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Abstract. Chemical kinetics of a system of reacting polymers is modelled by an
equation which shares certain properties with Boltzmann's equation. Being
more tractable, however, this evolution may be of an illustrative value for the
latter. The existence and uniqueness of solutions are analysed. We derive an
entropy production inequality which is used to prove global exponential decay
of the free energy. With its aid a uniform rate for strong convergence to equi-
librium is proven. The generators of the linearized flow at the vicinity of the
equilibria are diagonalized.

I. Introduction

Many substances form long-chain polymers of varying length. The distribution of
the length of the polymers is determined by the dynamical equilibrium between
competing reactions that of degradation, caused by the breaking of bonds, and
recombination in which two linear polymers join at their ends.

In a simple model of such a system the density function (whose argument is the
length of a polymer) obeys a dynamical equation which shares certain properties
with Boltzmann's equation. However, as it turns out, this equation is more
amenable to analysis and as such it may be of illustrative value. In particular, it
offers an example in which an analog of the //-theorem can be used directly, with
the aid of a new inequality, to prove a global convergence to equilibrium.

The following notation is being used:
c(ί, n) is the number of polymers of n units A is a quantity of the order of

magnitude of the total number of polymers (e.g. Avogadro number); δ is the
length of a building unit of the polymers x = n δ is the length of a polymer
c(x) = c(x/δ)δ~1A~1, i.e. c(x)dx is the number, in the units of A, of polymers whose
length is in [x, x -f dx).

Assuming that all the bonds (of which there are n — 1 in a polymer of length ή)
break independently and with the same rate and that the probability for two
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molecules to combine is independent of their lengths we have:

c(Un) Kγ2 Σ
tit n+ϊ

n <x-

+ K2Σ c(Un-m)c{t, m)-K22c(U n) Σ c(U m). (1.1)
o o

K1 and K2 are the reaction rates for degradation and recombination, respectively.
In order for the reaction time of a long molecule to be finite, both Kί and

K2 should be small. We define the rescaled reaction constants Kx and K2 by

K^K.δ, K2=K2/Ά. (1.2)

In the Riemann approximation, δΣ ~ J dx, Eq. (1.1) leads to:

d

() K2

+ K2 } dyc{u x - y)c(t, y) - K22c(U x) f dyc(t9 y) . (1.3)
0 0

Since the quantity c(x) = ac(bx) obeys a similar equation with K1 and K2

replaced by

K^K.b, K2 = K2b/a (1.4)

it is enough to study the case K1=K2 = 1:

d °°

— c(ί, x) = 2 J dyc(t9 y) -xc(ί5 x) + (c*c)(ί, x)

-2c(ί,x) f dj;c(t,y) . (1.5)
0

In the above convolution c is to be treated as a function which vanishes on
(-oo,0).

Equation (1.1) was formulated by Blatz and Tobolsky [1], whose rate constant
K2 differs from ours by a geometric factor of 2. Their discussion was restricted to a
particular solution which corresponds to a solution of Eq. (1.5) of the form

c(f ,xHα(0 2 exp[-α(φt] . (1.6)

This is a solution provided

^ α ( ί ) = l - α ( ί ) 2 (1.7)

that is [for α(0)>0]

Γtanh(ί + ί0) 0<α(0)<l

α( ί )= | 1 α(0) = l (1.8)

[coth(ί + ί0) α(0)>l

with some ί o >0.



System of Reacting Polymers 205

The above is a particular solution, albeit a very interesting one since it shows
that the simple form of (1.6) is preserved by the time evolution and it exhibits
convergence to a stationary distribution:

c(t,x) >e~x . (1.9)
(ί->00)

In fact, all the exponential distributions, e~λx with λ>0, are stationary for Eq. (1.5)
and form a class of what Flory [2] named the most probable distributions. Neither
his paper nor the later work of Blatz and Tobolsky clarify this concept.

Apart from the fundamental questions of the existence, uniqueness and
positivity of solutions for general initial data, (1.9) suggests the question of global

00

convergence to equilibrium. Formally, the quantity \dxxc(t,x) is a constant of the
o

motion, as the total number of units, to which it corresponds, should be. One could
therefore ask whether any solution converges to the corresponding exponential
distribution selected by this conservation law.

Equation (1.1) has been studied before by one of us [3] in connection with the
experimental determination of the rate of degradation of very large molecules.
Reference to earlier work on that problem can be found in that paper. The
linearized equation, and in particular its discrete version, which is also being
studied by Kjaer [4], is of interest in connection with the experimental study of the
approach to equilibrium in systems containing hydrogen-bounded oligomers [5].

In the present paper we discuss the dynamics generated by Eqs. (1.1) and (1.5).
The existence and uniqueness of solutions are discussed in Sect. II, where some
spurious solutions are also exhibited. In Sect. Ill it is shown rigorously that, in
analogy with Boltzmann's //-theorem, the free energy of the system is non-
increasing. This result is strengthened in Sect. IV where, with the aid of a new
inequality, the free energy is proven to decrease, exponentially fast, all the way to
its equilibrium value. This provides a necessary step in Boίtzmann's method of
proof of convergence to equilibrium, which in general is not easily accomplished.
In Sect. V the decay of the free energy is being used to prove uniform convergence to
equilibrium for a general class of initial data. In Sect. VI the spectra of the
linearized generator, at the equilibrium points, are given exactly. Finally, the exact
solution for the time-dependent Laplace transform of c is given in the Appendix.
The explicit solution is not easily invertible and does not seem to offer a direct way
of proving the above results.

