the relativistic spectrum
condition is satisfied on ̂ ωoσr 0 oσr , i.e. the spectrum of the generator of

'

(see Theorem 5) is contained in V+.
2) //Γ1? ...,Γnare PCX covariant charge transfer cocycles, with charges q19...,qn,

and s-\imQΣΩ exists then s-lim eisQΣ = eisQ exists on ^fωoσ 0 oσ , andΓ '" Γ

β==(ί7ι + ••• + <?„)!> m particular, Q is conserved.
3) If the total, physical Hilbert space is spanned by the spaces ^fωoσr 0 o σ r,

where Γl9...,Γn are PCX covariant charge transfer cocycles, n=0,l,2,..., then the
total charge operator Q has pure point spectrum which is a discrete subgroup of the
additive group of the real line.

Proof. 1) Since Γ1? . . . , Γn are PCX covariant, Γ19 . . . , Γn are in a class ̂  for some
j = 1,2,3. Xhe space-time translation covariance of ω°σΓι°...°σΓn can thus be
inferred from Sect. 6.1. In particular, if Γ is PCX covariant then ω°σr, ω°σf and
ω°σγ °σr are space- time translation covariant, and

—λ)ρ,

for some /le(0, 1], and some state ρ with the property that πρ is disjoint from πω.
Xhe proof of the spectrum condition is now as in [3].

2) By hypothesis, yσιϊ(s) = eiSQ<9 for some q^R, j=l, ...,n. If Σc f] suppσ^
then J=1

- isQΣ

= ... =1

i.e.

°...oσΓw suppσr .
j—i

n

If Σ3 (J suppσr. then
= J

= σ

.e.
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By Lemma 14, 2), e

ίsQ = eis(qί + ~'+qn) on JPωoσΓι, ... oσ/v But ω°σΓίo...oσΓn is
space-time translation covariant. Therefore Q is conserved.

3) From 2) it follows that the spectrum of Q is a discrete semigroup in R
However, since the charge of Γ is opposite to that of Γ, it is in fact a discrete
subgroup of R D

Remarks. Let Γ l 5 . . ., jΓ n be PCT covariant translation cocycles, and assume that

s-lim QΣΩ exists. Then by Lemma 14, 2), eisQ exists on JΊfωoσ 0 oσ and is a
2TR 3 ' '"

continuous, unitary group in the center of nωoσr 0 ... oσr (51)". By Theorem 21, 1),

the relativistic spectrum condition is fulfilled on fflω 0 σr 0 0 σr . As a consequence, the
center of πωoσr 0 oσr (51)" is space- time translation invariant a general theorem of
Borchers. Hence, the" charge operator Q is conserved.

The charge cocycle of σΓ ι°...°σΓ n is given by

ι(5), (6.31)

as is easy to check.
Furthermore, if Γ is irreducible then σr is irreducible (Lemma 17), so that

y^(s)=:eίsq, for some geR [see (5.18)]. If Γ is PCT covariant, and τa(yσr(s)) = yσr(s)
then γσr(s) = eίsq, #eR [see (5.19) and (5.20)].

Finally, Theorem 21 remains valid in theories in which charged sectors arise by
composing the vacuum with charged * morphisms that may not arise from PCT
covariant cocycles, provided covariance and the relativistic spectrum condition
are known. We also recall that Proposition 3 and Theorem 7 say that if yσp(s) Φ 1
then σr and Γ are non-local.

In conclusion, we may tentatively view the problem of constructing the
charged sectors in QED as the problem of constructing all possible, PCT covariant
charge transfer cocycles.

The following problems remain to be analyzed :
1) What is the statistics of charged sectors? Is the spectrum of the total charge

operator related to the statistics of the sectors?
2) Do the charged sectors determine well-defined representations of the

algebras, 9Ias, generated by bounded functions of the asymptotic, electromagnetic
field (which Buchholz only constructs on the vacuum sector [2])? Are the charged
representations of 2Ias disjoint from the Fock representation, i.e. are they "infrared
representation"?

