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Abstract. A definition of a quantum stochastic process (QSP) in discrete time
capable of describing non-Markovian effects is introduced. The formalism is
based directly on the physically relevant correlation functions. The notion of
complete positivity is used as the main mathematical tool. Two different but
equivalent canonical representations of a QSP in terms of completely positive
maps are derived. A quantum generalization of the Kolmogorov-Sinai entropy is
proved to exist.

1. Introduction

The purpose of this paper is to introduce the notion of a quantum stochastic process
(QSP) and to define the entropy of a stationary QSP with a normal invariant state.
Our formalism is intended to describe the irreversible time evolution of a finite open
quantum system in contact with arbitrary reservoirs and measuring instruments.
This time evolution is not assumed to be Markovian, i.e. the system has a memory.

Our definition of a QSP differs from that of E. B. Davies, which includes a Markov
condition [1]. In fact most previous work on the dynamics of open quantum systems
have treated the Markovian case only. Examples of recent work on Markovian
systems are Davies' rigorous results on Markovian master equations [2], the theory
of dynamical semigroups [3], and the derivation of the general form of their
generators [4-6].

The abstract projection method introduced by Nakajima and Zwanzig, however,
leads to generalized master equations (GME) which are non-Markovian in general
[7-9]. The exact solution of the GME is equivalent to the complete description of the
dynamics of the total system including reservoirs. Approximate treatments suffer
from the defect that conditions sufficient to ensure the positivity preserving property
of the time evolution are not known. Consequently it is difficult to stop negative
probabilities from cropping up [10]. The alternative approach of generalizing the
Langevin method to the non-commutative case also runs into severe difficulties [11].

In the commutative case the theory of stochastic processes gives a sound basis for
discussions of similar fundamental problems. Therefore it seems worthwhile to
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attempt the design of a formalism for QSPs of the generality needed to include
arbitrary memory effects.

In the theory of Markovian QSPs referred to above the stochastic element is given
by dynamical maps on the set of states (or on the observables) of the system. These
maps are the generalizations of stochastic matrices in the commutative case. When
attempting an extension to non-Markovian processes it is not obvious which objects
one should generalize. It is well known that in the commutative case the definition of a
random process with a discrete time parameter by joint probabilities is equivalent to
giving a state on a classical system with configuration space TL. This structure is easily
generalized to the concept of a random field on any configuration space (see e.g. [12]).
In the quantum case the time and configuration space parameters are not equivalent
as joint states for two times cannot be defined even in the Markovian case [13].
Accardi tried to avoid this difficulty by modifying the notions of a Markov system
and conditional expectation [14]. We do not want to take this way out because the
theory of Markovian systems referred to above is satisfactory and should be retained
as a special case of the general theory.

We choose to generalize the concept of a dynamical map to take into account the
memory effects. In § 2 a QSP is defined as a family of dynamical maps connecting the
observables relating to several instants of time (which we will choose to be discrete in
this paper). These maps are closely related to the correlation functions which are
physically relevant e.g. for the theory of coherence in quantum optics. In this
definition we have to introduce at every instant a set of operations resulting from the
instantaneous interaction of the system with an arbitrary external apparatus. We
assume that the dynamical maps and the operations are given by normal completely
positive (CP) maps on the algebra of observables [which will be B(j4?) in this paper].

In § 3 a representation of the family of CP maps defining a QSP is described. A
consequence of this result is that a QSP can be derived from the interaction of the
system with a reservoir. The result of § 4 describes a QSP as a CP map on an infinite
tensor product of algebras and clarifies the convex structure of the set of QSPs. This
construction allows us to define the entropy of a stationary QSP with a normal
invariant state in § 5.

The problem of defining a QSP and its entropy when the algebra of observables is
a subalgebra of £(jf) or when the time parameter is continuous will be left for future
publications, as well as a detailed comparison of our formalism with the commutative
case. There is a special class of QSPs which can be given a complete description,
namely QSPs (in continuous time) defined by Gaussian (quasifree) CP maps on the
CCR algebra. An account of this work will be published elsewhere.

2. Definition of a QSP

We consider a quantum system S whose algebra of observables is si = B{3tf>), Jtf a
separable Hubert space. The set of normal states on B( J-f) (the set of density operators
ρ g; 0 Tr ρ = 1) is denoted by S{ Jf). The time parameter is taken to be discrete. For each
t = neZwe have an algebra s/(ή) ^ si and an arbitrary instrument Sn in the following
class.
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Definition 2.1. Let Ω be a countable set (the set of outcomes). An instrument on the
system S is a map S from subsets of Ω to CP(j%?)σ

= X V(ω)+XV(ω),
ωeE

= /, ECΩ.