In order to shorten expressions which involve functions of several variables,
like c(ί, x), we shall occasionally omit the explicit reference to some of the variables
which are fixed in a given expression.

II. A Reformulation Which Ensures Unique Solutions

Equation (1.5) offers an incomplete specification of the dynamics. For a given
initial data it has various solutions but only one of them describes systems which
are essentially finite and this is the one we shall choose. As it turns out, the
singularity lies entirely in the linear part of the generator which, therefore, shall be
discussed first.



206 M. Aizenman and T. A. Bak

a) The Linear Part

A natural norm, which corresponds to the total number of particles, and the space
of functions in which Eq. (1.5) will be discussed are

and

The linear part of Eq. (1.2) is given by an operator A which acts as

(Ac)(x) = 2]dyc(y)-xc(x). (2.1)
X

VL>0, A leaves

^ L = {/G^|/ΞΞ0 on [L, oo}

invariant and its restriction to $L is bounded:

\\Af\\xS2L\\f\\x V/e^L. (2.2)

We shall use this fact to define the semigroup on (J Mv A will then be defined as
L>0

the generator of the extension of the semigroup to $8. In this way the invariance of
&L is manifestly ensured, reflecting the fact that molecules longer than L cannot be
produced by disintegration, if initially such molecules were absent.

Lemma 2.1. i) For any L > 0 and fe&L the equations

— c{t) = Ac{t)
dtK) w (2.3)

have a unique solution in J*L.
ii) The corresponding semigroups αf

(L) = exp (tA ί 08j) are consistent: if Lί>L2

iii) 0ίt are positivity preserving contractions.
iv) For any L > 0 and f &

00 00

\dxx(^f){x)=\dxxf{x).
0 0

Proof, i) and ii) follow from the existence and uniqueness of semigroups for
bounded generators. a(

t

L) is positivity preserving since AX$L is a sum of two
bounded operators both of which generate positivity preserving semigroups. The
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last property implies also that for / ^ 0 , f

= ]dxx(Af)(t,x) = 0 (2.4)
0

[for the second equality the || || v-differentiability oϊf(t) was used]. Thus for positive
fe fflL | |α*L ) | | x =11/11* and in general, using the decomposition into positive and
negative parts, | |α< L ) / | | x £ | | / | | x V/e^ L . D

We may now extend the definition of the semigroup to ^ . Let PL be the
projections on J*L defined by

Proposition 2.1.

i) a, = s-lim a ( L ) P 7
L-+00

exist and form a positivity preserving contraction semigroup on 3$.
ii) at satisfies

00 00

\dxxu.tf{x)=\dxxf(x).
0 0

iii) The generator of oct is the closure of A restricted to

iv) (xtis the unique strongly continuous semigroup whose generator satisfies Eq.
(2.1) and such that VL>0, aβ

Proof i) Let fe&. Since for L>L

a.(

t

L)PLf are Cauchy uniformly in t. Thus the limit exists uniformly in t and αf in-
herits the above mentioned properties of α|L).

ii) The equality follows by continuity.

iii) On J*Lαf = αJL). Thus αf leaves (J J*L invariant. The generator of oct is
L

therefore the closure of A Γ IJ ̂ L [10]. Since @0{A)D\J@L and
L L

Vfe@ιo(A) APLf-+Af, @0{A) too is a core for the generator.
iv) The uniqueness follows from the above argument which applies to any

semigroup which satisfies the assumption in iv). •

As to the uniqueness of individual solutions the following criterion follows
from i) and iii).



208 M. Aizenman and T. A. Bak

Corollary 2.1. Let fe@0(A). There is at most one continuously \\ \\x-differentiable
solution to

such that c(t)e20{A) Vί^O.

Our preoccupation with the uniqueness is not unfounded since Eq. (2.3) has
additional solutions in ^ , e.g.

with α>0. Thus, by adding linear combinations (in a) of

cctca(0,x)-ca(t,x)

±2 2 3 (2.5)

[see Eq. (2.8)], it is seen that solutions of Eq. (2.3) are non-unique for any initial
data. This however is consistent with Corollary 2.1, in particular ca(t, -)φ@0(A).

The same analysis, after the obvious modifications, applies in the discrete case
(1.1), where the linear evolution is described by

-c(t,n) = 2Kί Σ c(Um)~(n-ϊ)KΆUn). (2.6)
at n± j

The semigroup is explicitly given by the following expression which was found

in [3],

2e-&lt + e~2^t)(m-n)}c(0,m). (2.7)
m

In the continous case, with K1 = 1 , this reduces to

{octc){x) = e~txc{x) + 2te~tx]dyc{y) + t2e~tx]dy{y-x)c{y). (2.8)
X X

b) The Full Equation

Equation (1.5) inherits the non-uniqueness which is present in its linear part.
Having seen how to resolve this we reformulate the equation of the dynamics,
using the chosen solution for the linear term, as

t

c(ί, ) = α(c(0, •)+ $dsat_sK(φ,-)) (2.9)
o

with

K(c)(x) = (c*c)(x) - 2c(x) I c{y)dy .
0

Equation (1.2) is recovered from (2.9) by differentiation.
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We shall discuss the solutions of Eq. (2.9) in the space ^ defined as follows.