3) Is there a generalized Haag-Ruelle theory for charged (infra-)particles?
Some answers are sketched in the last section.

7. Generalized Haag-Ruelle Theory and a Remark
on Non-abelian Gauge Theories

In this section we outline a collision theory for the theories described in Sects. 5
and 6, in particular QED. We assume that the photon is a stable, neutral particle of
zero mass, i.e. in the vacuum sector J^ω there are stable one-photon states.

Under these hypotheses, Buchholz [2] has constructed, on the vacuum sector
Jfω, free, asymptotic, electromagnetic fields, F^s

v = FJV, as strong limits of a family
of local observables, as ί-> + oo.
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Buchholz' construction only works on the vacuum sector or on sectors
generated by strictly local (hence neutral) * morphisms of 21, as is easy to check
(see [2]). A priori, it does not apply to the charged sectors of the theory. However,
under various, rather plausible technical conditions of dynamical character (e.g. a
condition that says that, away from "small frequencies and momenta" charged
representations of 21 look like the vacuum representation) one may hope to extend
Buchholz' collision theory to the charged sectors. Our starting point is as follows :
Let (̂21) be the class of all PCX covariant cocycles. The analysis presented in
Sects. 5 and 6 justifies defining the total Hubert space, 3tf , of the theory as the
smallest Hubert space with the property that all states ω°σΓι <> . . . °OT^ Γ1? . . . , Γn in
#(21), n = 0, 1, 2, . . . , are given by unit rays in Jί?.

By Theorem 21, there exists a densely defined, selfadjoint energy-momentum
operator (H,P) on #e such that spec(#,P)£ V+9 and on ^f

τa(A) = ei(aQH-»^Ae-i(aQH-* *\ (7.1)

α = (α°,a), for alMeSΪ.
We note that the results of [7] and [2] imply that

as

spec(#,PH^ω = F+. ' (7.2)

We now assume that, on all sectors in #f, one can prove a strong convergence
asymptotic condition for the electromagnetic field (see [2]) yielding free, asym-
ptotic fields F*s

v, as = + or — , with the following properties :

for some finite constant Δ(f) only depending on /={/μv};
2) Fa

μ

s

v satisfies the standard free-field canonical commutation relations. [In this
context, the results of [18] might be important; see also [2] and Paper I.]

As remarked in I (Proposition 3.1), the operators

then generate Weyl algebras 2ΓS, and

τ^eiFW^ = eiFWf^9 (7.3)

where

f»\x) = (2πΓ2$d4peip χei(a°M-a rtf^(p}. (7.4)

These results have been established for the boson field in models with infra-
particles [19]. The whole circle of problems obviously requires further
investigation.

In Theorem 3.2 of Paper I it is shown that the relativistic spectrum condition
for (#,P) and (7.3) and (7.4) permit to decompose (#,P) into an energy-
momentum operator (HjJ,P|J) affiliated with the von Neumann algebra 2ίas
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generated by 2Ias on 2? which describes the dynamics of the asymptotic,
electromagnetic field (i.e. the free time evolution of asymptotic fields), and an
operator (Hc

as,P
c

as) affiliated with 2las/ which describes the dynamics of the
asymptotic charge and of fields without electromagnetic interactions. [There is an
explicit expressions of (Hfs

h, P^) in terms of Fas

v (see I).] Moreover

= V+ , spec(Hc

±,P<±)ς V+ . (7.5)

We now specialize to theories, such as QED of electrons and positrons, which have
the property that

/(s) = σr(/(s)*) (7.6)

and that the only sector of 0 electric charge is the vacuum sector. In Lemma 20,
Sect. 6.2, we have shown that, under these hypotheses,

/(s) = έΓίsβ = yΓ(s)*, (7.7)

and σr is a * automorphism of 21, for all Γe^(2I). For a suitable choice of Γ,

σ-^=σγ. (7.8)

From Theorems 9 and 5 we then infer that there are isometries TΓ which
intertwine the representations πωoσr 0 ... 0(Tr of σr(21) with the representations

