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Abstract. It is shown that the singularity spectrum of the phase space integral
associated with any partially ordered Landau diagram is confined to a variety
defined by a set of modified Landau equations. These equations are similar to
the ordinary Landau equations but involve limiting procedures. The variety
defined by the modified equations coincides with the variety defined by the
ordinary equations except at points called u =0 points. Next the causal parts of
the sets defined by the modified Landau equations are defined, in a natural
way, and it is conjectured that the singularity spectrum of the S-matrix is
confined to the union of the causal parts of the singularity spectra of the
phase space integrals. An analogous conjecture on general bubble diagram
functions asserts that the singularity spectrum of each of these functions is
confined to sets defined by the modified Landau equations augmented by
appropriate positive-o and negative-« conditions. Generalized Landau equa-
tions are introduced. These equations do not involve limiting procedures, but
provide a useful partial characterization of the sets defined by the modified
Landau equations augmented by these positive-a and negative-o. conditions.

§0. Introduction

The primary purpose of this paper is to formulate a conjecture on the singularity
spectrum of the S-matrix. This conjecture is designed to be compatible both with
unitarity and with the macro-causality requirement that momentum-energy can be
transferred over macroscopic distances only by stable particles. These require-
ments are severe, and our conjecture appears to provide a satisfactory point of
departure for the analysis of the singularity structure of the S-matrix within the
framework of the theory of holonomic functions (=functions satisfying a holo-
nomic (=maximally overdetermined) system of (micro-)differential equations)
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developed by Sato-Kawai-Kashiwara [13], hereafter referred to as S-K-K [13] for
short.

The singularity spectrum of a hyperfunction is a generalization of the set of
singularities of the hyperfunction. For a hyperfunction f(p) of a real variable
p=(py,...,Dp,), its singularity spectrum is a well defined set in (p,u)-space, where
u=(uy,...,u,) is a cotangent vector at p. The singularity spectrum of f(p) specifies
the set of real singular points p and, at points p where f is not analytic, gives
information about the directions in Imp-space from which f is the boundary value
of an analytic function or more generally characterizes possible decompositions of
f into sums of boundary values of analytic functions from specified directions.
This connection is described in S-K-K [137] Chapt. I, Proposition 1.5.4. The closely
related ideas of essential support theory developed by Bros and Iagolnitzer are
described in [22] and in the references cited there.

The S-matrix kernel S(p) is, by virtue of its unitarity property, a distribution,
hence a hyperfunction, and thus has well defined singularity spectra.

There are several conceivable methods of constructing the singularity spectrum
of the S-matrix. A first method would be to assume that the singularity spectrum
of the S-matrix is confined to the union of the singularity spectra of the Feynman
integrals, and then to construct the singularity spectra of the Feynman integrals.
However, most Feynman integrals diverge, and the calculation of their singularity
spectra consequently presents technical difficulties that have not yet been resolved
if we consider the on-shell amplitudes. Moreover, it would be preferable to obtain
this basic information about the singularity spectrum of the S-matrix by methods
that do not involve regularization, renormalization and divergent infinite series.

A second method would be to obtain the singularity spectrum of the S-matrix
directly from the principle of macrocausality. This principle asserts that
momentum-energy is transferred over macroscopic distances only by stable
particles: any transfer of momentum-energy that cannot be ascribed to a network
of stable particles has a probability to occur that falls off exponentially under
space-time dilation. This property has been rigorously formulated away from
certain exceptional points in p-space called u=0 points, and has been shown to
imply (Iagolnitzer-Stapp [20], lagolnitzer [4-6], and Pham [23]) that at non u=0
points the singularity spectrum of the S-matrix is confined to the union of the set of
positive-o Landau varieties % * (D).

The u=0 points of the S-matrix consist of the points p=(p,, ..., p,) where two
or more of the momentum-energy vectors p, are parallel or two or more of the final
momentum-energy vectors are parallel. Thus the set of u=0 points of the S-matrix
is a set of low dimension.

Macrocausality gives the singularity spectrum of the S-matrix at all points p
not lying in the low dimensional set of u=0 points. However, the lack of
information on this low dimensional set has very pernicious consequences. These
u=0 points can occur in the domains of integration of unitarity-type products of
the connected parts of several S-matrix elements. These products, called bubble
diagram functions, inevitably arise when one analyzes the consequences of
unitarity, and it is important to determine their analytic structures. However, the
lack of information about the singularity spectrum of the S-matrix at u=0 points
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propagates into a lack of information on the singularity spectrum of the bubble
diagram functions at their u=0 points (Stapp [2], Coster-Stapp [3], lagolnitzer
[6], Kawai-Stapp [1]). This is disastrous because the u =0 points of the bubble
diagram functions are not confined to the low dimensional set of points where
pairs of external (i.e., non-integrated) momentum-energy vectors are parallel. The
u=0 points of a bubble diagram function Fg(p) include a certain subset of the
points p such that one or more of the component S-matrix functions has a u=0
point at some point in the domain of integration. Already for the simplest
applications one encounters bubble diagram functions where these u=0 points
cover the entire physical region in p-space. Thus the u=0 problem becomes
magnified from a tiny problem at the level of the S-matrix to a major problem at
the level of the bubble diagram functions.

In applications ([7]) this problem has been partially circumvented by the
introduction of an ad hoc mixed-o cancellation assumption about how the
singularities of different terms cancel among themselves. However, this assump-
tion has no fundamental basis, and only limited applicability. Clearly a more
satisfactory procedure would be to supply the missing information about the
singularity spectrum of the S-matrix at u=0 points, and then deduce the
singularity spectrum of bubble diagram functions at their u=0 points. As
discussed in more detail later, the knowledge of the singularity spectrum of the S
matrix at u=0 points will not be sufficient by itself to determine the singularity
spectrum of bubble diagram functions at their u =0 points, but it will clearly be an
important ingredient in this program.

The extension of the macrocausality condition to u =0 points is not altogether
unambiguous. In contrast to the situation at u=0 points the physical idea of
macrocausality leads, at u=0 points, to the need to consider limiting procedures,
and the precise meaning of macrocausality depends critically on the fine details of
these limiting procedures.

In order to specify an appropriate limiting procedure we shall here combine
the physical idea of macrocausality with the requirement that the S-matrix be
unitary.

The unitary equations involve the mass-shell constraint and momentum-
energy conservation-law delta functions. These delta function factors lead to
necessary singularities of the S-matrix at certain points where the phase space
integrals defined by these delta functions have thresholds. This is because certain
terms in the iterated unitarity equations drop out when the argument p goes below
these thresholds, and hence some of the remaining terms must have singularities.

Each phase space integral is associated with a Feynman-like diagram. To
construct the phase space integral associated with a certain diagram D one replaces
each vertex of the diagram by a momentum-energy conservation-law delta function,
replaces each line by a mass-shell constraint delta function, and then integrates over
the momentum-energy of each internal line. Phase space integrals exhibit the
kinematic singularities arising from the simultaneous momentum-energy and mass-
shell constraint delta functions.

The diagrams D corresponding to phase space integrals are required to satisfy
the partial ordering requirement that they can be drawn so that positive energy
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flows uniformly from left to right: all diagrams that arise from the unitarity and
cluster decomposition requirements on the S-matrix satisfy this partial ordering
requirement.

The iterated unitarity equations, combined with cluster decomposition, lead to
an infinite set of different expressions for each connected part of the S-matrix.
These equations require the singularity spectrum of the S-matrix to contain all the
points in the singularity spectra of all the phase space integrals, except those points
where there are exact cancellations of contributions from different terms.

Exact cancellations of this kind must occur at points that are excluded from
the singularity spectrum of the S-matrix by the macrocausality condition. The
studies in [7] show in some detail how these systematic cancellations come about.
However, no such cancellations are demanded at points of the singularity spectra
of the phase space integrals that are compatible with macrocausality, and there is
no reason to expect such cancellations. Thus these points should be allowed in the
singularity spectrum of the S-matrix if one is to avoid the likelihood of a conflict
with unitarity.

On the other hand, there is no apparent need for the singularity spectrum of
the S-matrix to contain points that do not lie in the singularity spectrum of any
phase space integral. We thus conjecture that the singularity spectrum of the
S-matrix is confined to the union of the causal parts of the singularity spectra of
the phase space integrals, where the causal parts are the parts compatible with
macrocausality conditions. To convert this formulation of our conjecture into an
explicit form we need explicit conditions on the singularity spectra of the phase
space integrals.

Phase space integrals, unlike Feynman integrals, are convergent. The ma-
thematical core of the present paper is a study of the singularity spectra of phase
space integrals. It is shown, in Sect. 1, that the singularity spectrum of an arbitrary
phase space integral is confined to the variety defined by a set of modified Landau
equations. These modified Landau equations are similar to the ordinary Landau
equations, but allow limit points of solutions to equations that differ from the
ordinary equations by quantities that tend to zero in the limit. Except at u=0
points the modified equations yield the same conditions as the ordinary Landau
equations.

The causal parts of the sets #(D) defined by the modified Landau equations
are identified in Sect. 2 as the sets defined by the positive-o modified Landau
equations. These equations are the modified Landau equations augmented by the
conditions that the Landau parameters o be positive and that the closely related
parameters [ be real.

Our principal conjecture is then that the singularity spectrum of the S-matrix is
confined to the set

Pr= LD)Q‘“(D),

where the union is over all partially ordered Landau diagrams D, and % *(D) is the
set defined by the positive-o modified Landau equations associated with D.

This conjecture gives strong but reasonable conditions on the singularity
spectrum of the S-matrix at u =0 points. Starting from this information one would
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like to deduce the singularity spectrum of the bubble diagram functions at u=0
points. But the problems at these points do not stem exclusively from the u=0
points of the component S-matrix functions. There are u=0 points of bubble
diagram functions even in cases where there are no u=0 points of the component
S-matrix functions in the integration domain. And the standard general theorems
provide no information also in these cases.