RIHI/HI < c x ) } ,

Lemma 2.2. Let fe^ then 3 T G ( 0 , oo], such that for ίe[0, Γ) Eq. (2.9) has a
unique solution with c(0, x) = f(x) and c(ί, x)e^ Vίe[0, T). The maximal T with

that property, % is finite only if lim sup |||c(ί, )lll = °°
t-*f

Proof Let C 1 , C 2 G # ' , then

c1 - c2)*(cί + c2) - 2{c1 -c2\ dycγ(y) - 2c2 J dylc^y) - c2(y)~]
0 0

(2.10)

Therefore the map c\->K(c) is locally Lipschitz in #".
Further, V/e#"

and

IIK/in ί̂i + oili/lll (in)

[due to the linearity it is enough to verify it for non-negative / for which it follows
by integrating Eq. (2.8)].

Let / G # : It follows from (2.10) and (2.11) that for b>| | |/ | | | , and T > 0 such that
2 2 the mapping

(2.12)
o

is a contraction in the space of continuous functions

equipped with the sup |||c(t)||| norm. A standard argument implies now the local
t

existence and uniqueness of solutions of Eq. (2.9) [given by the fixed point of the
mapping (2.12) with / = c(0)]. D

Some of the solutions of Eq. (2.9) blow up in a finite time [e.g. if iV(0) <0, see
(2.13)], this however does not happen if initially c is non-negative, which is the case
of interest:
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Proposition 2.2. Let / e #"+. Then
i) Equation (2.9) has a unique continuous solution, c(ί, x\ such that c(0, x) = f(x)

and c(£

ii) V ί ^

Proof. The quantities

JV(f)=

and

M(ί)=

obey the autonomous differential equations which are formally obtained by
integrating Eq. (1.2):

(2.13)

_ M(t) = N(t)-M(t)2

at

These equations can be derived by differentiating the autonomous integral
equations for N and M which are obtained by integrating Eq. (2.9). It follows that
if iV(O), M(0)^0 then both stay bounded uniformly in ί^O. Since for positive c,
|||c||| =JV + M, in order to deduce the global existence of solutions which stay
uniformly bounded it suffices to prove that the positivity of c is preserved under
the time evolution. The necessity, for physical reasons, of such a condition is
obvious. Heuristically it seems to follow from Eq. (1.5), nevertheless it is not
satisfied by some of the spurious solutions.

One obtains an expansion for the solutions of Eq. (2.9) by iteratively
substituting

00 00

c(t, ) = αtc(0, ) + J dsa,_s(c(s, • )*c(s, )) - J dsa,_ ,(2M(s)c(s, )) (2.14)
0 0

in its last term. This is just the norm convergent (in our case) expansion, in powers
of j dsM(s\ of the following expression

c(ί, ) = αt(c(0, )) exp - 2 j dsM(s)

5 ) ) e x P -l]duM(u) (2.15)

By the same contraction mapping argument as in the proof of Lemma 2.2, the
unique solution of (2.15) with c(0, ) = /( ) m a Y be obtained by iterating the
mapping which takes c{ , ) to the expression at the right hand side of (2.15). In
this method, starting with c(ί, •) = /(•), the solution of (2.9) is constructed by
manifestly positivity preserving iterations. •
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Proving the existence of the time evolution we obtained the autonomous Eq.
(2.13) for N(t) and M(ί). Solving them we learn an interesting property of the
dynamics.

Corollary 2.2. Let c(0, )^0, c(0, -)e&.N and M of the solution of Eq. (2.9) are
given by:

N(ί)=iV(0)

(N(0)1/2 tanh [JV(O)1/2(ί + ί0)] M(0) < N{0)112

M ( ί ) = | iV(0)1/2 M(0) = N(0)112 (2.16)

[iV(0)1/2coth[]V(0)1/2(ί + ί0)] M(0)>N(0)1 / 2 ,

for some to>0 which may be determined from JV(O) and M(0).

Thus while N (which corresponds to the density of units) is constant, M (the
density of polymers) tends to an equilibrium value which depends only on N. The
convergence to equilibrium is studied in more detail in the next sections.

III. An F-Theorem

A class of stationary solutions of Eq. (1.2) is given by

φ) = e-ax. (3.1)

A solution in this class is uniquely characterized by N(ca) = a~2. In view of
Corollary 2.2 one may suspect that these are the equilibrium states for the system
and that the time evolution leads any state to the corresponding equilibrium, as
determined by the conservation law for N(c).

For Boltzmann's equation convergence to equilibrium is indicated by the
celebrated //-theorem. A natural question is whether the time evolution conside-
red here has an analogous property.

a) A Formal Argument

In order to clarify some of the concepts we shall first discuss a more general class
of equations of which (1.5) is a particular case.

An //-theorem is to be expected, formally at least, for all systems whose
particles interact by a balanced scattering, e.g. a two particle reaction by which a
pair of particles in the states (x, y) produces a pair in the states (xf, y') at the rate

c(x)c(y)K(x9 y\x\ y')dxdydx'dy' , (3.2)

which is balanced in the sense that

K(x,y\x\y') = K(x\y'\x,y). (3.3)

Under the generated dynamics J dxc(x) is invariant and the entropy

S(c) =-\dx c(x) In c{χ) (= - H(c)) (3.4)

is monotone non-decreasing.
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An equally tractable situation occurs if the system undergoes the reactions
x->(x',/) at the rate c(x)aK(x\x\y')dxdxfdy' and the opposite reactions (x',/)->x
at the rate c(x')c(y')K(x\x\y')dxdx'dy'. The contribution of such reactions to the
dynamical equation is

— c(ί,x) = -c(ί,x)α J dx'dy'K{x\x\y')

+ 2 j dx'd/c(i,x')aK(x'|x,/)

-2c(ί,x) J dx'<i;/c(ί,x')K(j/|x,x')

+ j dx'd/Φ, x'Mί, y)χ(χ|χ', / ) . (3.5)

The number of particles is not conserved and for general α and K, H is not
monotone decreasing. However, another quantity is.