πω°<τΓl°...°<rrn°σr of 21

for arbitrary Γ15...,ΓM and Γ in (̂91). Since we have specialized to those
σr which are * automorphisms of 21, TΓ maps ^ωoσr „ oσr to
^oσrι . . . . oσrn oσr, and TΓ* = Tf, by (7.8). Thus

domain(TΓ) - range(TΓ) - tf . (7.9)

We define

Tas(x) = e^Has ~ x pSs) T e- ί(χ°Hc

as - x pgs) (7.10)

The second basic assumption of this section is that, for Γ and Γ in (̂21),

[T;s(x),TΓ

as();)],(Λn̂ O, (7.11)

provided (x - y)2 ^ d(Γ, Γ) < 0, for some finite d(Γ, Γ). Here δ(Γ, Γ'} = ± , and [ , ] ±

denotes the commutator, resp. anti-commutator. We note that higher statistics (see
DHR [3,]) is automatically excluded, in this set up, because we have specialized to
those σr which are * automorphisms of 21. Moreover, because of (7.7) and
Theorem 21, the spectrum of the total charge operator Q on 3tf is a discrete
subgroup of R (This is generally true if the statistics is ordinary Bose- or Fermi-
statistics.) The physical interpretation of (7.10) and (7.11) is that when the
asymptotic positions of the charges created by T^s(x), T™(y\ resp., are space-like
separated by at least a square distance d(Γ, Γ'}, the field bundles T/s(x) and Γ/f (y)
commute, resp. anti-commute.

Assumptions (7.10) and (7.11) are in perfect agreement with the results of I and
general wisdom concerning QED. But of course they are quite ad hoc and require
further justification.
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We regard (7.10) and (7.11) and the result below as a challenge to develop a
theory of the "asymptotic statistics" of sectors, along the lines of [3], for general
theories such as described in Sects. 5 and 6, where higher (para-Bose or para-
Fermi) statistics is not excluded. [The main difficulties met in such attempts are
that Qxpi(a°Hc

as — a P£s) does not necessarily implement an automorphism group
of 91 and that the charged * morphisms {σr Γe^Sί)} are not local.]

On the basis of (7.3)-{7.5) and (7.10) and (7.11) one can now construct a
generalized Haag-Ruelle scattering theory for charged infra-particles (see also
Sects. 3.2 and 3.6 of I):

Suppose that, for some Γ1? . . . , Γn in #(21), the operators T*s(x),j=l, ...,n, have
non-vanishing matrix elements between the vacuum Ω and one-(infra-)particle
states, i.e., eigenstates of (Hc

as)
2 — (Pc

as)
2 of eigenvalue m?, (m; >0 is the mass of the

infra-particle (see_Proposition 3.4, Sect. 3.2 of Paper I). Typically, Γ1 = ... =Γk = Γ,
Γk+ί = ... =Γn = Γ, for some Γe^(9I), rn^m, for; = l,...,n).

The standard spectral hypothesis is that the mass shells V are isolated in the
spectrum of (HC

M, Pc

as).
Let fJ(x) = (2πΓ2$d4peip'xfj(p)e-ίty*2+m^ where fj(p) is a test function the

support of which has non-empty intersection with Vm . but no intersection with
spec(/ί<s,P<s)\Fmj,

One then proves as in [14].

Theorem 22. Under the hypotheses stated above

exists.

Remarks. General scattering states are obtained by applying operators from 2Ϊ+,
resp. 91 ~, to the limits constructed in Theorem 22 (and taking the closure in 2tf\

One convinces oneself that the states so obtained can indeed be interpreted as the
scattering states of the theory e.g. the obvious intertwining relations are valid. The
theory described here has one unconventional aspect : In general

i.e. charged one-infra-particle states will in general scatter, due to the emission and
absorption of photons.

Remark. Preliminary results (indicating that the total charge operator, Q, is in the
center of the algebra 9ίas) suggest that, within a slight extension of the framework
developped in this paper, one can prove that representations of 2ΓS of different charge
are disjoint, in particular, charged representations of 9ίas are disjoint from the Fock
representation constructed in [2]. This would represent a stronger version of the
result reported in Sect. 2 of Paper I.