We hope, on this basis of examples we have studied, that a specification of the
holonomic structure of the S-matrix will provide the needed information, and
allow us to extend the previously derived u =0 structure theorem to u=0 points.
We conjecture that this extended theorem should be the same as the earlier u=0
theorem, but with the ordinary Landau equations replaced by the modified
Landau equations, with all & and f taken to be real, and signs of these quantities
specified as in the u=0 structure theorem. In particular, the o, associated with a
line that is an internal line of a bubble should be positive if that bubble
corresponds to the connected part of the S-matrix and minus if the bubble
corresponds to the connected part of ST. This result would confine the physical
region singularities of all bubble diagram functions to codimension-one subsets of
the physical region, thus eliminating the open sets of allowed singularities
permitted by the ordinary Landau equations.

The modified Landau equations discussed above involve limiting procedures,
and are therefore more difficult to use than the ordinary Landau equations. In
order to facilitate the application of our results we define in Sect. 3 another set of
equations, called the generalized Landau equations, which do not involve limiting
procedures, and show that the set of points defined by the modified Landau
equations is confined to the set of points defined by the generalized Landau
equations, outside a set of points called generalized u=0 points. Some simple
examples given at the end of Sect. 3 illustrate the usefulness of the generalized
Landau equations.

Inspired in part by certain aspects of the present work, lagolnitzer [27] has
proposed an alternative solution to the u =0 problems considered here. Based on
properties of the S-matrix derived from a certain extension of macrocausality to
u=0 points he derives a u=0 structure theorem that gives strong conditions on
the singularity spectra of bubble diagram functions. These singularity spectra are
defined by limiting procedures that are similar to ours, but different. They have the
advantage of involving only real quantities: each internal line is associated with a
pair of real on-mass-shell vectors, rather than a single complex off-mass-shell
vector.

The fact that lagolnitzer derives a structure theorem makes his work an
important advance over ours. On the other hand, our main effort has been to
formulate a conjecture or assumption that should be compatible with unitarity.
No comparable effort has yet been made on the regularity property R of S-matrix
that occurs in Iagolnitzer’s work. However, an examination of this question has
been commenced by lagolnitzer and one of the present authors (H.S.) with
encouraging results.

lagolnitzer has questioned the derivation of the positive-o condition given in the
original version of this paper on the grounds that our extension of the macrocausality
condition tou =0situations did notallow for the doubling of the lines permitted by his
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refined macrocausality condition. We have, accordingly, in the present paper,
modified our discussion in Sect. 2 s0 as to place the major burden of our argument on
the results derived in Sect. 1, with only a minimal dependence on macrocausality. On
the other hand, the doubling oflines allowed by Iagolnitzer’s procedures disrupts the
energy-momentum conservation law condition during the course of the limiting
procedure and weakens his results compared to ours in certain situations. In
particular, if Iagolnitzer’s condition R could be proved for the energy-momentum
conservation law factor of the S-matrix, so that his results would apply to phase space
integrals, then his results would not generally yield the conservation of center-of-mass
trajectory condition (sometimes called the conservation of angular momentum
condition) that is entailed by our results of Sect. 1, and that is described in Sect. 3.

A detailed account of the historical development of this subject, with dis-
cussions of applications, can be found in the paper of lagolnitzer [27]. The articles
of Tagolnitzer [4-6, 217 and Kawai-Stapp [1] especially emphasize the microlocal
aspects of the singularity structure of the S-matrix and the bubble diagram
functions: these works reformulate the notion of the normal analytic structure of
the S-matrix ([20]) in a neat and precise mathematical language that employs the
notion of the cotangent bundle (see also Sato [11] and Pham [23]). In obtaining
their results on bubble diagram functions Iagolnitzer [6] (resp. Kawai-Stapp [1])
uses the general results on products, integration etc. of distributions (resp.
hyperfunctions). The general results Iagolnitzer [6] used were obtained in the
framework of essential support theory developed by Bros-lagolnitzer (see
lagolnitzer [22] and references cited there) and those of Kawai-Stapp [1] were
obtained in the framework of microfunction theory (S-K-K [13]).

In deriving our result on the singularity spectra of the phase space integrals
essential use is made of a result concerning the characteristic variety of holonomic
systems of linear differential equations that hyperfunctions of the form

N

d
Dl 3(e;(x) [T (fx)+ )/ = 10y

=1

d N
or [] ol (x)) [T fix)% must satisfy (Kashiwara-Kawai [9, 10, 26]). In [9] a
j=1 I=1

property (Lemma 2) stronger than the result used here was announced. The

original form of the present work was based on that stronger property. However,
after the work was essentially complete, and the results announced ([ 14]), a gap in
the proof of Lemma 2 of [9] was discovered. Consequently, the result on phase
space integrals given in this paper are slightly weaker than the ones previously
announced ([147]). They are obtained by replacing the stronger property used
originally by a slightly weaker one ([9], Lemma 1. See [26] for the proof).
Although a correct proof of Lemma 2 of [9] has not yet been constructed, the
authors believe, on the basis of considerations described in [26], that the originally
announced conclusions are nevertheless true. The originally announced result of
[14] is thus presented at the end of Sect. 1 as a mathematical conjecture, which,
however, is not used in the analysis of the singularity spectrum of the S-matrix in
Sect. 2.
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We expect our modified Landau equations to play an essential role in
clarifying the relationship between the analyticity and the unitarity of the S-matrix
along the line proposed by Sato (Sato [11], Kawai-Stapp [12]).

In particular,a recent result of the first two named authors (M. K.and T. K.)([28])
indicates that we might generalize the results obtained for phase space integrals to
general bubble diagram functions if we could rigorously formulate and accept Sato’s
conjecture ([117]) on the holonomic character of the S-matrix.

For the definition of Landau diagrams, bubble diagram functions and related
functions, we refer the reader to Kawai-Stapp [12] and the references cited there.
For the theory of micro-differential (= pseudo-differential) equations and micro-
functions, we refer to S-K-K [13]. We use in this paper the same notations as in
these two articles, unless otherwise stated.

In this article all the relevant particles are supposed to be massive. It is also
assumed that the set of their mass-values have no accumulation point (except
possibly at infinity).

§1. Singularity Spectra of Phase Space Integrals

In this section we discuss the singularity structure of the phase space integral I,(p)

=Ipp,,...,p,) associated with a partially-ordered, stable-particle Landau dia-

gram D having n external lines, N internal lines and n’ vertices. The external lines

are indexed by r (r=1,...,n), the internal lines are indexed by [ (I=1,...,N), and

the vertices are indexed by j (j=1,...,n"). The j-th vertex shall be denoted by V.
A formal definition of phase space integral I,(p) is given as follows:

I]l (p? = 1)Y (P, o) Hé“(Z Ui rlp, + Z U: l]k)

N
[T 6(k7 —mp)Y(k, o) H d*k,. (1.1)
=1 =1

Because this integral involves delta functions of arguments that can be
functionally dependent in the domain of integration, the general rule for defining
products of hyperfunctions (S-K-K [13], Chapt. I, Corollary 2.4.2) does not
provide a general rigorous definition of (1.1). In fact, the u =0 points (Kawai-Stapp
[12], §0) are precisely the points where the immediate application of the general
rule fails. Nevertheless, the integral I,(p) has, as we shall see, because of the
tameness of the integrand, a natural well-defined meaning.

In order to investigate the singularity structure of I,(p), we introduce,
following Riesz [15], an auxilliary integral

LoD A )= TPy v P Aoy s Ay 2N
defined by
Pl Y(p,o) T 4< )
{1 [0 5, oean e 3 o
N (kzz"ml)+ al

11

=1

m Y(k, o) znl d*k,. (1.2)



102 M. Kashiwara et al.

Here Y is the Heaviside function, and f7 = f*Y(f) if ReA>0 (see Gel'fand-Shilov
[16]). We call I (p; 4, A') the generalized phase space integral associated with D.

For Rel,, Re;»0, the integrand of (1.2) is well-defined as a product of
continuous functions. Furthermore, the integral (1.2) is a proper integral in the
sense that the support of its integrand is confined to a compact set as long as p is
confined to a compact set. This property follows from the fact that the diagram D
is partially -ordered. That means that the vertices of D can be indexed in such a way
that j'<j whenever there is an [ such that [J:[]=+1 and [j:[]=-1.
Geometrically, this means that D can be drawn with all lines directed from left to
right. One then sees that the energy k, , of any line is less than the total energy of
the incoming or outgoing lines. Consequently the momentum k, is also bounded,
by virtue of the Heaviside function Y(k? — /,c,)

The singularity structure of I(p;4,1") is, as will be seen below, sufficiently
manageable to allow us to obtain information on the singularity structure of I ,(p)
by making use of an analytic continuation procedure with respect to parameters 4
and A". This analytic-continuation procedure will be explained later (Theorem 1.4).

In order to simplify the writing, we change our notation until the end of the
proof of Theorem 1.7, by introducing the following definitions:

p,=k._, (r=n+1,...,N+n=M)

w=m,_, (F=n+1,...,N+n=M) (1.3)
A=A_, (r=n+1,...,N+n=M).

Then we consider the following distribution

Ar n’ M
oypin= (1050 vy, 104 X Gorln) (1)

First we recall the following result due to Bernstein-Gel’fand [17] and Atiyah
[18], see also Kashiwara-Kawai [26].

Lemma 1.1. @(p; A) is a well-defined distribution in p which depends meromorphi-

cally on A=(A4, ..., Ay). Furthermore, ®p(p;A) is holomorphic in A when ReA, >0

(r=1,....,M).