In order to see the relation of the above dynamics to those described by (3.2), it
is convenient to add a fictitious state, x0, and look at the reactions x<->(x',/) as
(x5x0)«-Kx'y). From this point of view the only difference is that the reaction rates
do not depend on the concentration of reactants in the state x0, and c(x0) is
replaced in (3.2) by a constant α. Such dynamics may be viewed as a weak coupling
limit of the reaction described by (3.2). In this limit the reaction rate of particles in
the state x0 is scaled by ε and the degeneracy of that state [i.e. the discrete measure
with respect to which the density c(x0) is defined] is ε~1. Equation (3.5) is obtained
if, while ε->0, the total number of particles is

φco)/ε+ f dxc{x) = φ . (3.6)
(xΦxo)

Since the number of particles is invariant,

c(ί,xo) = α - e j dxc(t,x) (3.7)

and the total entropy may be computed from c(x), x Φ x 0 :

S = -ε - 1 c( ί , xo)lnc(ί, x 0 ) - Jί/xc(ί,x)lnc(f,x)

= -ε~ 1 αlnα + [ lnα+l] J dx c(ί, x) + 0(ε) - J dxc(ί,x) In c(t,x). (3.8)

Thus the monotonicity in time should be expected for the following quantity

Fa(c) = j dx c{x) In c(x) - [In α + 1] J dx c{x)

= -S(c)- [lnα+ 1] j dxc(x). (3.9)

Indeed, by a formal calculation, if c(ί,x) obeys (3.5), then

= - j dxdx'dyfK{x\x',y')[_ac(x)-c(x')c(y')']

• {In [αc(x)] - In [c(x>(/)]} ^ 0 . (3.10)

The last inequality follows from the monotonicity of In x.
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Equation (1.3) is a particular case of (3.5) corresponding to

K(x\x\ y') = K2δ(x' + y'-x)

a = KjK2 . (3.11)

The calculation is straightforward as long as one remembers that the range of x, x'
and / is [0, oo).

Hence we expect the following to be true, with

F(c)= f dxc(x) [ l n φ c ) - 1] . (3.12)
o

Proposition 3.1. Let c(ί,x) be a solution of Eq. (1.5) with c(0, -)e^+, then

' ) ) . (3.13)

Proposition 3.1 is proven in Part b) of this section. The previous discussion is,
of course, not necessary in order to verify that if c obeys Eq. (1.5) then formally

Q 00 GO

-F(c)= - f dx J dylc(x + y)-c(x)c(yy]
Gl 0 0

• {Inc(x + y)-ln [c(x)c(y)]}^0 . (3.14)

It may be worth pointing out that in the application F is the free energy density
of the system. If e(<0) is the energy of a bond, then for a chemical system,
modelled by the equations, the ratio of the two rate constants is

Ki/K2 = exp(e/kT), (3.15)

where T is the temperature at which the system is maintained. Substituting this in
(3.9), using (3.11) and (1.2), we obtain

F(c) = - S(c) + M(c) l]n(δA) - 1] - eM(c)/(kT)

~^~M-Σ^mc n - l ]-eΣc π /( fcΌ} (3.16)

This is the free energy, at the temperature T, since the chemical energy is

E(c) = el- £ c j « -eAM(c) , (3.17)

relative to the state in which all the units form a single linear polymer molecule.

b) Proof of the F-Theorem

In order to use the formal derivation of Eq. (3.14) we introduce approximating
dynamics for which (3.14) is easily justified. The F-theorem follows by a
semicontinuity argument.
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The approximating dynamics, obtained by suppressing the reactions which
involve molecules longer than z, are described by the following equation.

z — x

d \2$dyc(y)-xc(x) + (c*c)(x)-2c(x) J dyc(y) 0<x^z
— c(t,x) = i x o (3.18)

10 z<x.

Let OLZ be the semigroup on J^ whose generator is the bounded operator
described by the first two terms in (3.18), and let Kz(c) be defined by the last two
terms in that equation.

Since

ί P J c - α f ( ( l - P » (3.19)

we have [using (2.11)]:

Lemma 3.1. ocz is a positivity preserving semigroup on 3F and Vce#, ί^O:

In analogy with our interpretation of Eq. (1.5), we shall study Eq. (3.18) using
its integrated form:

cz(t, •) = α*c(0, ) + ί dsa^sK*(cz(s, •)) . (3.20)
0

Lemma 3.2. For a given c2(0, )e#+ Eq. (3.20) has a unique solution in #"+. It
satisfies

Proof. Let fe>|||cz(0, )lll and let T be the positive solution of (T+ T2/2)10b
= (b — |||cz(0, )|||) + 2/b. We define the mapping Rz c ( 0 ) in the Banach space of
continuous functions /:[0, T\-+3F by:

) = az

tφ, •)+ \dsaUsK
z{f{s^)). (3.21)

o

By estimates analogous to those used to prove Lemma 2.2 it follows that

p |

±α sup |||/(s,.)-0(s, )||| (3.22)
se[0,Γ]

with some λ < 1 which is independent of z. Thus for any / in the above Banach
space Rn

zΛQ)f converge to the unique fixed point of RZfC{0), which is the local
solution of (3.20).
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The positivity of the solution and the global existence follow by the argument
given in the proof of Proposition 2.2. Equation (2.18) are, however, replaced by:

— j
at 0

d

dx xcz{t, x =

j dx cz(t, x) = j dx xcz(t, x)— j dxdyc(x)c(y)
UL 0 0 0<x+y<z

00 00

^ jrfxxcz(ί,x)= Jdxxcz(0,x) .
0 0

These follow by integrating Eq. (3.18), since the generator of az

t is bounded and
thus solutions of Eq. (3.20) are ||| |||-differentiable in t. •

Lemma 3.3. Let c(ί, x) be a solution of Eq. (2.9) and let cz(t, x) be solutions of Eq.
(3.20) with c(0, ),cz(0. . ) G j r + and |||c2(0, -)-c(0, )lll •0. Then for any t^

Proof Dividing the time in intervals, it is enough to prove that for any b>03T
= T(b)>0 such that if c is a solution of Eq. (2.9) and dz is a solution of Eq. (3.20),
with |||c(0,.)lll,IK(0, )lll^fe/2, then

sup
te[0,T]

(3.23)

with some a < oo and a ^-independent function ε for which

limε(z;c,T) = 0 . (3.24)
z-^0

Let now T and RzM0) be as in the proof of Lemma 3.2 (d(O) = dz(O, )). Then

dz(ί,.)=lim(Λz%(o)C)(ί9 ) (3.25)

and, using (3.21),

sup \\\dz(t, )-c(t, )\\\
te[0,T]

= sup
ίe[0,Γ]

S(ί-λ) ι sup |||(JRzd(0)c)(ί, )-c(ί,
ίε[0,Γ]

(3.26)

To get a bound for the right hand side we subtract (2.9) from (3.21). Thus

Kd(0, )-«tc(0,

K(4(0, )-c(0,

(3.27)
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With the bounds of Lemma 3.1 we thus get

, )-c(0,

sup |||dz(ί, •)-<#,
te[O,T]

with

+ ( 1 - λ)~ι ]ds(2 + t - s ) | | | ( l - PZ)K(Φ, ))lll • (3.28)
0

| | | φ , )||| is bounded uniformly in s, and by (2.10) so are | | |K z (φ, ))||| and
|| |K(φ, ))|||. Therefore, (3.24) follows by the bounded convergence theorem. D

To prove Proposition 3.1 we shall also need:

Lemma 3.4. Let f,fne^+9 \\L-fL >0. Then
(n-*co)

\im MF(fn)^F(f). (3.29)

(F is lower-semi-continuous on ^+.)

Proof. Applying Jensen's inequality to

one can prove that (with h = \ng)

{
$dxf(x)h(x)\h^O,suph<oo, J dyem = \ \. (3.30)

J

o o

Since F in #+ is a supremum over || 1^-continuous functions, it itself is lower-
semi-continuous. •

Proof of Proposition 3.1. Let z < oo. If cz(t, ) is a solution of Eq. (3.18) with

cz(0, )e«^+ and sup c(0,x)<oo , (3.31)

then VT<oo:

sup cz(ί,x)<oo . (3.32)
*e[0,z]
te[0,T]

In such a case the formal derivation gives the correct answer, and similarly to Eq.
(3.14),

~ F{cz(t9 )) = - ί dxdy [c(x + y)- c(x)c(y)]
" Γ 0<x+j<z

• {Inc(x + y)-In lc(x)c(y)-]}^0 . (3.33)
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Let now c(t, ) be a solution of Eq. (2.9). We may assume that F(c(0, ))< oo,
otherwise (3.10) is trivially true. One may always choose a sequence of func-
tions cz(0, ), with z = l , 2 , . . . , which obey (3.30) and

IK(0, )-c(0,

F{φ, •)) > F ( c ( 0 , • ) ) .
(Z-+0O)

By Lemma 3.3, Vί^O:

c(ί, )=l imc 2 ( ί , )

Therefore, by Lemma 3.4 and (3.32),

))^limmf F(cz(ί5 •))

which proves the proposition. •

All the results of this section extend, after the obvious modifications, to the
discrete case described by Eq. (1.1).

IV. Exponential Decay of the Excess Free Energy

The free energy, F, is bounded below. Let us define:

F(iV,M)-inf{F(c)|ce^+,iV(c)-iV,M(c) = M} . (4.1)

Proposition 4.1. F is well defined on <F+ and

i) F(AΓ, M) - M In (M2/N) - 2M . (4.2)

ίi) The unique F-minimalizing state, for specified N and M is-given by

CNM(x) = M2/N exp ( - M/Nx) . (4.3)

iii) For any N>0,

inf{F(iV,M)|M>0}-F(iV,AΓ1/2) . (4.4)

Proof For c( -)e^+ and N = N{c), M = M(c):

ί dxcNtM{x) In cNtM(x) = J dxc(x) In cNtM(x) .

Thus

F{c)-F{cΉM)= - J dxc(x)ln
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with Ψ(z)= — zlnz. Since Ψ is bounded below F(c) is well defined, possibly + oo.
By the convexity of Ψ, and Jensen's inequality,

F(c)-F(cNίM)

dxcNM(x) [c(x)/c^M(x)]/ f dxcNtM(x))$ dycNM(y)

The inequality is strict unless c = cN M.
This proves ii) which directly implies i) and iii). D

Since F(c(ή) is a decreasing function of t which is bounded below it has a limit.
Had it been known that this limit is the equilibrium value of F, under the
constraint of iV, it could have been deduced that c(t) converges strongly to the
equilibrium. This method is due to Boltzmann, however so far it has not been easy
to apply it to Boltzmann's equation.

We shall now prove, with the aid of a new inequality, that F(c(t)) does decrease
all the way to its equilibrium value, in fact exponentially fast, provided initially it is
finite.