The whole circle of problems touched upon in this section and some further
results, involving deriving and applying the Maxwell equations in the framework
developped in this paper, ought to be studied in a separate article.

We conclude with some comments concerning
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Non-abelian Gauge Theories

Within the framework introduced in Sects. 1, 2, and 5 we consider an idealized, non-
abelian gauge theory with gauge group some compact Lie group G. (For simplicity
we assume that G is simple, but this is unimportant.) The center of G - which will turn
out to play the main role - is denoted

The theory is described in terms of an algebra 81 = (J 8I($) of quasi-local, neutral
0e93

(i.e. uncoloured) observables with the general properties described in Sect. 1.
As usual, ω denotes some pure physical vacuum state on 81, and J4fω the vacuum

sector, assumed to be given. The object of the study is the question whether there are *
morphisms, σ, of 81 with the property that the state ω ° σ has colour, i.e. 3Ίfω 0 σ carries a
non-trivial representation of G.

We start with some preliminary considerations concerning non-abelian, local
charges.

For this purpose, we assume temporarily that, given any bounded, open set
Σ ClR3 [e.g. Σe ^(IR3), see Sect. 5] and an arbitrary space-time translation covariant
morphism σ of 8X, there exists a representation {Qa

Σ} of the Lie algebra of G on the
sector 3^ω oσ in terms of selfadjoint, local charges Qa

Σ satisfying local Gauss laws here
the superscript a labels the elements of a basis in the Lie algebra of G. This assumption
may be considered a part of the conventional lore about non-abelian theories. In a
positive metric framework, it is however not on safe grounds, since the local charges
Qa

Σ cannot be elements of the observable algebra 8ί, for all Σe^(lR3) and all α, unless
they vanish.

To see this we suppose that, on the sector ^ωoσ, the limits

*ΞΞeίsQa, (7.12)

exists, for all real s and all a.
By Gauss' law,

eίsQαeπωoσ(8I)', for all a. (7.13)

In the abelian case, we have shown in Sect. 5 that elsQ is in the center of πω oσ(8l)". In the
non-abelian case this is only possible if the representation of G determined by {eίsQa}
on J^ω o σ is the trivial representation (i.e. πω 0 σ has no "colour"), because the center of a
von Neumann algebra is abelian, whereas the operators {eisQa} generate a non-
abelian algebra whenever the representation of G they determine is non-trivial.

We say that πωoσ is a coloured representation of 81 iff (7.12) holds and the
representation of G on ^fωΰσ determined by {eisQa} is not trivial. In this case it then
follows that eisQ± cannot be in 8ί, for all Σe^(IR3), all 5 and all a. This proves our
contention. By (7.13), πωoσ(8I)' contains a non-abelian algebra, whenever πω o σ is
coloured, i.e. coloured representations of 81 are necessarily reducible. Moreover, only
the Casimir operators of G may be in 81, but not the colour charges.

One expects, formally, that for a suitable choice of {Qa

Σ} and some α l 9 . . ., am, the
operators {exp2π/βJ}J=1 generate a unitary representation of JΓ(G), for arbitrary
Σe^(IR3). Since these operators then commute with eisQ%', for all a, seIR and
Σ'ε .^(IR3), they are "colourless", i.e. neutral. For this reason it is safe to assume that

{exp 2πiQ%}'?= x C 81 , for all
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Without loss of generality we now specialize to the case where 2£(G) is generated by a
single element, i.e. m=\ [e.g. G = SU(rc), J^(G) = ZJ. We abstract the discussion
presented above, by simply assuming that, for each bounded region Γe ̂ (1R3), there
exists an operator ZΣe^ί with the following properties:

1) ZΣ generates a unitary representation of 3f(G).
2) There exists a bounded double cone (9Σ^>Σ such that

(Gauss'law). (7.14)

3) If Σ1 and Σ2 are disjoint subsets of ^(IR3)

ZΣί»Σ2 = ZΣί.ZΣ2. (7.15)