Proof . First note that p, ;=0 under the assumptions that p? > u? (r=1,..., M) and
M

that ) [j;r]p,=0 (j=1,...,n). Therefore it is enough to investigate

r=1

bopi= [ ZZ4 1 54( Y Gorln) (14

j=1

on the open set {peR*™; p >0, r=1,...,M}. It is clear that

M
Y= {pelR“M; Z U:rlp,=0,j=1, ...,n’}

(p; — 1))
ra,+1)
restricted to Y enjoys the properties claimed in Lemma 1.1. ThlS assertion

immediately follows from (the proof of) Theorem 2 of Bernstein-Gel’fand [17].

is 4(M —n)-dimensional affine space, hence it suffices to show that ]_[
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Next we establish a bound on the maximum possible singularity spectrum of
®,(p; ) considered on M, ={(p, )eR*M x C¥; p, ; and ReA, >0 (r=1,...,M)}.
Clearly @p(p;2) is holomorphic with respect to 1 on M ,. That is,

G
5)1 &up;2)=0, r=1,....M (L1.5)
holds on M ..

The following Lemma 1.2 immediately follows from Theorem 18 of
Kashiwara-Kawai [26].

Lemma 1.2. SS.®,(p;)C{(p.4; |/ —lwo)'e)/—1S*M,; 6=0 and (p;u)
satisfies the following condition (1.6)}.

There exists a sequence of complex four vectors p{™ and v{"™ and complex scalars
o™ which satisfies the following :

Z[j:r]pﬁ('")z(), j=1,...n, (1.6a)
p—p, with p,o>0 and plzp?, r=1,..,M, (1.6b)
oc(m)p('"’-}-‘i[j:r]vg'")—»ur, r=1,...,M, (1.6c)
am(ptm? — )0, r=1,..,M. (L.6d)

Proof. Since (p?—u?)’r can be expressed as a linear combination of (p? —pu?
+ ]/—71())“ lor (p? —uH)* log(p? — 2 + ]/_0 if A, is a non-negative integer]
and (p? —p?2 — [/*0 # [or (p? — 1) log(p? — u? — 1/_0) if 2, is a non-negative
integer], Theorem 18 of Kashiwara-Kawai [26] entails that S.S.®,(p;4) is
contained in {(p, 4; ]/Tl(u, g))e ]/——_15*M +3; 0=0and (p;u) satisfies the follow-
ing condition (1.7)}.

There exists a sequence of complex four-vectors p™ and v and complex
scalars o™ which satisfy the following:

Z U:rlp™m=0, j=1,....n, (1.7a)
p™—p, with p, >0, r=1,..,M, (1.7b)
(X(m)p(m)+ ._Zl D:i‘]ug‘m)—.—)ur’ V———l, . ,M) (1.70)
" (pM? — -0, r=1,..,M. (1.7d)

Furthermore, since @ ,(p; 4) is zero unless p? = p? holds for all r, the limiting point

must also satisfy p?=u? in order that (p,4; |/ —1(u,0)) be contained in
S.S. @,(p; A). This completes the proof of the lemma.

L Here geC”x~R*™. More intrinsically, we had better use the notation (p,2; }/—1(Cu,dp)

+2Re<0,dA))o0) to denote a point in |/ —15*M .. Since there is no fear of confusion, here we use a
simpler notation
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We shall now analytically continue @, (p; A) with respect to A so that the point
A,=—1(r=1,...,M) can be reached along a path y of continuation and that
&p(p;—1,...,—1) is a well-defined distribution. Furthermore, the resulting
distribution will be shown to coincide with @,(p), whose meaning will be made
precise by representing it in an unambiguous form after suitable coordinate
transformations. In view of this equality, Theorem 2.2.8 of S-K-K [13], Chapt. I1I,
proves that S.S. @,(p) is confined to the set given in Lemma 1.2, as we shall discuss
later on (Lemma 1.6).

In order to make this analytic continuation work, we choose a specific
coordinate system so that @(p;A) can be explicitly calculated. For this purpose,
we first choose, for each j, some r=#(j) such that [j:r(j)]=1 holds. That is, we
choose a preferred incoming line at each vertex. We denote by R, the set of all
preferred r(j)’s and by R, the index set for non-preferred lines. Then it is obvious

M
that the set {pe]R“M; p?=p? (reR,y) and Y [j:r]p,=0 (j=1,...,n/)} is a non-
r=1
singular manifold. That is, hypersurfaces {p; p? = u?} (re R,) intersect transversally
M
n {p; Y :rlp,=0(=1,... ,n/)}. Therefore we can define
r=1
2y
+

Folpi2)= T1 802~ 2)Y(p,,0) [] (’}ra T Y0 na4(z U: r]p,) (18)

reRo reRy r=1

as a product of continuous functions on the manifold {pe]R”’M s pE=u? (reRy),

M
> U:rlp,=0 (j=1,...,n/)}, if Re4,>0 (reR,). Note that
=1

2\Ar
I % v, 194 1710

reRo

depends holomorphically on 4,eC (reR,) [i.e., it is entire in 4, (re R,)] and that it
reduces to

T 82— 12)Y(p, o) H 54(2 it r]p,)

reRo

for 2,=—1 (reR,), since the hypersurfaces {p;p?>=p’} (reR,) intersect transver-
sally on the manifold

M
{P; Y [j:rlp,=0, j=1,...,n’}.
r=1

It is convenient to introduce at this stage a holomorphic transformation of
coordinates. Originally all the components p, , were measured in the same
coordinate frame X. We now introduce a set of frames X, one for each vertex j. The
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components of p, as measured in X, are

3
D= 2 Biabry: (1.9)

where B; is a certain Lorentz transformation. It is defined to be the unique boost
(pure time-like Lorentz transformation) that transforms the total momentum-
energy going out from V), namely

P(J?utE z P, (110)

reR-(j)

into a vector with null space components:
(B;Py"),=0 (u=12,3). (1.11)
The set R_(j), and some other related sets, are defined by
R_()={r:[j:r=—1
R ()={r;lU:r]=+1}
R,()={reRy;[j:r]=+1}
Ry={r;[j:r]++1 forallj}
R;={r;reR,, or [j:ir]=+1 forsome j<j}. (1.12)
The vector p'=(p',...,p,) is then defined by
PL=pY (reRL()
and (1.13)
Py =p,, (reR)).

That is, the vectors p, that are incoming at vertex V; are measured in the frame X,
in which the sum of the p% going out from vertex j has null space-components. In
terms of these new variables p, the momentum-conservation law at vertex j takes
the form

> p=0, (L14)

reR+(j)

whereas energy conservation at vertex I} takes the form

Y Pho— X Phh=0. (L15)

reR 4 (j) reR - (j)

The components B;,, of the boost B; are real analytic functions of the
components of P$"'. This is readily seen from an examination of the formulas of
Ref. [19]. Thus the vectors p’ are real analytic functions of the vectors p.

A more detailed result can be stated if one uses the partial-ordering condition
on D. This condition asserts, as was mentioned before, that the vertices V; can be
indexed so that j'<j if, for any I, [j':[]=+1 and [j:[]= —1. Adopting such a
convention for the indices j one finds that the vector p. associated with a line
incoming at any vertex V; is a function only of those p,. that are associated with
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lines that are either incoming at some V. with j'<j or are incoming on no vertex.
Thus we have

p.=pip,) (reR.(), r'eRy. (1.16)

This result follows from the fact that B; in (1.9) depends on the vectors p,.
associated with the lines r'e R_(j) that are outgoing at V}, and for each of these
either r'eR, or r'eR.(j) for some j'<j. That is, R_(j)CR; This form (1.16),
together with the inclusion relations R ,CR; CR,C... CR,, and the invertibility of
the Lorentz transformations B, ensures that the mapping p'(p) has a holomorphic
inverse p(p’) such that, for each reR_(j),

p,=pdp) (reR.(j), r'eR) (1.17)

with real analytic right-hand side. One can prove this result by ordering the indices
r so that the re R, come first, then the re R (1), then the re R, (2), etc. Then the
terms in the Jacobian matrix (0p,/dp,) involving 0B;/dp, will all lie on one side of
the diagonal, and will not contribute to the determinant |dp’/dp|. This determinant
will then be nonzero due to the nonsingular character of the B;. Then for each
integer h (1 <h<n’) the set of Egs. (1.16) with j <h can be holomorphically inverted
to give the corresponding set of inverse Egs. (1.17) for j<h.

Since the variables p’ are holomorphically equivalent to the variables p we can
use p’ instead of the p, in proving results about the existence of integrals when
continuation is made in . In the following theorem we use the variables p’ almost
exclusively. Thus in that theorem we shall drop the prime on p/ and represent p; by
p,- The original variables p, will be denoted by p°"%. Similarly, functions such as
Dp(p’; A= Dp(p(p); 2), ete. will be represented in Theorem 1.3 by simply @,(p; ).

We now prove the following
Theorem 1.3. There exists a path y in A-space such that @p(p;A) continues into a
well-defined distribution ®p(p;A°) at A=2°=(—1,..., —1) provided 1° is reached
along the path y. Moreover, ®,(p;A°) can be identified with the corresponding
distribution @ p(p) associated with the phase space integral.

Proof. Clearly it suffices to consider the distribution Fj(p;4) defined in (1.8)
instead of @,(p;4). Let f(p) be a C*-function with compact support and consider
the following integral.