The probabilistic interpretation is the following: If the initial state of S is ρ then the
probability of observing that the outcome is in E C Ω when reading the instrument is
p(£) = ρ(^(£)[J]) and the state after this observation is p{E)~ι S*{E)[Q\.

Compared with the definition in [1] we have restricted ourselves to countable Ω
and CP maps. See [4] for the reasons for choosing CP maps and the notations used
here and the Appendix for some properties of CP maps. * denotes the dual map on

By definition a Markovian dynamics of the system is given by a family of maps
Tn\stf(n)-+stf(n-\\ TneCP(stf)σ. Note that we "go backwards in time" in the
Heisenberg picture. If the state of S at t = m is ρ then the probability of obtaining a
sequence {ωk:fe = m + l , ...,n} of instrument readings is

••Λ-iCnω^mFKΓ V(ωn)-]V(ωn_,)].

Note that the instruments $k may be different but we skip the extra indices. Similar
expressions for Markovian systems have been considered e.g. in [15], [16] Eq. 7.28,
[9] Eq. 2e.l7.

For a general QSP we retain the essentials of this structure by postulating for
every sequence {t = m, m + 1,..., n} a set of bounded normal CP maps of s$(n) into

n)[Ym+v ..., Yn_ί \X\ Yn_ι,..., Ym + ι~\

which depend sesquilinearly and norm continuously on the Yk. The probabilistic
interpretation is as follows: If the system is initially (t — m) in the state ρ then the
probability of obtaining a sequence of outcomes {ωk: fc = m + 1 , . . . , n} when reading
the instruments $k is (by definition)

By polarization we obtain multilinear maps

2(«-m)

The T(w n)[{X'k',Xk}~] we call correlation operators. The T(m π) can be extended to
multilinear maps on M iv(j/) = tβ/(g)MN(C) in an obvious way through

Ώ = τ™n)l{X'k x J ] ® Ym+! ...γ nγn...γm+ι

<£) (2.1)



284 G. Lindblad

plus linearity. As shown in [4] §2 the maps T ^ represent (up to unitary
isomorphism) the dynamics of a noninteracting system composed of S and a system S'
with reversible (Hamiltonian) dynamics. Consistency demands that the T{N) are
positive for all N. This condition is the complete positivity of the T(m n) which can be
written

η) (2.2)

for all {Xk(α):fc = m,. . . ,n,α = l,...,iV} and all AT.
The maps T ( w π ) are not independent. When we sum over all outcomes of the

reading of the last instrument in the sequence {$k}
n

m+ι the result is the same as
reading the instruments {$k}

n

n~+\ only:

Σ P(ωm + i , . . . , ω w _ 1 , ω J = p(ωm + ! , . . . , « „ _ ! ) . (2.3)
ωneΩ

Note that the summing over ωk, k<n, does not give a similar relation. Performing a
measurement without reading the result does influence the results of later
measurements but not those of earlier ones.

The validity of (2.3) for any choice oίS'n shows that T(m n) can indeed only depend
onX'n,Xn through the combination Xr^n as we have already assumed. From (2.3) we
find that the following compatibility relation must hold for all m < n

T ΓΠ — T
1 (m,m+ l )L i J ~ ι -

The set {T(m n)] is called compatible if the conditions (2.4) are satisfied. We will see
below that the compatibility conditions and the normality mX^Xn of T(m n) means
that the T(m n) are ultrastrongly continuous in allXk. We express this by saying that the
T{mn) are normal.
Definition 2.2. (a) A QSP on s$ is a compatible set of normal CP maps

2(m-n)
τ(m,n)' X ^-*sέ,m<n, i.e. satisfying (2.2), (2.4).

(b) The state ρ is called invariant if for all {X'k,Xk}, m<n,

; « + 2 K + I ) - (2.5)

(c) The QSP is said to be stationary if T{m >n) — T (0 n_m) for all m <n and if it has a
faithful normal invariant state.
Example. Let μ(m n), m < n, be probability measures on lRn ~ m + 1 defining a stochastic
process on IR (with discrete time parameter) and let U{s), seIR, be a strongly
continuous group of unitary operators in Jf. Then we can define a QSP by

«)(5m' ' ' > Sn)U(Sm+1 ~ Sm)+^m + 1 ̂ (Sm+ 2 ~ Sm+ l) +

• 'U(sm + 2-sm + 1)Xm + Msm+1-sm).