Let c(t) be a solution of Eq. (2.9) with c(0)e^+ and let N{t) = N{c(t)),
M(ί) = M(c(ί)), F(t) = F(c(t)) and F(t) = F(cN{t)ίM{t)). By Proposition 4.1, F(t)^F(ή.
With this notation we have:

Proposition 4.2.

Γ t 1

0 ̂  F(t) - F{t) S (7(0) - F(0)] exp - j" dsM(s) . (4.5)

L o J

This will be proved by the following inequality which appears to us to be new.

Proposition 4.3. Let c( ) ^ 0 and c, c\nceL}([0, oo)) then

J J dxdyc(x)c(y) In c(x + y)
o o

oo oo Γoo "12

^\dxc(x)\dyc{y)\nc{y)-\\dxc(x)\ . (4.6)
oo L o J

(The equality is attained only by the exponential functions e~λx.)

00

Proof, Let f(x)= / dyc(y)
X

00 00 00 00

j j dxdy c(x)c(y) In c(x + y) - j dx c(x) J dy c(y) In c(y)
0 0 0 0

= ί dx c(x)f(x) ]dy c(x + y)lf{x) ίc(y)/c(x + y)] In [c(x + y)/c(y)l.
0 0
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Applying Jensen's inequality for the semibounded concave function a\->a\na~ι

we get for the above expression

In \dyc{y)-\dyc{y)\d
0 0 0 L""^

= - /2(0) ln/(O) - /(O) [fix) In/W]? + fΦ)]dxf(x)~lnf(x)
o ax

fdxc(x) Π

Remark 4.1. The above inequality does not hold on 1R, e.g. for e '*', however a
slightly weaker inequality does hold in IR". For / ^ 0 , and ff In feL}(WC)

oo "12

ί dxf(x)\ . (4.7)
- oo J

In fact, differentiating Young's inequality with its best constants (which were
found by Beckner [6] and by Brascamp and Lieb [7]) one may get, for f,g,h^O
etc.,

\d"x\d"yf{x)g{y)\nh(x-y)

^ \ \dnx f(x) In fix) \d"y g(y) + \\dnx fix) \dny g(y) In g(y)

+ { d"xf{x) j" dnygiy) [in j" d"zh{z) - \ In J d"zfiz) - \ In j" <fz<?(z)]

-πi ln2ίr f "x/(x) |d") ;^) . (4.8)

The equality is attained by (amon others) f = g = e~2χ2, h = e~χ2.
We need the stronger inequality, (4.6), to control the decay of F.

Proof of Proposition 4.2. It was shown in the previous section that c(ί, ) may be
approximated by solutions of the modified Eq. (3.18) which are bounded and

dF
supported in [0,z]. For these functions — is given by (3.32) which coincides with

(3.14). It follows by the semi-continuity of F that it is enough to prove the
proposition for these functions, i.e. assuming that Eq. (3.14) is valid and that the
four terms in the integrand in (3.14) are integrable. In such case [with c( ) = c(t, )]

Λ 00 00 CO 00

— F (ί) = J J dxdy c(x)c(y) In c(x + y) - 2 J J dxdy c{x)c{y) In c(y)
dt o o oo

00 00

+ j \dxdycix)ciy)[_cix + y)lcix)ciy)-\ In [c(x)φ)/c(x + y)] . (4.9)
o o
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Applying the inequality (4.6) to the first term and Jensen's inequality for the

concave function αM-αmα" 1 to the last term in (4.9) we get | since

oo oo I

j j dxdyc(x + y) = N(c)
o o J

d °°
τ F(ί) ̂  - M{t) j dy c{y) In c{y) - M{t)2 + N{t) In [M(ί)2/iV(ί)]
at 0

= - M{t)F{t) - 2M(t)2 + N{t) In [M(ί)2/iV(ί)] . (4.10)

But

F(t) = M(t)ln lM(t)2/N(ty\-2M(t) (4.11)

and, by (2.13)

j t (4.12)

(4.10)-(4.12) add exactly to:

^ g -M(ί)[F(f)-F(t)] . (4.13)

Thus

d

dt

which proves (4.5). •

Remark 4.2. It is illuminating to follow the time evolution by observing the three
thermodynamic quantities: N(c), M(c\ and F(c). For a given value of N(c), which is
a constant of motion, the joint range of (M{c\F(c)) is the convex set defined by
M(c)>O,F(c)^F(iV(c),M(c)). The extremal points of this set (and only those)
correspond to unique functions —cNM (which describe states of "quasi-equili-
brium"). While M undergoes an autonomous time evolution, F decreases always
faster than it does at the corresponding boundary point with the same M (by
Proposition 4.2). Thus a function with an extremal value of (M,F) retains this
property.

Indeed it may be verified directly that for any JV and M(0),

c(t,χ) = c (x) (4-14)

is a solution provided M(ί) obeys Eq. (2.13), i.e. M(ί) is of the form (2.16). Families
of simple solutions which preserve a "canonical form" (in the terminology of [8])
and which exhibit convergence to equilibrium were found also for other related
equations, e.g. one which describes a harmonic oscillator interacting with a heat
bath [9].

Any solution c(t) may, therefore, be compared to a solution with the same N
and M(ί) for which F is minimized at all times. Furthermore, the difference in F
decays exponentially fast (see also Remark 6.3).
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Fig. 1. The range and the time evolution of {M(c\ F{c))

V. Convergence to Equilibrium

a) Boltzmanήs Argument Made Precise

The decay of the free energy implies directly strong convergence to equilibrium.

Proposition 5.1. Let c(ί, •) be a solution of Eq. (2.1) with c(0, )e#" + and
F(c(0))<oo. Then

' t-»-oo

with N = N(c).