I(f ;2= [Fp(p; A)f(p)dp. (1.18)
We shall analytically continue this integral with respect to A. Define w, by
p? +p2. Then I(f;2) can be rewritten as follows:

ff(p)HMY(p )ﬁ53 > P
reR, F(/lr_*_l) "0 j=1 ( r)

reR 1+ (j))
n . dspr .
'ﬂé( Y Pro— 2 pr{o) [T 5. I1 *p,. (1.19)
j=1 reR +(j) reR -(j) reRo wr reR;

Since the diagram D is partially-ordered, we may, as mentioned above, assume
that the vertices D are indexed so that if for some [ [j:[]=+1and [i:[]= —1 then
j<i (see Fig. 1.1).
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Fig. 1.1. Wiggly lines are preferred lines

We also assume now, for brevity of notation, that the lines are indexed so that
P,y =p; Then energy conservation at ¥, implies

Piot 2 o= Y pY. (1.20)

reRgy(Jj) reR - (j)

Hence we have

Pjo—W;= Z pf'{)o“ Z @,

reR - (j) reR +(j)
=< Y po— X m)—( L @) (1.21)
reR - (j) reR 4 (j) reR +(j)
Define a; by( yoph— Y ,u,.)m and ¢, by( Y (u),—,ur))”z. Since
' reR - (j) reR+(j) reR (j)

(pj,O_U)j)(pj,0+0)j):p?—"/'tf-—_>~0

holds in the domain of integration of (1.19), a —? =0 holds there. Since ¢;=0
holds, a; is well-defined and non-negative.

We now invoke the following lemma, in order to make the calculation of (1.19)
explicit.

Lemma 1.4. We can introduce a coordinate system

P'=(0,2;p,) (=1,...0 =1, n()=34{r;[j:r]=1} -4, r'eR,)* (1.22)

M

on[peR*™;p >0(r=1,...,M),p?=p? (reR,)and Y [i:r]p,,yj=0(j=1,...,n/)}
r=1

so that the following hold :

d3pr G n(j)
I1 s =J;0}Vdo; H dQ;; ; (1.23)
reRg(j) v i=1
the p, (p') and J (p’) are real-valued analytic functions of p'=(g;, Q,;p,); and
a§=( > = Y uy) (1.24)
reR () reR + (j)
is real analytic in (¢, Q;;,p,) (' <J, reR ).

2 Note that n(j) =2 by the assumption that D is a stable-particle diagram, ie., # {r;[j:r]=1}=2,
where 4 A denotes the number of elements in set 4
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Proof of Lemma 1.4. The set R ,(j) defined in (1.12) is the set of indices r that label
the lines that are incoming at vertex V. For each j let r; and Q;; (i=1, ..., n(j)) be
the radial coordinates for the set of vectors p, (reR_(j)), restricted by the
momentum conservation law condition (1.14). Thus

ri= % @) (1.25)
reR +(j)
and
p.=rf Q) (reR.()). (1.26)

The variables Q,; are the angular coordinates for the n(j)-dimensional spherical
surface defined by the intersection of the (n(j)+ 3)-dimensional spherical surface
{rf =1} with the codimension 3 subspace

L2

reR + (j)
The functions f,(€;;) are then real linear combinations of products of sines and
cosines of the angles ;.

Let J; be the Jacobian of the transformation shown in (1.23). Let J' be the

similar Jaicobian when r; is used in place of g;. It is, apart from a constant factor
and factors 2w,, just the Jacobian of the transformation from a set of n(j)+1
rectangular coordinates p, (re R, (j)) to the set of radial coordinates (rj, ;). Thus it
is, apart from the factors 2w,, a real analytic function of the angles Q;;.

Equation (1.26) shows that
o,(r;, ‘Qij)E( > (V2 +(p,) ﬁ%))”z (1.27)

reR 4 (j)
is, for fixed Q;;, a monotonically increasing real analytic function of r; that is of the
form ¢;r; with ¢;%0 near r;=0. Thus the inverse mapping

ijrj(Qj, Qij) (1.28)

is also real analytic, and the set of real variables consisting of all 7, ;,and p,. for
e R ; is holomorphically equivalent to the set p’ obtained by replacing each r; by
0; Consequently, the functions p(p’) and J(p) are real and analytic over fthe
domain of integration.

It will now be shown that each p; , is a real analytic function of the set of
variables

SjE{Qj’7Qij’apr’;j/§j9r/6Rf}' (129)

This will be shown by proving by induction that the energy conservation law (1.20)
can be written in the form

PoS)= Y PS,- )= Y ofS), (1.30)

reR-(j) reRg(j)

where the functions on the right-hand side are real analytic functions of the
indicated variables over the domain of integration.
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Equations (1.26) and (1.28) give
er(Hf+pf)l/2=wr(gja Qij) (reRg(j)) (131)

with a real analytic right-hand side. Thus the second term on the right-hand side of
(1.30) has the indicated form. For re R (j) the mass-shell constraint gives p, ,=,.
Thus (1.30) will be true if the first term on the right-hand side has the indicated
form.

Suppose h is some integer 1 <h <n’, and that (1.30) holds for all j<£h—1. Then

Pjo=P;olS) (=h-1). (1.32)

This equation is trivially true for h=1. Assuming (1.32) we shall show that the first
term of the right-hand side of (1.30) has the required form for j=h. Since §;_; CS;
this Eq. (1.30) with j=h then defines p, ((S) for j=h, and (1.32) becomes true with
h replaced by h+1.

Equations (1.26), (1.28), and (1.29) give, for any j and reR_(j)

P, =00, 2;)=p(S) (reR,(j) (1.33)
with real analytic right-hand side. Then Egs. (1.31), (1.32), and (1.33) give
p,=p/(S) (reR) (j=h-1) (1.34)

with real analytic right-hand side. This result and the mapping (1.17) give
prE=pS)  (eR)  (=h-1) (1.33)

with real analytic right-hand side. The Lorentz boost B is a real analytic function
of

PM= ) pE (1.36)

reR-(j)CRj-
Hence (1.35), with j replaced throughout by j—1, gives
B,=B(S,;-) (=h) (1.37)

with real analytic right-hand side. This result and (1.35) give

pP=BpyrE=pd(S;_) (reR;_;) (i<h) (1.38)
with real analytic right-hand side. This result gives
Yo=Y pS;m)  (=h) (1.39)
reR-()CR;-1 reR-(j)CRj-

with real analytic right-hand side. Thus the first term on the right-hand side of
(1.30) has the required form. Since S;_, CS, the right-hand side of (1.30) can be
used to define left-hand side. This gives (1.32) for j=h. Thus by finite induction the
limitations involving h can be removed and (1.34) gives

p,=p{S) (reR) (1.40)
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with real analytic right-hand side. Similarly, (1.39) and the definition (1.24) of g,
give

a}?z > pg{)O(Sj—l)_ > “r:a}(sj—l) (1.41)

reR - (j) reR +(j)

with real analytic right-hand side. This completes the proof of Lemma
1.4. Q.ED.

Continuation of the Proof of Theorem 1.3. Using Lemma 1.4 we can rewrite
integral (1.18) in the form

I=1(f;7)

n’ 1
=[f) 1:11 [m (a;—0)%(a;+0)%

n(j) a3
(pj0+ @) Y(p; 0 0] Vde; n dQU} [13 =3 (1.42)
reRy @,
By setting ¢;=a;0; we further rewrite (1.42):
1 1 n’ 1 )
I=y{)...) o(p )2+ + 1)/2
0(1- o) 11 [y
1\A S, Aj s dspr
(1=0))"(1+0))"dg) ﬂ de,;| I1 . (1.43)
2
i reRy ,

Here o(p)=/"(v) n Prot @) ¥(p; o) (@), with [(p)=f(p). Recall that

Y Pro— z 1, is an analytic function of (¢;,,2,;.p,) (' <j,reR,). The
reR=(j) reR )

transformation of I into the form (1.43) is legitimate, because n(j) = 2. We shall apply
the following Lemma 1.5 to (1.43).

Lemma 1.5. Let ¢(x)=¢(x,,x’) be a continuous function defined on L={x,;0=x,
oo

Xy

<1} x K for a compact set K. Assume that is bounded and measurable on L.

Then, for A with ReA> —1, we have

(A+ D1 =x;) lx;, x)dx,

O ey =

1

0
= (1, x)— [(1—(1—x, )} 1)L dx, (1.44)
0 0x,
Proof of Lemma 1.5. Since

o
(= (1= )= (L= (1= x, )

o, +(+ 1)1 —x) e

axl

holds, we have

o(1,x")=

O ey P

1—(1— )Hl)%‘ﬁdxl+(z+1):§)(1—xl)ﬂ¢dxl. Q.ED.
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The right-hand side of (1.44) is well-defined for 4 with ReA> — 2. Hence we can
define the analytic continuation of the integral given by the left-hand side of (1.44)
by the right-hand side of (1.44). Moreover, the second term on the right-hand side
disappears for A= —1.