ρ is an invariant state for the process if it is invariant under U(s). The process is
stationary if the commutative SP defined by the μ(m n) is stationary.
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Remarks. 1. The definition of a QSP with a continuous time parameter needs an
additional compatibility condition: for all sequences {t0 rg 11 <Ξ... <Ξ tn}, {X(ίk)}" with
X(tm) = I for some m < n

T{tk}l{X(tk)
+ ;X(tk)} :X(tm) = Γ\ = T{tk:k + m}ί{X(tk)

+ ;X(tk)}: fc Φ m].

2. The name correlation operators has been chosen as their expectation values
correspond to commutative correlation functions. E.g.: the correlation function
E{X0(t0)X1(t1)X2(t2)} ( ί o ^ ί 1 ^ ί 2 ) has the non-commutative counterpart

We can similarly find any non-commutative correlation function with a time
ordering of the type ί0 g tγ ^ ... ^ tk ^ tk +1 ^ . . . ^ tn (for some k). If the process is
stationary with invariant state ρ then it follows from (2.2) that the function

(ί<0)

is positive definite in the sense that

for every sequence {tae!R,Xae<£,Xaes#}^ and all N.
3. Multitime correlation functions for quantum systems with non-Markovian

dynamics has been considered e.g. in [9,17,18]. They were derived from a GME and
thus inherit the problems indicated in § 1. The approach used by Bausch and Stahl in
[19] is similar in spirit to ours as it only refers to quantities belonging to the small
system S and imposes positivity properties. But as they did not use the property of
complete positivity they could not obtain the structure described below.

3. Canonical Representation of a QSP

We want to give a representation of a QSP which is a generalization of the Stinespring
representation of a CP map. We will consider only stationary QSPs in the following,
hence it is enough to define the maps {T{On)}.

Theorem 3.1. (a) // {T{On)} define a QSP then there are normal ̂ -representations πn of
j / in Hubert spaces $Cn and isometric maps Vn e B(Jfn _ x, J Q (X*Q = jtf) such that for all

(3.1)

The representation is unique up to unitary equivalence if

(3.2)

Conversely, each set {T{On)} of the form (3.1) satisfies all conditions for a stationary
QSP save the existence of a normal invariant state.
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(b) Under the same conditions there is a normal ̂ -representation πof s$ in a Hilbert
space Jf, an isometry VeB(Jf) and an injection p:J^->yΓ such that

(3.3)

Proof, (a) A repeated application of Lemma A.I (a) using the substitution

sί^"X si, st2v+si, T2(X)^Vn

+πn(X)Vn

gives the statement. The converse is obvious.
(b) Put X = ®Xn and define π\rf-+B(X\ VeB(jΓ) and peB{^,X) through

(3.3) says that the QSP has a Markovian dilation which is isometric and consequently
there is also a unitary dilation. Compare the isometric dilations in the Markov case in
[1] Theorem 9.4.3 and [20, 21].

The results of this paragraph are valid for any PF*-algebra stf. The interpretation
of {T{On)} as a QSP on J / , however, demands further conditions which we will
not go into here.

When jtf = B(34?) we can use (A.2) and write

πn(X)=X®Ie^®B(Λnl VneB(JΓn_vXn) = ̂ ®B(4n_vAn). (3.4)

When (3.2) holds, then the remaining arbitrariness in the representation is given by
(A.2) and (A.3)

nWn

+_l9 Wn u

4. Tensor Product Representation

We want to derive from a stationary QSP a set of normal CP maps {Tn) on W^-tensor
n

products (X) si where si = B(jf) as before. We introduce the infinite tensor product

[22]

the natural injection

satisfying a(X(S)I) = a(X), and the amplification

defined by β(a(X)) = a(I®X).
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a and β are *-isomorphisms, hence normal (for fixed v) CP maps and

[α(Xr),j8(y)]=0, all

If the ^-representations πn of si in (3.1) are chosen as in (3.4), then they can be
extended to representations of J$V

any v.
α and β are also extended in the natural way for any v, n, e.g.