In analogy to the abelian case (see Sect. 5) we may now introduce cocycles
{yΣ(gm):Σe0>(1R?)} with the following properties: For all Σe^(IR3)

a) yΣ(gm)εVi, for all m = l,2,...,n.

b) yΣ(gm)=yΣ(gk)zk

ΣyΣ(gm-k)zΣ\ (7.16)

for all fe = l,2,...,m-l, and
c) 7^(0™) is independent of Σ, for all Σ 2 £y, where Σy is some bounded set in ̂ (IR3),

and all m = l,2, ...,n.
One then shows as in Sect. 5 that

y(gm) = n-limyΣ(gm)
ItR3

exists, and

for all m = 1, 2, . . ., n, i.e. y generates a unitary representation of 3£(G) (see Lemma 12).
Let b be a path in M4 parametrized by a real variable se [0, 1], with end points

), b(l). Given xe M4, let Zx be the intersection of the light cone with vertex at x with
the hyperplane {x = (x°, x):x° = 0}. Let Σ^ j^x xeΣ^}, for some λ> 1. We define

i if ^(1)Cz, 40 )fr
) = -l if ^(0)C^, 4υί^ (7.17)

0 , otherwise.

We now suppose that there are operators

with Γ(b)e2l, for arbitrary smooth, bounded paths fe, which satisfy the following
"topological" commutation relations:

For some finite λ > 1 and arbitrary smooth, bounded paths b C M4,

ZΣΓ(b)Z* = yε*(b> Σ}Γ(b) . (7. 1 8)

The operators Γ(b) are the correct generalizations of the charge transfer cocycles
{Γ(α):αeM4} studied in Sects. 5 and 6 to non-abelian theories. The problem of
proving confinement of "colour" (in particular quark confinement) can now be
formulated as follows :
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Show that the topological commutation relations (7.18) do not admit any
solution Γ such that Γ is a translation cocycle, i.e. Γ(b) = Γ(fo(l), fo(0)) only depends on
the end points fr(0) and b(l) of b.

One possible way of proving this would be to show that any solution Γ of (7.18)
also solves't Hooft's "topological" commutation relations [20] (expressing "electric-
magnetic duality"), so that, for closed paths fc, Γ(b) φ 1 if b is not a point, so that Γ
cannot be a translation cocycle.

Assuming, however, that (7.18) does have a solution Γ which is a (quasi-local)
translation cocycle then all results of the present paper can be extended to this theory,
in particular Γ(a) is non-local, for all αeM4, etc Assuming, in addition, that (7.12)
and (7.13) hold one concludes that the morphisms σr obtained from cocycles Γ
obeying (7.18) are necessarily reducible. Hence Γ^πω(σr(2I))" (see Lemma 17); in
particular, Γ cannot be of class ^3 (see Sect. 6.1). Applying moreover the results of
Sect. 6.2 we arrive at the following

Alternative

Either the composition of σr with its conjugate morphism όγ is not neutral (in
particular not irreducible) [i.e. yr φ σf (y

r*), see (6.24)], or there must exist non-trivial,
neutral (colourless) super-selection sectors disjoint from the vacuum sector, with
higher (i.e. para) statistics.

Hence, even if colour were not confined, the resulting super-selection structure
would presumably have rather unconventional features.

Compared to Wilson's confinement criterion [21], our confinement criterion, as
formulated above, has the advantage of being mathematically precise and stating a
necessary and sufficient condition for confinement, but the considerable disadvan-
tage of not being very constructive. Our criterion strongly suggests that a proof or
disproof of colour confinement is a dynamical, rather than a kinematical problem.

Acknowledgements. The stimulus for this paper derived from a very enjoyable collaboration with G.
Morchio and F. Strocchi on [1]. It would never have been written without it. I thank both colleagues for
valuable discussions and comments and the joy of collaboration.

Appendix 1

At the beginning of Sect. 4 we have introduced translation cocycles which are quasi-
local in norm and stated their main properties. Here those properties are proven.