To apply Lemma 1.5 to (1.43), it suffices to show that

n’
< H (2/ +n(j)+ 1)/2>
004\ ;

Jj=1

is bounded on the interval 0<¢} < 1. Recall that a}?(g ) 1s an analytic function of
the g, for j’<j, that ¢;=¢/a;, and that ¢ is C* in the g, It follows from these
conditions that the above function is indeed bounded provided Re4;>0 for j=2,
and Red, > —3/2. To show this for the terms obtained by differentiating @ one
uses the general formulas

9% _ 5 9 %
dg; =1 0g; 00
and
do; _ oleiafey)) ,
aQ}— ('3(_) (k<i)
=0 if i<j
=g, if i=j
i1 oa? o
—a, LTS

k=j 2a; 0y, E—Qj

Repeated use of the second formula can produce in some terms a factor as singular

as H (2a;)"*. But this factor is more than compensated for by the factor

n'

H 2) T2 provided Red;>0 for j=2. If ReA;>0 for j=2 then

t\)

J (a2) R0+ 172 — (24;+n()+1) (aj;)(3)~j+n(j)— 1)/2

oo, T 2
i 6( ) an>
1.45
(kz. &Qk 00; (143)

is likewise bounded, for similar reasons. The factor (a})Z***"M* /2 does not
depend on the g/s. It remains bounded provided Re/, > —3/2. Therefore, if we
define a segment {y,(1)}o<,<, in € by

YO =(=2t+1,2,,...,4,),

where Re4,>0,j=2,...,n, then I(f; 1) can be analytically continued from a point
in its original domain of definition to a point whose first coordinate is equal to — 1.
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__ 1,0
(-1,1,---.1.0) P
0 (1,0,+-,0) Re 4,
7[\’ {
|
A ;' A10,0,7,-1)
________ 177
(=11, =1) (071, 1)
Fig. 1.2

Then we can use (1.44) to determine the value of the integral I(f; ) at 4, = — L. It
gives

1 1
I 59, O=y =5[] - (f)(fp(p)lg,-la?‘” '

0
" (ZA +n(j)+1)/2
U I(4; +1
n' n(j)
(L= @)M(1+g)~des| ] HdQUH 2 (1.46)
j=1i= reRy r

Since the same argument applies to (1.46), we can find successively a sequence of
segments y,(?), ..., 7,(t) (see Fig. 1.2 above) along which I(f'; A) can be analytically
continued, and we obtain, finally,

I(f; A% =( )n f(@ =.. =Q;,,=1)
n(j d3p
ﬂ 200 172 H o, [ 5. (1.47)
j= =1 rst 260,,

On the other hand, by making use of the coordinate system introduced by
Lemma 1.4, we can write

M M
D(p @,(p) [Ild“pyE lelé(p,Z-#f)Y(pr,o)
n 5(2 b r]pr) [,
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in the form
- n’ n(j)
Du(p)=[] |0(a; —0))Y(a)Y()p; o+ )~ 'J ;0 Vdo; I] Q;;
j=1
1 dp,20,. (1.48)
reRy

To evaluate this expression one can apply the standard formula

11 Lot =l fox .

which holds wherever the determinant on the right-hand side is nonzero. Since a;
is an analytic function of the set of variables S i1 which includes none of the
variables g, for i=j, this formula gives

1o

The determinant J on the right-hand side vanishes if any g; is zero. Hence the
contribution to this distribution from points where any ¢, j vamshes is initially not
well defined. However, the ill-defined functions IH(ZO )~ t=J" ! occurs multiplied
by [[ei". Since each exponent n(j) is at least 2 the zeros of '[hlS latter factor more
than compensate for the poles of J~ 1. Hence & (p) is naturally defined by inserting
(1.49) into (1.48) and then using continuity to define the value of

-1

ﬁ [0(a; —03)do1= =J ' (1.49)
j=1

( ) [1 Y(@)Ye)p;o )" 0j"

to be zero when any ¢;=0. This definition assigns a null contribution to the
distribution @ (p) from this set of zero measure where J =0. Then a comparison of
(1.48) to (1.47) shows that @, (p)=P(p; A°). This completes the proof of Theorem
1.3. Q.E.D.

With the analytic continuation now completed, what remains to be shown is
the following.

Lemma 1.6. Let f(x, A) be a hyperfunction defined on M x Q, where M is an analytic
manifold and Q is a connected open set in C. Assume that [ depends holomorphically

on A Assume that (x°,1%; |/ —1(£°0)) (e |/ —1S*(M x Q)) does not belong to
S.S. f(x,2). Then (x°,2'; |/~ 1(€°,0)) does not belong to S.S. f(x,7) for any ) eQ.

See Theorem 2.2.8 of S-K-K [13], Chapt. 11I for the proof of this lemma.
Applying Lemma 1.6 and Theorem 2.2.6 of S-K-K [6], Chapt. I successively to
@p(p; 4) considered in a neighborhood of y;, we see that the singularity spectrum of

@,(p; A°) is confined to the set of points Wthh satisfy condition (1.6).

Furthermore, the preceding arguments show us that @,(p; 2°) is annihilated by
any of the multiplication operator (p? —u?) (r=1,...,M). Hence the additional
condition “p?=p?” in (1.6b) can be replaced by “p,z—u,’” Hence we have the
following.
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Theorem 1.7. The singularity spectrum of ®@(p;2A°) is confined to the set of points
(p; )/ —1u) which satisfy condition (1.6) with the replacement of the condition in
(1.6b) by a stronger condition p} = u?.

Here we return to the original notations, i.e., we abandon the convention (1.3).

Then, applying Theorem 2.3.1 of S-K-K [6], Chapt. I to {@(p, k; A°)dk we obtain
the following final result. Note that this integral is a proper integral.

Theorem 1.8. The singularity spectrum of phase space integral I,(p) is confined to
the following set #(D):
7(D)={(p: ]/:Tu)e ﬂS*lR‘”’ ; there exist real four-vectors k, (I=1,...,N)
and sequences of complex scalars o™ (I=1,...,N) and p™ (r=1,...,n) and
complex four-vectors p™, ul™ (r=1,....n), k™ (I=1,...,N)and v\ (j=1, ...,n)
which satisfy the following relations (1.50)}

p"—p, with p, >0, pl=u> (r=1,..,n), (1.50a)

umou,  (r=1,...,n), (1.50b)

kKm—k, with k >0, ki=m} -(I=1,...,N), (1.50¢)

(kM2 —m?)—»0  (I=1,...,N), (1.50d)

BU(p)? —u2) -0 (r=1,...,n), (1.50d")
N

Z Gorlp™+ Y [:km=0  (=1,....n), (1.50¢)
1=1

uim)_:_ Z D':r]v§m)__ﬁf‘m)pf.m) (7‘=1,...,7’l), (150f)

j=1
> U0 —ok™ -0 (I=1,...,N). (1.50g)
j=1

The arguments given above show that I,(p; A% =1p(p) is annihilated by the

multiplication operators (p? —u?) (r=1,...,n) and ) [j:#]p,. Therefore it has the

form b

54(ZUtr]p) l:[ P = 1)pp(p). (1.51)
if

(P> —12=0} (r=1,....n) and {Z[, rip, = } (1.52)

cross normally.
Condition (1.52) is satisfied if p is not contained in .#, = {pe.#,; all p,’s are
parallel}. Here .#, denotes the reduced mass-shell manifold, i.e.

{peIR‘“1 ZD r1p,=0, pl=u? (;'zl,...,n)}.
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In this case we may discuss the singularity spectrum of ¢,(p) defined on
M=M— M,

First note that the inclusion map from .#' to N=R* —_#___ induces the exact
sequence

0-TEiEN—->T*N x M'->T*4'—-0. (1.53)
N
In other words, each point in T*.#' can be represented by (p;u)eR®" with the
following equivalence relations:

(p;u) and (p";u') represent the same point in T*.#" if and only

if both, (1.54)
p=p (1.55a)
and
u,—u.=—[jr:rla=pBp, (F=1,..,n (1.55b)

hold for some real four-vector a and real scalars f§, (r=1,...,n).
Making use of this convention, we conclude from (the proof of) Lemma 0.2 of
Kawai-Stapp [12] that the following two statements are equivalent.

(p; )/ —1weSS.@pp)C )/ —18*4", (1.56a)
(p; )/ —lweSS. Iyp)n )/ —1(S*N - S%.N (1.56b)

Here (p; ]/—“u in (1.56a) should be understood according to the convention
stated above. In other words, the variety #(D) defined in Theorem 1.8 defines a
variety in ]/_S*% " by just the same relations (1.50) on the understanding of the
above equivalence relations. Thus we obtain

Theorem 1.9. The singularity spectrum of @p(p), which is well-defined on ', is
confined to P(D) considered in |/ —1S*M'".

Remark 1. Since the set of points (p; u) which satisfy conditions (1.6) is contained in
the real locus of a Lagrangian variety (Kashiwara-Kawai [26], Proposition 15),
the set defined by (1.50) is also contained in the real locus of a Lagrangian variety
(Kashiwara-Kawai [10], Lemma 5). Hence the projection of the set defined by
(1.50) to the base manifold .#' has at least codimension 1: it contains no open set.

Remark 2. Condition (1.50g) is equivalent to the existence of a set of complex
vectors (@™, 6{",,6{" ) and complex numbers ", and f{") such that

u('"’—u""’ B"”) k"")+5("‘) ¢t ([=1,...,N) (1.50g1)
and
5§’"3_r -0 (I=1,...,N), (1.50g2)

where [, ():[]=+L
Without loss of generality we may also impose the conditions

um=0  (r=1,...,n) (1.50h1)



116 M. Kashiwara et al.

am=0 (I=1,...,N). (1.50h2)

The introduction of @™ and of the normalizations (1.50h1) and (1.50h2) are
convenient in the discussion in §3 (cf. Definition 3.1).

As mentioned in §0, a gap in the proof of Lemma 2 of [9] was discovered and
this obliged us to change the statement of our results from that given in our
announcement [14]. At the same time, we mention that in [14] we omitted
conditions (1.50d) and (1.50d’) in defining the extended Landau variety #(D) in
order to be able to state a result involving only real quantities. However, omitting
conditions (1.50d) and (1.50d’) results in the failure of the claim of the Lagrangian
character of Z(D). Hence the first two lines of p. 143 of [14] are incorrect, as they
are stated there. Theoretically this defect is too serious to be compensated by the
other advantages, even though it is not so serious when we apply our results to
concrete problems (see §3 and Iagolnitzer-Stapp [8]). Hence we have decided to
restore the conditions (1.50d) and (1.50d’) in this paper in defining the extended
Landau variety.

Although a correct proof of Lemma 2 of [9] has not yet been constructed, the
claim itself is still believed to be true (Kashiwara-Kawai [26], §7, Conjecture). This
conjecture yields the following conjecture:

Conjecture. In the definition (1.50) of L(D), we can assume in addition that o{™
(I=1,...,N)and B™ (r=1,...,n) are real.