α

and similarly when B(4n) is replaced by B(Άn_ l9άn). The use of the same notation for
the extension should not cause any confusion. We find that

X))βWVn)) = β(4Vn))πn_MX))

for all I e ^ .
Given a QSP we can extend the maps T(0 n) to arguments in stfv of the formX/?( Y)

( l e ^ , Yesfv_1) such that they operate only on s/ί [cf. (2.1)]

( > ) ... yn

+rn... y j (4.2)

for all {A^e s/, y f c e < _ x } .
Using (3.1) we obtain the canonical form: for all {Xk} of the product form

(4-3)

But the representation is then continued (through the πn) in a unique way to
{Xke.stfv} for any v.

Consider the action of β for given v. We choose a normal CP extension [the
arbitrariness is given by Lemma A.I (b)]

such that βv\jι/v = β\jrfv. βv is of the form (A.I)

βv(X)=ΣWv(i)+XWv(i),
i

where X, Wv(ί)ejtfv+1. The arbitrariness in the choice of Wv is given by (A.3).
We will now show that the quantity

Σ r,o,,,[W
(I'k)

(4.4)
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is a function only of {XkXk}\ as indicated. First we note, using (4.3), that it is
independent of the arbitrariness in the choice of the βv [by Lemma A. 1 (b)] and the Wv

[by (A.3)]. Furthermore, if Uestf1 is unitary then

U+βv(X)U = βv(X), all I e ^ v + 1

and consequently Wv U and Wv are related by (A.3). From this and (4.3) follows that if
Uk E -J/ are unitary, then (4.4) is invariant under the substitutionXkκ> U^^ From the
fact that every element in stf is a finite linear combination of unitaries follows that
(4.4) is a function of {XkXk}\ only and consequently Tn is well-defined on elements in
,srfn of the form X— (X)Xfc. If we use the representation (4.3) we find after some
computation using (4.1) that

Tn(X)=Wn

+πn(X)Wn

ϊorX of product form. But πn and hence Tn is continued in a unique way to s$n and, in
the trivial way, to J/ V , V > n. Tn is obviously a normal CP map on sdn.

The compatibility relations have a very simple form for {Tn}. From (4.5) and the
unitary of the Vk follows that

TJX) = TJX) for χej*m,m<n

T 1(/)=/.

By norm continuity the set {Tn} is extended in a unique way to a map T e C P ^ ^ )
which satisfies

Ύ(X)=Tn(X) for I e < .

From the construction (4.4) it is clear that the map {T{Oin)}\->{Tn} defined on the
convex set of QSPs is affine and preserves the partial order induced by the CP
conditions. Conversely, given a set {TneCP(jtfn)σ} satisfying (4.6), we find from
Lemma A.I (b) that it has the form (4.5), i.e. it is in the range of this affine map.
Furthermore, we can use Lemma A.I (c) repeatedly through the substitution

to define a QSP {T('o π)}. The map {Tn}i->{T('O n)} defined on the convex set of families
of normal CP maps satisfying (4.6) is affine and order-preserving. It is easily checked
that this map is the inverse of the first one.

If Q is an invariant normal state for the QSP {T(0 n)) then it is clear from (2.5) and
(4.2) that the extension of the QSP to s/y satisfies

for all {Xke^y}. From (4.4) follows that

T^ ,(7))] =

for allXej/, Yejrfn_vIn terms of the dual maps T* :S(jtfn)-^S(jtfn) the in variance
condition reads
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for all ρeS{.stfn_1). Consequently for all ρeS{j^n_k\ k<n

k(ρ). (4.7)

Conversely (4.7) implies (2.5). We sum up the results in

Theorem 4.1. A stationary QSP on stf = B(Jή?) is equivalently described by a map
T e C P ^ ^ ) leaving each .stfn invariant and where each Tn = Ύ\stfn is normal The
equivalence is given by (3.1) and (4.5) and defines an affine order isomorphism of convex
sets with the partial order defined by the CP conditions, ρ is an invariant state iff (4.7)
holds.

n

Remarks. 1. WenotethattheQSPisMarkovianiff Tn~ (x) r x . Because of the tensor

product form it is easy to see that it is extreme (ergodic) in the convex set of QSPs.
Consequently there is a considerable difference in structure between commutative
and non-commutative Markov processes. In fact the Markov QSPs are in some
respects more similar to the subclass of Bernoulli SPs.

2. It follows easily from Lemma A.2 that there is still another description of a QSP
as a quasilocal quantum lattice system with each lattice point having the Hubert
space jf®j^. The conditions (4.6) and (4.7) are not more perspicuous in this
formulation, however, and we will not write them down. We will use this fact only to
show the existence of a mean entropy in § 5.