To prove it we use the following estimate (see also remark [12]).

Lemma 5.1. Vε>03α(ε)<oo such that

(5.1)

(5.2)

with M = M(c) and N = N(c).

Proof. Let g(u) = u\nu + 1 — u. Since g is strictly convex and g(l) = g'(l) = 0, Vε>0
3 α(ε) < oo such that

VM^O:|M-l |^ε + α(e)0(H) . (5.3)

(5.2) follows by substituting u = c(x)/cNM(x) and integrating (5.3) with
00

ί dxcNM(x). Π
0

Proof of Proposition 5.1. Let N = N{c) and M(ί) = M(c(ί)). By Lemma 5.1 and
Proposition 4.2, for any ε > 0

cN,M(ty ( " )~CN,iV1

g εM(ί) + α(ε) exp - | ds M(s) [F(c(0))-F(cw,M ( 0 ))]

(5.4)

which proves (5.1). •
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b) A Stronger Result

The only restrictive assumption in Proposition 5.1 is that F(c(0))< oo. This may be
removed by an additional argument, leading to:

Proposition 5.2. There exists a function Q(t, N\ with

limβ(ί,JV) = 0 VJV>0, (5.5)
ί-» oo

such that for any solution of Eq. (2.9) in ^+ :

| |c(ί,0-c N f N 1 / 2 (Olli^β(t,ΛO (5.6)

for N = N(c(0)).

The proof is based on the following three lemmas.

Lemma 5.2. There exists a function T1(ε,N,F)<co such that for any solution in
J^+ of Eq. (2.9) with N(c) = N and F

( ) , ( ) tF) . (5.7)

Proof This lemma is directly implied by the inequality (5.4) and by:

\M(c(ή) -Nll2{c)\ ^N112 [coth (7V1/2ί) - tanh (N 1 / 2ί)] (5.8)

which follows from (2.16). D

Lemma 5.3. For any ε, T,IV,M>0 3δ = δ(ε,T,M,N) such that if cx{t,x\ c2(t,x) are
two solutions, in J%, of Eq. (2.9) which satisfy:

\\φ)\\xZN, \\Φ)\\aM i=l ,2

then

111^(0-c2(ί)|||<ε Vίe[0 ,T] .

Proof. cί can be obtained from c2 by repeatedly applying the Picard mapping
(2.12). To prove the lemma it suffices to show that for any JV,M>0 there is T > 0
for which the claim holds, and it is convenient to choose T so that the Picard
mapping is a contraction on the space of functions

c [0, 71 -+ {fe J% \N(f) S N, M(f) S M} ,

as in the proof of Lemma 2.2. For such T the claim follows from the invariance of
c2 under the Picard mapping which corresponds to c2(0, ), by an argument which
was used in the proof of Lemma 3.3. D

Lemma 5.4. VN>0 3G{N)<oo and B(t9N\ with

lim Bit, N) = 09
ί-> αo

such that any solution of Eq. (2.9) admits a decomposition

) (5.9)
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for which
i) b(t9x)9 0(ί,x)^O Vί,x^0,

ii) \\\b(t, )\\\^B(t9N) Vί>0,

iii) \\g(t9 xe [0, oo)} <G(N{c)) Vί^O.

Proof. Let c(t, x) be a solution of (2.9) in # + and let

JV = JV(c(O)), M(ί) = M(c(ί)).

By (5.8), VJV3ί0(JV)<oo such that Vί^ίo(iV)

(5.10)

It is therefore enough to find B and G for which the claim is satisfied on the
restricted class of functions c for which (5.10) holds Vί^O.

According to the explicit solution (2.8)

with

(α<1)/)(x) = e-'x/(x)
co a, (5 n )

0 0

The only use which will be made of the explicit formula for αj2) is to derive:

+ t 2 | | / | | x . (5.12)

The main idea of the proof is to decompose c into solutions of the following
equations

r t

b{t9 ) = exρ\-2\duM{ύ)
L o

t r ί

(5.13)

and

g(t9 ) = exp I - 2 j A i Λ φ ) I α<2)c(0, )
o

Γ ί

Jdsexp\~2\duM{u) α ^ C φ , )*Φ, •)] (5 1 4 )
o L o J

which add up to the Eq. (2.15) for c(ί,x).
The local existence and uniqueness of a solution of (5.13) in jF+ can be easily

seen by a contraction mapping argument similar to the one used to prove Lemma
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2.2 and Proposition 2.3. In order to prove the decay of 6(ί, ) it is convenient to
look at

b(t9x) = etxb(t,x) (5.15)

which satisfies

b(t, )=exp -
t

o

c(0, •)

+ Jdsexp -2jdwM(w)
L o

b(s,')*b{s,.). (5.16)

By the above mentioned argument, Eq. (5.16) has a unique || ||x-continuous
solution. While it is not obvious from (5.15) that \\b(t, ) | |x < oo, b has to be that
solution by the uniqueness of the solution of (5.13). It follows that \\b(t, -Jl^ is
differentiable and satisfies:

J|fe(O, )lli=Λί(O).

This implies

(5.18)

since ~ ||g(ί, )|| t < ^ M ( ί ) whenever \\b(t, )|| x =M{t).

By (5.10) and (5.17)

||fo(ί,.)ll1^(5/4)N1/2 (5.19)

and

for ί = 0 and hence for all ί^O. Therefore

| |%, . ) l l i^M(0)exp[-4- 1 iV 1 / 2 ί ] , (5.21)

yielding

1 )exp[-4- 1 AΓ 1 / 2 ί ] (5.22)

which proves ii) [for the class restricted by (5.10)] with B(t,N) defined by the last
expression.