§2. The Causal Part of £(D)

The principle of macrocausality states that momentum-energy is transferred over
macroscopic distances only by stable particles. More specifically, it states that any
transfer of momentum-energy that cannot be attributed to a space-time network
of stable particles occurs with a probability that falls off exponentially under
space-time dilation. This principle can be formulated in a precise and natural way
at non u=0 points, and entails, at these points, that the essential support of the
S-matrix, and hence also its singularity spectrum ([21,22]), is confined to the
union of the positive-o Landau varieties . * (D). These varieties £ * (D) are defined
in the same way as Z(D), but with all quantities real, with the parameters o
restricted to positive values, and with all quantities independent of m (i.e., with no
limiting procedure).

At u=0 points two or more of the momentum-energy vectors p, are parallel.
This leads to complications in the physical arguments, and to the need to consider
limiting procedures. This was discussed in detail in the preprint version of this
paper. [IAS (Princeton) Preprint, April 1978. See also the report of T. Kawai and
H. P. Stapp at the symposium “Hyperfunctions and linear differential equations
V.” held at RIMS, Kyoto Univ. (Japan) from Oct. 13, 1976 through Oct. 16, 1976,
RIMS Kokytroku, No. 287, pp. 170-182.] But the arguments are too lengthy to
be presented here. Rather, to be more brief, we shall define the causal part of #(D)
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by adding to the Egs. (1.50) that define .Z(D) the two extra conditions

M —-0 (all j) @.1)
and
Reo(™>0 (all ,m). (22

These two conditions ensure that each point in the causal part of Z(D) is
associated with a sequence of diagrams that approach a sequence of real space-
time networks of stable particles. The existence of such a sequence of real space-
time networks leads to a breakdown of the arguments whereby one concludes
from the macrocausality principle that the limit point (p,u) is absent from the
singularity spectrum. Thus macrocausality cannot exclude the causal parts of
the sets #(D) from the singularity spectrum of the S-matrix. On the other hand,
the sequences that generate the non-causal parts of £(D) do not correspond,
directly at least, to sequences of real space-time networks. Hence these sequences
should not, according to macrocausality principle, be associated with singularities
of the S-matrix.

This argument assigns special status to the sequences defined by the modified
Landau equations. On the other hand, there might be other ways to characterize
the singularity spectra of the phase space integrals, that would lead, via the same
reasoning, to different conclusions. Our conjecture therefore rest ultimately on the
naturalness of the modified Landau equations, within the framework of holo-
nomic functions. Within this framework our conjectures appear likely to be
compatible with unitarity, but this must eventually be shown to be the case.

Condition (2.1) entails

Im(™k™)—0 (all ]) (2.3)
or equivalently

Reo{™ Imk{™ + Imo{™ Rek{™ —0. (24
The imaginary part of (1.50d) gives

Imof™[(Rek™)? — (Imk{™)* —m}]+2Rea{™ Imk{™ Rek{™—0 (all ).  (2.5)
Equations (2.4), (2.5) and (1.50c) imply

Imo™—0 (all ). (2.6)

But for each sequence that satisfies (1.50) and (2.6) one can construct, by setting
Imo{™ =0, another sequence that satisfies these conditions and has the same
hmltmg values (p, u, k). Slmllarly Im ™ can be set to zero. Thus the causal part of
#(D) is contained in #*(D), which is defined by Egs. (1.50) augmented by the
condition that o™ be real and positive, and the ™ be real.

Conversely, Z*(D) s contained in the causal part of Z(D), since the conditions
that the o{™ be real and positive and that the ™ be real, together with the
equations (1.50), entail (2.1) and (2.2). Thus the causal part of Z(D) can be
identified with £ (D).
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3 space

time

Fig. 2.1. A space-time diagram showing a typical network of mechanisms. This network transfers the
energy-momentum of the initial particles 1, 2, and 3 to the final particles 4, 5, and 6. Momentum-energy
is conserved at each vertex

§3. Generalized Landau Equation

On the basis of the considerations given in §1 and §2, we introduce the following
conjecture on the micro-analyticity of the (on-shell) S-matrix (cf. Pham [23], Sato
[11], Kawi-Stapp [12] and references cited there).

Conjecture. The singularity spectrum of the S-matrix is confined to the set

FH= kl));.@’L(D),

where D runs over all partially ordered Landau diagrams, and P*(D) is defined in
the same way as (D) of § 1, but with the additional condition that all o{™ be positive
and all ™ be real.

This conjecture on the singularity spectrum of the S-matrix is a special case of
the following conjecture on the singularity spectrum of general bubble diagram
functions:

Conjecture. The singularity spectrum of Fg(p) is confined to the set
PE= | ) 2°(D)

DeB
where B is the set of Landau diagrams that fit in B (see [7]) and £°(D) is defined in
the same way as % (D) except that for every line | of D that lies inside a plus bubble
of B one imposes the condition o\™ >0, for every line | of D that lies inside a minus
bubble of B one imposes the condition o™ <0, and one allows all other o™ to be
either positive or negative.

This conjecture is a natural extension to u =0 points of the Structure Theorem
proved in [1-7] for u=0 points.

The extended Landau variety #°(D) is a natural object, both from the
mathematical and physical viewpoints. But the need to consider limiting pro-
cedures and complex quantities makes the set #°(D) difficult to use in practical
calculations. However, there is a partial characterization of #°(D) that involves
only real quantities and no limiting procedures, and that is often adequate for
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practical purposes. This characterization is in terms of a variety #;(D) called the
generalized Landau variety.

The generalized Landau variety #;(D) is defined by generalized Landau
equations. Before defining these equations we first recall the definition of ordinary
Landau equations. The expression of these equations given below is a little
different from the usual one (e.g., the equations used in Kawai-Stapp [1]), but its
content is the same.

Definition 3.1 (Landau equations). A set (p,...,p,; U, ....u,)=(p;u) consisting of
n real four-vectors p, and n real four-vectors u, is said to be a solution of Landau
equations associated with the Landau diagram D if and only if there are sets of real
four-vectors k;and @i, (I=1,..., Nyand v; (j=1,...,n’) and real scalars §, . and f§, _
(I=1,...,N)and f8, (r=1,...,n) such that the following equations are satisfied:

pi=ul, P.o>0 (r=1,...,n), (3.1a)
ki=m?, k ,>0 (I=1,...,N), (3.1b)
n N

Y U:rlp.+ Y U:lk=0 (=1,...,n), (3.1c)
r=1 =1

u,=—[j{r):r]v;,,—B,p,) (r=1,...,n), (3.1d)
y=v; P +k (I=1,...,N), (3.1¢)
af, B, )=00,20 for all signed lines [. (3.1

The Landau variety #?(D) is the set of points (p; V?lu) such that a solution
(p,u, k,i,v, ) of these Landau equations exists. The positive-o Landau variety
#*(D) is defined in the same way except that (3.1f) is replaced by the conditions
o, =0 for all L

Definition 3.2. A solution of the Landau equations is called star-shaped if and only
if all vertices and lines of the diagram D that represent this solution lie on a finite
set of rays that originate from a single point P (see Fig. 3.0).

For any star-shaped solution s let J be the set of indices j such that V; does not
lie at P.

Definition 3.3 (Generalized Landau equations). The generalized Landau equations
associated with a Landau diagram D consist of a set of alternative sets of
equations. The first alternative set consists of the ordinary Landau equations

Fig. 3.0
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associated with D. There is another alternative set for each star-shaped solution s
of the ordinary Landau equations associated with D. This alternative set fixes the
momentum-energy vectors p and k to be the same as in s, but allows the vertices to
be shifted. In particular, a set of real displacement vectors n;, and 7, is
introduced, and the alternative set of equations consists of

(i) the condition that the p, and k; have the values that they have in s,

(i) the ordinary Landau Egs. (3.1a), (3.1b), (3.1c), and (3.1f), and

(ii1) the equations

u,=—Ljr) i, +n;,)-B.p, (r=1,...,n), (3.1d)
b=0,, 0+ 01— Br ki (I=1,....N), (3.1e'1)
=0, y+i; =Bk (I=1,...,N), (3.1¢2)
n;,,=0 and 7#;,=0 (i¢J) (3.1g)
and

M=

i

N
U: r](Pr,o(”/j,r)v —D,, v(ﬂj,r)o) + 1;1 U: l](kz,o(ﬁj, = kl, v(ﬁj, Jo)

r=1

=0 (jeJ,, v=1,23). (3.1h)

The set of points (p; ]/——114) such that (p; u) satisfies these generalized Landau
equations is called #;(D). The positive-o generalized equations and the associated
positive-a variety ,Sf’g““ (D) are defined in the same way with the sign condition (3.1f)
replaced by the requirement that all ;, be nonnegative.

Definition 3.4. A point p is called a generalized u=0 point associated with D if and
only if the generalized Landau Egs. (3.1) associated with D have a u=0 solution
(p;u)=(p;0) in which some vertex not at the origin has incident upon it a pair of
lines with nonparallel momentum-energy vectors. The set 3;’“=°(D) is defined by
gg"’“zo(D)z {(p; V:Tu); p is a generalized u =0 point associated with D and the
set of signs o= {0,}}.

Theorem 3.1. Let D be any connected partially ordered Landau diagram. Then
(D) is confined to L(D)u.ZL7 "~ (D).

Proof. Suppose (p; ‘/——lu) lies on the extended Landau variety Z°(D). Then there
is a sequence (p™, ul™, k{™, v9", of™, p™) that satisfies (1.50), where the limits of
p™ and u™ are the given vectors p and u. It will be shown that the existence of this
sequence allows one either to construct a solution (p,, u,, k;, 4, v}, BB vs By -sm i
fi; ) of the associated generalized Landau equations, or to show that p is a
generalized u=0 point associated with D.