5. The Entropy of a Stationary QSP

We first define the entropy of a map ΓeCP(j«f )σ, T(I) = I with an invariant normal
state ρ: T*(ρ) — ρeS(Jtf'). We can realize T through an isometric dilation on a larger
system S + R where JR is a reservoir described by a Hubert space J^R as described in
[4].

If for any state ρR oϊR we take ρ®ρR to be the initial state of S + R then the final
state of S is ρ and that of R is (with the notation of (A.I) and [4] Proposition 2)

If the entropy is defined as usual (S(ρ)~ — Tr[ρlnρ]) then

This is shown by introducing a Hubert space A with a complete orthonormal set {| i)}
and defining an isometric map W\fflκ-*#?R®A through

φ}ΣKΦ\0, all φ R
ί

Then (5.1) follows by the isometric in variance of entropy from

WQ'RW+=QR®Σθ(T,Q)ij\ϊ><j\.
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S[σ(T,ρ)] depends only on T and ρ and not on the representation (π, V). In fact,
according to (A.2), (A.3) equivalent representations give rise to unitary maps
σ(T, ρ)\->σ(T, ρ)' which conserve entropy. Therefore we take the entropy of T in the
state Q to be S[σ(T,ρ)]:

Definition 5.ί. S(Γ,ρ) = S[σ(Γ,ρ)].

There is an alternative description of the entropy which will prove convenient. From
Lemma A.2 we know that there is a pure state τ(ρ)e S(Jfi ® Jf2) where Jft ~ jf2 ~ ,?f
such that Tr 1 τ(ρ)^Tr 2 τ(ρ)^ρ. Consider the pure state

where ^=Λm the notation of the Appendix. We find that if τ{T, ρ) is defined as in
Lemma A.2

Tr 3 μ =(

From the triangle inequality ([23] Eq. (2.13)) follows that S[τ(T, ρ)] - S[σ(T9 ρ)] and
we have proved

Theorem 5.2. S(T, ρ) - S[τ(T, ρ)].

The properties of S(T, ρ) follow from the affine correspondence of Lemma A.2 and
the properties of S(τ) given e.g. in [23]. We only mention without proof the
inequality S{T,ρ)S2S{ρ).

We now define the entropy of a stationary QSP with an invariant normal state ρ
using the tensor product form of Theorem 4.1.

Definition 5.3. S[T,ρ]=infΠn-1S I I where Sn = S[Tn,(g)ρ).

Theorem 5.4. S[T, ρ] = limΠ^ ̂  n ~1 Sn. S[T, ρ] is an affine function on the convex set of
QSPs with a given invariant state ρ.

Proof By Lemma A.2 and Theorem 5.2 there is an affine map

such that Sn = S(τn). It is easy to check that the density operators {τn} form a
translation invariant state on the quasilocal algebra of a quantum lattice system over
TL. From the result (7.2.11) in [24] it then follows that the limit exists, equals infnn~ ιSn,
and is an affine function.
Remarks. 1. Obviously S[T, ρ] ^ Sv If equality holds then it follows from the triangle

n n

inequality [23] that Sn = nSλ for all n and τn=(χ)τv This means that Tn= (X) Tv

Consequently the system is Markovian iff 5[T,ρ] = S X .
2. Our definition of the entropy of a QSP may be compared with the non-

commutative entropies introduced by Connes and StΘrmer [25] and Emch [26].
These authors use a non-commutative counterpart of partitions and thus generalize
the Kolmogorov-Sinai entropy to quantum systems without having a construction
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corresponding to our QSP concept. As we have seen our definition coincides with the
mean entropy for a quantum lattice system. It is known, however, that the
Kolmogorov-Sinai invariant coincides with the mean entropy for classical lattice
systems [27]. Therefore it is not unreasonable to consider our entropy definition to
be a non-commutative analogy of the Kolmogorov-Sinai entropy.