We recall that a translation cocycle, Γ, is said to be quasi-local in norm iff
Γ(αMΓ(α)*e5I, for all Aε<Ά and αeM4, and

n-limτ_a(Γ(b)τa(A)Γ(b)*) = A.
a—* oo

A * morphism, σ, of 2ί is called quasi-local in norm iff σ is transportable, Γσ has the
property that Γσ(α)AΓσ(α)*e9I, for all Ae<Ά and αeM4, and

n-limσa(A) = A.
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We propose to prove

Theorem Al. If Γ is quasi-local in norm then

σΓ(A) = n-lim Γ(a)AΓ(a)* exists,
α-^ oo

for all AeW, and defines a transportable * morphism o/9t which is quasi-local in norm,
and Γσr = Γ. Conversely, ifσ is quasi-local in norm then Γσ is quasi-local in norm, and
σr =σ.1 σ

For the proof of this theorem we require

Lemma A2. Let Γ be a translation cocycle. Then the following are equivalent

1) n-lim τ_a(Γ(b)τa(A)Γ(bΓ) = A,
α-> oo

2) n-lim (Γ(a + b)AΓ(a + b)* - Γ(a)AΓ(a)*) = 0,
α-> oo

3) n-lim Γ(ά)AΓ(a}* exists and is independent of the space-like, asymptotic
a—* oo

direction in which α-»oo.
Proof. Since Γ(ά) is unitary, we have, using the cocycle identity (3.1),

|| Γ(a + b)AΓ(a + b)* - Γ(ά)AΓ(a)* \\

= \\τ_a(Γ(b)τa(A)Γ(b}*)-A\\,

from which the equivalence of 1) and 2) follows. Next, we note that 3) clearly implies
2). Now we show the converse : If a = λe, b = μe, where e is some fixed, space-like
vector and λ and μ are e.g. positive integers then 2) implies that, for arbitrary Ae 91,
{Γ(λe)AΓ(λe)*}λ = 1 2 3 is a Cauchy sequence in the operator norm. Thus

n-lim Γ(a)AΓ(a)* exists for a = λe,
α-> oo

λ = 1, 2, 3, ____ Applying 2) once more, we now see that the limit is independent of the
space-like asymptotic direction in which α->oo. D

Proof of Theorem Al. If Γ is quasi-local in norm then

n-lim Γ(a)AΓ(a)* exists,
β— > oo

see Lemma A2, 1)=>3). Since for all αeM4 and arbitrary Ae<Ά,

n-lim Γ(a)AΓ(a)* = σΓ(A)e 21 .
α-*oo

Next (Γ(a)AΓ(a)*)*=Γ(a)A*Γ(a)*9 so that σΓ(A)* = σΓ(A*). Moreover,

(Γ(a)AΓ(a)*)(Γ(a)BΓ(a)*) = Γ(a)ABΓ(a)* .

By taking norm limits on both sides of this equation we obtain

Finally, σr is obviously linear, and ||σr(^4)|| = M||. Thus σr is a * morphism of 91.
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Next

= n-]ίmτ_a(Γ(b)τa(A)Γ(b)*)
b-» oo

= n-lim Γ(a)*Γ(a + b)AΓ(a + b)*Γ(a) , by the cocycle identy (3.1),
b-xχ>

, i.e. Γσr = Γ. (A.I)

Finally, if α->oo in some space-like, asymptotic direction e, let b = λe. Then

n-lim σr αμ) - n-lim n-limτ_a(Γ(b)τa(A)Γ(b)*)
α-»oo α-»oo λ-*oo

= n-\imτ_a(Γ(b)τa(A)Γ(b)*) = A,
α-> oo

α + fc-^ oo

by the definition of cocycles which are quasi-local in norm. Now we prove the second
part of Theorem Al : We assume that σ is transportable and n-lim σa(A) = A, for all

>4e9ί. Using the unitarity of Γσ(a\ for all αeM4, we get

\\Γσ(ά)AΓσ(ά)*-σ(A}\\

^||Γ»[^-τ_αoσo

= \\A-τ_a°σ°τa(A)\\ = \\A-σa

Thus

n-lim Γσ(a)AΓσ(a)* = σ(A) exists (A.2)
a— >• oo

and is independent of the space-like, asymptotic direction in which α-> oo. Applying
Lemma A2, 3)=>1) we conclude that Γσ is quasi-local in norm, and this and (A.2)
show σ = σΓσ. D

Remark. Let Γ be quasi-local in norm, and Γ(α)eσΓ(2I), for all αeM4. Then σr is a *
automorphism.