The conditions (1.50d) and (1.50d’) are not used in the proof. Therefore, we can
ignore the imaginary parts of the vectors, and consider all the quantities p™, u®™,
etc., to be real. [Note that the conditions in (1.50) other than (1.50d) are linear in
p™, u™, etc.]
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The limiting values of the sequences p™, k™, and u"™ are denoted by p,, k,, and
u,, respectively. Let a vertex V; of D be called a parallel vertex if and only if all the
vectors p, and k; associated with lines of D incident upon V; are parallel. Let the set
of indices j of the parallel vertices be denoted by J , and for each jeJ, let ¢; be the
unit vector in common direction of the vectors p, and k; of the lines incident upon
Vi

e;=p/Ip,l if [j:r]#0 and jeJ,
e;=k/lk| 1if [j:[]*#0 and jeJ,.

We consider now two cases:

Case (i). The vectors vﬁ"" (j¢J,) are bounded.

In this case one can, in a suitable Lorentz frame, construct a subsequence such
that

(1) for each j¢J ,

o=y
(2) for each jeJ , either
(i) v -uv,,
or
(i) o{") goes monotonically to + o,
or
(i11) v(.’"({ goes monotonically to — oo ;

(3) the ordering of the vﬁ"‘g, from smallest to largest, is independent of m.

We shall henceforth consider, in this case (i), only this subsequence. [To
construct a subsequence of the kind just described one first takes a subsequence in
which the bounded sequence of 17;'") for the first j¢J , tends a limit. Then one takes a
sub- subsequence in which U‘J"') for the second j¢J, tends to a limit, etc., until one
has a sequence in which all v("’ (i¢J,) tend to limits. Then one takes a subsequence
in which for the first ]eJ cither o9 tends to a limit or [v{™] increases
monotonically without bound Next one takes a sub-subsequence in which for the
second jeJ, either v tends to a limit or [vY"] increases monotonically without
bound, etc., until one has a sequence in which for each j¢J , the vectors v™ tend to
a limit, and for each jeJ, either v4" tends to a limit or luf")l increases monotoni-
cally without bound. For the first jeJ, such that [v9"] increases monotonically
without bound one can choose a subsequence so that v"/|v"] approaches a limit.
Then one picks a sub-subsequence such that the same is true for the second such
jeJ ,, etc., until one has a sequence in which for every jeJ, either vg."’) tends to a
limit or [v"| increases monotonically without bound and v4"/jv%"| tends to a limit.
A Lorentz transformation mixes space and time components. Thus in almost any
frame those j such that [0 increases monotonically without bound will have
unbounded v; . Again takmg subsequences one arrives at a subsequence in which
properties (1 ) and (2) hold. Finally one can enumerate the possible time orderings
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of the vertices V;, with t;=t; considered as one possible ordering of t; and ¢, If the
infinite subsequence constructed above is separated into parts having different
time orderings of the n’ vertices V), then at least one of these parts will be an infinite
subsequence. For this subsequence, properties (1), (2) and (3) will hold.]

Consider now for each j the quantity
ngn)E — Z [: ,.] [p(m>u(m) (m)u(m)]
+ z U OCkgam — kMol G=1,...,n, v=1,2,3). (3.3)
=1

Replacing each nonzero [ :#Jul™ in (3.3) by its expression in terms of v; given by
(1.50f) and replacing each nonzero [ : []a™ in (3.3) by its expression in terms of v i
given in (1.50g1), one obtains, after some cancellations,

X(m)_. Z [] r][p(m)v(m) imv)vgm())]
+ Z [ = Ok{oosm — k{mo$7]
I=1

+ ) LK), — Kin©61™ o]
leLf
— 2 TR, — kIS 1] (3.4)
leLy
where L ={[;[j:[]=+1}.
The first two terms sum to zero because of (1.50¢), which demands con-

servation of momentum-energy at vertex V. The last two terms approach zero
because of (1.50g2). Thus

Xm0 (j=1,..,n). (3.5)

The set {1, ...,n'} can be divided into a set of disjoint sets JorJys I ... J, such
that V; remains bounded if and only if jed 0-and for each g satisfying 1 Sg = <h there
is an e such that for j¢J,, e;=¢, if and only if ]eJ Then (3.5) implies that

)((m 2: ){(m) (3.7)
jedg
satisfies
Xm0 (0g<h). (3.8)

The quantity

X = 3 Y (D - )

jng r=1

+ Z U k{3 — (’"’u‘"’)]} (I=g=h (3.9)
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can be written in the form
X(gm): Z ( [p(m) u(m) ’EM)u(m)])

reRy
£ X [0 ~kna)  (1Sg<h),
o
where
R,={r;[j:r1#0 for some jeJ}, (3.10)
L,={l;[j:1]%0 for exactly one jeJ}. (3.11)

For each le L, with 1 =g <h the line L, has one end in the set of vertices {V;je jg}
and the other end in the set of vertices { = JO} since &,3¢, (1=g,9'<h) 1fg +g'.

That is, for each le L, (1 =g <h) either j +(l)eJ orj_ (l)e J o But then the existence
of the limits p, and k;, and v; for je J ;, together with (1.50g1), (1.50g2), and (1.50h2),

entail that all the 4{"™ with le L, (1 =g =h) approach limits:
am—i,  leL (1=<g=h).

[Here we have used the fact that the existence of the limit of the sequence of vectors
ot (or vt ), k™ and 8§ (or 6{™, resp.) entails, by virtue of the normalization
Vjva i-m) I+ 1, p.

(1.50h2), the existence of limit of the sequence of scalars B, (or B{™, resp.).

Actually, the limit is equal to lim (09", o/Ki"0] (or Jim [0{"}). o/k{"8], resp.). Note
that k{") >m,>0.]

Taking this limit in (3.9) one obtains

ng - Z pr,Our,v+ Z U:l]kl,oal,v
reRy leLg
jedg
—0 (Isgsh, v=1,23). (3.12)
The definitions
L= L) :rlp, o,
and
=k of (3.13)

allow (3.12) to be written in the form

Z(Z VAP [j:l]ﬁl)zo (1Zg<h). (3.14)
jeJg\reRy leLg
Consider now the diagram D, consisting of the vertices V; with je J , and the
lines of D that are incident upon them. Let D, , (b=1,2,...) be the connected
components of D, Let R, , and L, be the subsets of R, and L, that label lines of
»- Lhen the arguments that glve (3 14) give also, for each (g, b),
Z YoUcrle o+ Y [:0a) =

jedqy (Rg.b Lg,» )

(3.15)

In each D, , one may introduce a spanning tree diagram ([24]). This is a
connected diagram without closed loops that contains every vertex of D, , and
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every external line of D, , Then a unique @, can be assigned to each internal line L,
of D by:

(a) setting @i, =lim#" for each line L, of D incident upon a vertex V; of D with
J€J o

(b) setting i1, =0 for cach line L, of D that belongs to some D, , but not to its
spanning tree diagram, and

(c) requiring for each vertex V; of each D, , the conservation-law equation

Z G, + L U= (3.16)

r=1
It will now be shown that these three conditions are consistent and allow us to
determine vectors #, and i, uniquely.

Condition (a) ensures that each external line L, or L, of each D, , has a well-
defined ii, or i, Condition (b) ensures that the i, of the internal lines of each D,,
are determmed by the conservation-law conditions (c) to be unique lmear
combinations of the i, and i, of the external lines of that D ,. To see this, simply
pick a preferred external line of D, , and let the i, or @i, associated with each other
external line flow along the umque path in the spanning tree diagram that leads
directly to the preferred external line. Then conditions (b) and (c) are satisfied.
Equation (3.15) ensures that the total i, or @i, flowing out at the preferred vertex of
D, , equals that flowing in along the other lines. The tree structure of the spanning
tree diagram ensures uniqueness.

The vectors i, and #, constructed in this way can be converted back, by means

of (3.13), to vectors u, and ul that satisfy for each ]¢J0,

Zl (=07 1Pp,. oty ) + lzl Uk, oty , =0, j¢Jo, v=1,23. (3.17)

Since all the p™ and k{™ tend to well-defined limits, one may construct a star-
shaped solution s of the ordinary Landau equations by placing at the origin all the
vertices V; with je Jo» and placing on lines through the origin having direction & all
the vertices V; with jeJ,. The time ordering of the vertices on these lines can be
taken to be the same as the time ordering in the subsequence defined at the
beginning of the proof, except that all the vertices V for je J o lie at the origin, and
hence at a single point. However, all the vertices V; with j¢J, can be placed away
from the origin. Thus the set J associated with thls star- shaped solution s of the
ordinary Landau equations is the complement [in the set (1,...,n")] of J,, and
each ]ng (1=g=h) belongs to J.

The generalized Landau equations associated with D and s have several trivial
degrees of freedom. These can be removed by requiring

u, ;=0 (r=1,...,n)

iy =0 (I=1,...,N)

v; =00 (1;,)0=0A;)o=0  (jeJy (3.18)
,-=0 (j(r)ejs)

B, =0 (.(Dedy

and

B, - =0. (G-hedy
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[The simultaneous addition of v; to all 5;, and 7, , having index jeJ; changes
(3.1h’) by a term that vanishes by virtue of momentum-energy conservation at the
vertex V. And the addition of B,p, to n; ,, or B, .k, to #; o, ot B _k; to ;o 4
assuming [j:#]=+0 (jeJ), or [j:l[1=+1 (jeJ), or [j:[]=—1 (jeJ ), respectively,
also leaves (3.1h') intact.] Then the generalized Landau Egs. (3.1d’) for j(r)eJ,
(3.1e'1) for j, (DeJ, and (3.1€'2) for j_(l)eJ, are automatically satisfied, whereas
(3.1h) takes the form (3.17). Thus if we define the vectors p,, k;, u,, and v, for j¢J to
be the limits of the corresponding sequences, and define the @, in the manner
described above, then we will have a solution of the generalized Landau equations,
since all the generalized Landau equations other than those just mentioned are
limits of equations that occur in the definition of #7(D). This completes the proof
for Case (i).