Appendix

Let si = B(jf), 96 = B{2%"\ A normal CP map Te CP(^/, 96)σ (in the notation of [4])
has a Stinespring representation (π, V) (π(j^) C B(X\ Fe£( j f ' ,J f ) , j f a Hubert
space)

v

T(X) = V+π(X) V = X V+X V, (A. 1)
i = 1

v

where VteB(Jif\ Jf), i.e. we can choose π to be a direct sum π = 0 π , πβC) =X [28,
29]. We also find that Jf = .^f®4 where /I is a v-dimensional Hubert space and
consequently that

B(JίT) = ̂ ®B(4), π(sί) = sί®I, π(s/)' = I®B(Λ) (A.2)

We will always choose (π, V) to be minimal i.e. such that [π{jrf)Vjtf"] = JΓ [30]. Then
(A.I), with the given π, is unique up to a unitary transformation [30]

Weπ(sί)r (A.3)

Now let ^ = B(3ty, S»{ = £ ( ^ '), i = 1,2. Given Tf e CP (J^ , J^ .)σ we can define a unique
normal CP map T1(g)T2 on the P^*-tensor product s$x®s$2 such that

for all {X G J ^ J through the representation (π, F) where

π = π 1 ® π 2 , V =Vγ

([31] 1.4.5).

Lemma A.I. (a) Let

be a sesquilinear map which is CP in the sense of (2.2). Then there is a Hubert space Jfx, a
linear map

) with ^ = [

and a CP map T2\ji2-+B(X'1\ T2(/) = /,

// T is ultrastrongly continuous inX2 then T2 can be chosen to be normal. Note that here
jtf1 can be any linear space with involution.

(b) Let Γ e C P ( ^ 1 ® ^ 2 , J 1 ( g ) « ^ 2 ) f f be such that T\sίι®l2 = T1®12 where
Tx G C P ( J / 1 ? J*1)σ, /. = identity in s/., and let (π, V) and (π l 5 Fx) be representations of T,
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T1 in jf, Xv Then there is an isometry V2es^2®B{A1,i) such that

Conversely, given such 7\ and F 2, T has the stated properties.
(c) //, in addition to (b), s$2 = ̂ ι®$2 then T defines a normal CP map

such that T2(I) = I and

=(V+π1&\)®Γ2)T2^

(l\ = unit in 381) defines a map which is CP in the sense of (2.2). t is uniquely determined
by T and the map Th> T is affine and order-preserving on the convex set of CP maps with
the natural partial order.

Proof, (a) Let Tλ [X +,X] = T[X + / X]. The CP property (2.2) means that T and Tί

are positive definite in the sense of [20] Chapt. 1. By [20] Theorem 1.9 and Lemma 1.4
there are minimal Kolmogorov decompositions

TX[X + ,X] = V^XΫV&\ T\_X+

X -X+

2X2 XJ = V(XVX2)
 + V(XVX2)

where F 1 } V are linear maps

which are unique up to unitary equivalence. By [20] Lemma 1.4 there is a unique
isometry V2eB{JΓvJf2) such that

π2 is uniquely defined by π2Qί2)V{XvI2) = V(Xί,X2) (cf. [20] Theorem 2.11) and
(π2, V2) defines T2. The normality property follows as in [29] Theorem 3.3.

(b) In (a) we make the substitutions

From the minimality property follows that W(πί(X1)®I2) = π(Xί®I2)Wand from
(A.2) that W is of the form

The converse is obvious.
(c) By (b) there is a T 2 eCP(j/ 2 , j$2®B(Λ1))σ, which is unique if (π l 5 Fx) is given,

defined by

I1®T2(X2)=W + π(Iί®X2)W

and by (A.2) B(X'1)®082 = j/2®B{ά1). t a s defined above is obviously CP. It is also
independent of the arbitrariness in (π1 ? F1) given by (A.3) and is consequently
uniquely defined by T.

If T g Tand T / K 1 ® / 2 = T[ ®I2{T[ S Tx) then, by an argument similar to(a),(b)
but using [20] Theorem 1.12, it follows that V is of the form
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where T2^T2. Consequently there is an affine order-preserving map defined by the
preceding construction

which induces an affine order-preserving map T\->T.

Lemma A.2. LetρeS{^) be faithful and ffl' ~ ffl. Then there is a bίjective affine map

denoted 7V»τ(T, ρ) which is defined through

whereXe <s/5 Ye 36 and <*- denotes the transposition in any basis in which ρ is diagonal.

Proof. Using the argument of [32] Lemmas 3.1 and 3.2 we find that for every

defines a CP map T from si to the trace class operators on j f such that T'(I) — ρ and
vice versa.

defined by a limiting procedure is CP, and it is bounded as T(I) = I i.e. Te CP (si). The
normality is obvious.
Remark. τ(T,ρ) = (T*®/)[τ(ρ)] where τ(ρ) = τ(J,ρ) is easily seen to be a pure state.
T*(ρ) = Tr j r,τ, hence ρ is invariant iff the last quantity is equal to ρ.
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