Proo/ By (A.I) and the hypothesis,

By Theorem Al, σr is quasi-local in norm. Hence

n-lim σr a(A) = A, for all A e 91 .
α-»oo

Since σr(9ί) is closed in norm, we conclude that σr(2ϊ)291. Thus σr is a *
automorphism, which concludes the proof.

This remark is relevant for the understanding of the class ^3 of cocycles
introduced in Sect. 6.
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Appendix 2

We propose to prove

Theorem A3. Let Γbea quasi-local translation cocycle, such that Γ(a) = σΓ(Γ'(a)*\ for
some quasi-local translation cocycle Γ' with Γ'(0)e2I, for all αeM4. Then σr is a *
automorphism of 2t, and σf 1 =σr.

Proof. Since σr is locally normal (see Definition 3, Sect. 4), we have in each locally
normal representation of 9ί

°r°°r,a(A) = σΓ(Γ'(ά)*σΓ(A}Γ(a}}

= w-Hm σΓ(Γ(ά)*Γ'(b}AΓ(b)*Γ'(a))

= w-lim Γ(ά)Γ(b)*σΓ(A)Γ(b)Γ(ά)*, since σ(/»*) - Γ(a),
/>->00

- w-lim Γ(ά)σΓb(A)Γ(a)*
b-χχ> '

= Γ(a)AΓ(a)*, by Proposition 8, Sect. 4.

In particular, σr°σr = identity, since Γ(0) = 1. Thus σΓ(σΓ,(Γ(a))) = Γ(a\ so that using
ϊ = σr(Γ/(α)*)* = σr(Γ(α)) we conclude that

Multiplying both sides of this equation from the left by Γ(b)* and from the right by
Γ(b) we obtain

and by taking the limit b-+co (see Proposition 8)

σΓ,(Γ(fl))Γ'(α) = l

i.e. (A.3)

Γ(a) = σΓ(Γ(a)*).

The first part of the proof thus implies that also

σr,°σr = identity,

hence σf 1=σr, so that σr is a * automorphism of ϊt and, by (A.3), Γ'(ά)
= σf1(Γ(fl)»). D

Finally we wish to show that a cocycle Γ(α) of class ^3, i.e. Γ(α)eσΓ(9I), for all
0eM4, has the form

for some cocycle Γ'(α)e2ϊ, for all α.

Proof. Since, for each α, Γ(α)e σr(3ί), there exist operators 5* e 2ί, for all α, such that

By Proposition 8,

Bβ*= w-lim σr b(B*)= w-li
n— > on o~ ̂  o
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Next

= Γ(b)*Γ(a)τ _ a(Γ(c))Γ(b) , by the cocycle identity

= σΓ>b(BΪ)Γ(b)*τ_a(σΓ(B?))Γ(b)

= σΓιb(BΪ)Γ(b)*Γ(a)*σI(τ_a(BΪ))Γ(ά)Γ(b)

Thus, by taking the limit b-»oo, we obtain

B*+c = τ_β(Bc*)B*,

i.e. Γ'(d) = Ba satisfies the cocycle identity. D

Remark. It is unknown whether Γ' is a quasi-local translation cocycle.