Case (ii). Some vector 09" (j¢J,) is not bounded.

In this case one can construct from the original sequence a new rescaled
sequence in which:

(a) there is some j¢J, such that [09"|=1 for all m,

(b) for all other j¢J, the inequality [v{"|<1 holds for all m, and

(c) u™—0 for all r.

This rescaled solution satisfies the conditions of Case (i). Hence the arguments
for Case (i) show that a u =0 solution of the generalized Landau equations can be
constructed. This solution has |v;|=1 for some j¢J . But then p is a generalized
u=0 point, since our scaling procedure has nothing to do with momentum-energy
vectors p and k, ie., the momentum-energy vectors incident upon j¢J  remain

p
nonparallel after the rescaling. This completes the proof of Theorem 3.1.

Remark 1. The definitions and results concerning the generalized Landau equa-
tions that are given in this paper are not identical to those given in our earlier
papers (Kawai-Stapp [1], and Kashiwara-Kawai-Stapp [14]). The definitions
given previously are, in fact, more complicated and difficult to use than the present
ones, and the results stated earlier are not completely correct as stated.
Accordingly, the earlier definitions and results concerning generalized Landau
equations should be replaced by the versions given above.

Remark 2. Since the reduced mass-shell variety .#, is singular along .#,,., w

cannot talk about the singularity spectrum there. One natural alternative ap—
proach is to discuss the singularity spectrum of

n 302 ~12)Y1p,,00* (L1730, )

on |/ —18*R*" where f(p) is a function defined in a neighborhood of p e .7, in
IR*", The case where f(p)=1 is the simplest one of the phase space integrals, and
this case is thus covered by Theorem 1.8. Furthermore, the conjectures stated at

the beginning of this section apply to

11 60 =210, 0 (1,0

Jir

and

e b

3p? = 1) Y(p,, 0)0* (Z VE r]pr) 1),

F=
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respectively, if we do not employ the convention (1.54); namely, if we regard #°(D)
as a subvariety of l/——_IS*IR‘“'. Here s(p) [resp. fz(p)] denotes the off-shell
scattering amplitude (resp. off-shell bubble diagram function) divided by
6*(> [j:rlp,). The convention also applies to the generalized Landau variety

Jsr
#7(D). With this understanding. Theorem 3.1 also holds for varieties considered in
|/ —1S*R*". As a matter of fact, the prescription given by 2°(D) at M, simply
reads as follows: If pe.Z,,, and (p; |/ — 1u)e Z°(D), then

M=

(Pr. oy y = Prlly )=0, v=1,2,3.

r=1

Note that these conditions immediately follow from the Lorentz-invariance
property of the functions in question. In fact, the Lorentz-invariance property of a
function f implies that f satisfies the following differential equations:

n

d
=1,2,3.
z (pr,vapr! pr Oapr v)f 0 v Pt}

r=1

Then denoting by #, the cotangent vector corresponding to p, , (v=0,1,2,3),
we find that

SS.fc{(p; )/ —1ne |/ — IS*R*"; Z(pronr—kp“m) 0, v=1,2,3}.

" (3.18))

(S-K-K [13] Chapt. III, Theorem 2.1.1.) On the other hand, according to the usual
convention that we have been using, we identify u,=(u, o, U, 1, U, 5, U, ;) with
1= nk,n2 n3) by the aid of the Minkowsky metric in order to regard u-vectors
as cotangent vectors, namely, u, and #, are related by the following relations:

_ 0
u O_nr
u, ,=-—n, v=123.

Hence (3.18') reads as follows::
SS.SC{p: )/ =Te [/ =IS*RYs F (b oty =Pty 0) =0}

Thus the validity of our conjecture at .#, . is guaranteed by the Lorentz-

exc

invariance property of the S-matrix and the bubble diagram functions.

It may be useful to illustrate the results obtained in this paper by some concrete
examples:

Example 3.1. Let D be the diagram of Fig. 3.1. Then all physical points p are u=0
points of D.

Fig. 3.1. A Landau diagram D for which all physical points p are u=0 points. All masses are assumed
to be equal
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The Landau equations corresponding to this D can be satisfied for all on-mass-
shell values of the external momenta that satisfy the conservation law constraint
py+p,+p3=p,+ps+p.=P. The solution is represented by a space-time diagram
D in which all external trajectories pass through the same point P. Placing this
point at the origin gives a u=0 solution. Consequently, the standard results ([6],
[12]) allow every point pelR** such that the mass-shell and conservation-law
constraints are satisfied to be a singularity of I,

However, Theorem 3.1 shows that SZ‘R(D)E— U Q"(D), where ¢ runs over all

possible signs, is limited by the conditions P*=9m? and

6

Py oy, = Dr e 0)=0, v=1,2,3. (3.19)
r=1
These two conditions correspond to allowing only those space-time diagrams D
such that all the external lines are parallel and the center-of-mass trajectory of the
initial coincides with that of the final particles. Actually, Kawai-Stapp [1] shows
that the singularity spectrum of I, for this diagram D is described in this manner.
The arguments in that article were based on a specially detailed analysis in this
case and were dependent on Lorentz invariance.

Note that for this diagram D the u=0 points cover the entire set of points that
satisfy the mass-shell and conservation-law constraints, whereas the generalized
u=0 points are an empty set. This is because the only u =0 solutions of generalized
Landau equations associated with this D are those in which all the vertices not at
the origin are parallel vertices; i.e., for any u=0 solution all trajectories incident
upon any vertex that does not lie at the origin are parallel.

Example 3.2. Let D be the diagram shown in Fig. 3.2.

Fig. 3.2. Diagram for Example 3.2. The masses associated with the external lines 1,2,3 are u and the
masses associated with external lines and the internal lines 4,5 and are m with m=3u

Theorem 3.1 shows that #R(D) is confined to the set of points

(p; )/ —1u)e |/ —1S*R?® that satisfy the mass-shell constraints p?=m?, the
conservation-law constraints p; +p,+p;=p,+ps, the threshold condition
(p,+ps)* =4m?, the conservation of center-of-mass trajectory condition

5
Y (Pr oty = Pr Uy 0)=0,  v=1,23, (3.20)
r=1
and the condition that for some four-vector v, and some set of scalars ), £, f
w=gu,=v,—fp, (r=123) (3.21)

where ¢, = —[j(r) :7].
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The condition (3.21) corresponds to the requirement on the space-time
diagram D that the three initial trajectories pass through the common vertex V.
Condition (3.20) demands that the trajectory of the center-of-mass of the initial
particles coincides with that of the final particles. This condition arises from the
generalized Landau equations. It is not correctly represented by the ordinary
Landau equations, which would require the stronger conditions analogous to
(3.21), namely,

w.=v,—p,p, (r=45). (3.22)

The center-of-mass conditions (3.19) and (3.20) arise from substituting into
(3.1h") the expressions in (3.1) that give the n; , and #};, , in terms of the u,, &; and v,
and then using the conservation-law condition (3.1c) to eliminate v;. This gives, for
each jeJ,,

n N
_21 07 A(p,. o, — Pyt o)+ 1_21 [ 000k, oy, — Ky il o) =0. (3.23)

The same equation is true also for j¢J, since (3.1h') is trivially true for j¢J, by
virtue of (3.1g’). Equation (3.23) expresses the requirement that the trajectory of the
center-of-mass of the particles coming into V; coincides with that of the particles
going out from V. Since this center-of-mass property holds at each vertex, it also
holds for the diagram as a whole, because the contributions from the intermediate
particles cancel out when (3.23) is summed over all j (j=1,...,n).

Examples 3.3. Suppose D is the diagram of Fig. 3.3(a).

(a)

Fig. 3.3. Diagrams for Example 3.3. All masses are equal

Then Theorem 3.1 shows that #®(D) is confined to a union of the following two
parts. The first is described by the ordinary Landau equations associated with
triangle diagram. The second is confined to the points p where the triangle
diagram Landau surface in p space meets the normal threshold surface (p, +ps)?
=4m?. The singularity spectrum of this second part is described by the space-time
diagram of Fig. 3.3(b), where the parallel trajectories incident upon the dotted line
through V, are constrained by a center-of-mass condition of the form (3.23) (see
also [25], §4, for related topics).

Example 3.4. Suppose D is the diagram of Fig. 3.4.
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\Y v
2/1 3
3 4

5
Fig. 3.4. Diagram for Example 3.4

If the masses are such that there is a solution of the ordinary Landau equations
associated with D, with p, parallel to p; and p, parallel to p,, but p, not parallel to
p,, then the points p=(p,, ..., ps) corresponding to this solution are generalized
u=0 points associated with D.

[Note that the three vertices define a plane in which all vectors lie.
Conservation of center-of-mass-motion (i.c., conservation of the trajectory of the
center-of-mass) implies that the three sets of external trajectories must pass

5

through a common point; otherwise there would be a net contribution ) (p, ., ,
r=1

— D, 44, 0)> as one can see by placing the origin at the intersection of, say, trajectory

1 with trajectory 2 (or 3).]

The generalized u=0 points associated with this diagram D occur only if the
masses satisfy a certain algebraic relationship. To obtain an example of a
generalized u=0 point that can occur without a strong condition on the masses,
one can remove lines 4 and 5 of Fig. 3.4 and then connect together two copies of
the resulting diagram at vertex V. The space-time diagram formed by laying the
two parts of this diagram on top of each other corresponds to a generalized u=0
point.

The signs of the o’s are, in this case, not all positive. We know of no generalized
u=0 point corresponding to a positive-a solution with physical particle masses.
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