References

1. Frδhlich, J., Morchio, G., Strocchi, F. : Charged sectors and scattering states in quantum
electrodynamics. Preprint, CERN TH. 2544 (1978)

2. Buchholz, D. : Commun. Math. Phys. 52, 147 (1977)
3. Doplicher, S., Haag, R., Roberts, J.: Commun. Math. Phys. 23, 199 (1971); 35, 49 (1974)
4. Haag, R., Kastler, D.: J. Math. Phys. 5, 848 (1964)
5. Frδhlich, J. : Quantum theory of non-linear invariant wave (field) equations. In : Invariant wave

equations, Proceedings, Erice, 1977. Velo, G., Wightman, A.S. (eds.). Lecture notes in physics, Vol. 73.
Berlin, Heidelberg, New York: Springer 1978

6. Roberts, J. : Commun. Math. Phys. 51, 107 (1976)
7. Swieca, J.: Phys. Rev. D 13, 312 (1976)
8. Strocchi, F, Wightman, A. : J. Math. Phys. 15, 2198 (1974)
9. Bisognano, J., Wichmann, E.: J. Math. Phys. 16, 985 (1975)

10. Driessler, W, Frδhlich, J. : Ann. Inst. Henri Poincare A 27, 221 (1977)
1 1. Lanford III, O. : Selected topics in functional analysis. In : Mecanique statistique et theorie quantique

des champs, Les Houches, 1970. De Witt, C, Stora, R. (eds.). New York, London, Paris : Gordon and
Breach 1971

12. Araki, H.: Progr. Theor. Phys. 32, 844 (1964)
13. Borchers, H.-J.: Nuovo Cimento 24, 214 (1962)
14. Streater, R., Wightman, A.: PCT, spin, and statistics and all that. New York: Benjamin 1964

lost, R. : The general theory of quantized fields. Providence, RI : Am. Math. Soc. Publ. 1965
15. Dixmier, J. : Les algebres de von Neumann. Paris: Gauthier-Villars 1964
16. This result is due to Doplicher, S. : Unpublished (private communication). It has been found in a

somewhat more special context independently by Frδhlich, J. : See [5] and Commun. Math. Phys. 47,
269 (1976)

17. Buchholz, D.: Commun. Math. Phys. 36, 287 (1974)
18. Robinson, D. : Helv. Phys. Acta. 35, 403 (1962)
19. Frδhlich, J.: Ann. Inst. Henri Poincare A 19, 1 (1973)
20. 't Hooft, G. : On the phase transition towards permanent quark confinement. Preprint, Utrecht (1977)
21. Wilson, K.: Phys. Rev. D 10, 2445 (1974)

Communicated by A. Jaffe

Received December 12, 1978



Charged Sectors of QED 265

Note Added in Proof

1) The following reference relevant to this paper had escaped our attention: Roberts, J.E.: Perturbations
of dynamics and group cohomology. In: Les methodes mathematiques de la theorie quantique des
champs. Guerra, F., Robinson, D.W., Stora, R. (eds.), editions du C.N.R.S., Paris 1976

2) G. Morchio has pointed out that the hypothesis of Lemma 14 (1) is presumably too strong.
We note, however, that the conclusions of this paper also follow from the much weaker assumptions
stated in the Remark subsequent to Lemma 14 and the condition that y£(s) converges, as ZflR3.

3) We wish to emphasize the following consequence of our results in Sects. 6.1 and 6.2:

Theorem. Consider a theory with the properties that
A) all its charged sectors arise by composing the vacuum with transportable, charged * morphisms σ

of the algebra $1 with yσ(s)ή= 1, and to each morphism σ there exists a conjugate morphism σ with

f ( s ) = σ( yσ(s)*) (CP)

B) there are no non-trivial, neutral * morphisms of 5Ϊ. Then all morphisms σ are * automorphisms
of 21, yσ(s) = eιsqσ, for some gσelR, and all these automorphisms and arbitrary compositions thereof are
translation covariant. The relatίvίstic spectrum condition is satisfied on all sectors of the theory and the
charge operator has pure point spectrum. Π

This result shows that the understanding of the charged sectors of ordinary QED is satisfactory,
up to a derivation of condition (CP) from first principles. It suggests the conjecture that, in general,
all charges * morphisms σ are of the form σ = σloc °ρ, where ρ is a transportable, charged * automorphism,
and σ loc is a transportable, localized * morphism, in the sense of DHR [3], hence neutral. Then σ
satisfies the Conjugation Principle and is covariant.