For any solution of Eq. (5.14)

)IL(^oo) ( 5 2 3 )
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with

A = sup {[2ίJV1/2 + £2(5/4)IV1/2] exp [ - 2(3/4)JV1/2ί]}

00

+ f du\luNm + 2w2(5/4)iV1/2]2 exp [ - 2(3/4)N 1 / 2 M] < oo (5.24)
o

and

(t t

D= supU dslM(s)+ \\b{s9 )|| J e x p - 2 JduM{u)
t>0 to 5

j } i [ f ] (5.25)
t>o [o L o JJ

(by 5.12). The last identity was written to facilitate the limit ί-»oo. Since
b(s,

t Γ S I

j dsM{t - s) exp - 2 J duM(t - u) = \ . (5.26)

is the supremum of a continuous function which is bounded by 1 and equals 0 at
0 and \ at oo. Thus

D < 1 . (5.27)

Using (5.27) in the standard constructive argument which was refered to
before, one can easily prove the existence, uniqueness and positivity of a solution
of Eq. (5.14). It satisfies

αo ) l l l }<oo s (5.28)
ί > 0

since one gets a similar inequality to (5.23) for the ||| |||-norm, with the same D and
a modified but finite A.

Therefore b(ί, x) + g(t, x) is a solution of Eq. (2.15) in J% which, by the
uniqueness, implies (5.9).

Finally, (5.23), (5.27), and (5.28) imply

sup| |0(t, .) l loo^/(l-ί>), (5.29)
ί > 0

proving iii) with G{N) = A/{ί- D). •

Proof of Proposition 5.2. It is enough to show that for any ε,N>0 3T=T(ε,N)
such that for any solution in #+ of Eq. (2.9) with N{c) = N

IIΦ, O - ^ v ^ O l l i ^ Vt^TfeiV). (5.30)

Let ε,N be given and let Tx = T1(ε,iV,(5/4)iV1/2lnG(N)), with the notation of
Lemmas 5.2-5.4. By Lemma 5.4 3 T2e [ίo(iV), oo) [ί0 is defined by (5.10)], such that

Sδ(s, TVN, 10/4iV1/2) . (5.31)
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We define T by:

T{ε9N)=Tί + T2 . (5.32)

For any c(t, x) as above and t ̂  T(ε, N) one may find, by Lemma 5.4, a function
gt_Tι(x)^0 such that

l s ] V )

and

N(gt-Tι) = N(c), M(gt_Ti)<(10/4)N112

[for the last inequality use is made of: t—T^ T2 ^ ί o ( N ) ] . We approximate c(ί, )
by gt_Tί{Tv •) which is obtained evolving from gt_Tι{-) for the time Tl9 by Eq.
(2.9). By Lemma 5.2

l\gt-Tι(
τv')-cNtN^(')h<ε (5.34)

and by Lemma 5.3

lk(ί, )-Λ- Γ l (71» •)H 1 <e, (5.35)

since

(5.30) follows now by adding (5.34) and (5.35). D

VI. The Linearized Equation

In order to study the time evolution flow in the vicinity of any of the equilibria
1/2 it is convenient to change variable to φ( •) defined by:

Ar 1/2x) + φ(χ)eχp(-N~lί2x/2) . (6.1)

The equation for φ which corresponds to Eq. (1.5) is

~φ(t,x) =
01

+ {φ*φ){χ)-2φ(x)\dye-N'il2yt2φ{y) . (6.2)
0

In the vicinity of the equilibrium cNiNί/29 described by

/GO \ i / 2

\\φ\\2=Udx\φ(x)\2\ <N112 , (6.3)
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the non-linear terms are of second order, leaving us with the linearized generator
LN defined by:

x)φ(x) . (6.4)
o

The local behaviour of a flow near a stationary point depends on the spectrum
of the linearized generator. The spectra of LN can be computed exactly and are
described in the following result.

Proposition 6.1. For N>0:
i) LN are self adjoint operators on L2([0, oo)).

ii) N~1/2LN are unitarily equivalent.
iii) The spectrum of LN is (— oo, — 2iV ι/2]u{0}. On (— oo, —2N112) the spectral

measure is absolutely continuous with respect to the Lebesgue measure, with
multiplicity 1, and at —2N112 and 0 it has two, non-degenerate, eigenvalues.

iv) // φeL2([0, oo)) corresponds to c with N(c) = N, then φ is orthogonal to the
^-eigenvector of LN.

Proof The sum of the first two terms in the r.h.s. of (6.4) can be written as an
integral over IR of the antisymmetric function sgn(x)φ(|x|) with the translation
invariant kernel 2e~N~1/2lx~yy2. It follows that

8iV1/2

" * (6.5)" l+4Np2

where — p2 is the Laplacian with the Dirichlet boundary condition and (2iV1/2 + x)
is a multiplication operator.

Since the first term in (6.5) is a bounded operator and the second a selfadjoint
one, LN is selfadjoint on the domain of x. N~ 1/2LN is unitarily equivalent to Lι by
the dilation: φ(x)->JV1/4φ(xiV1/2).

Thus i) and ii) are proven. By ii), to prove iii) and iv) it is enough to describe the
spectrum of L = LV This is done by the following two lemmas.

Lemma 6.1. L has exactly two eigenvectors in L2([0, oo)). The corresponding
eigenvalues are 0 and —2.

Proof

φo{x) — xe~xl2 (6.6)

is a O-eigenvector, as may be guessed from the time invariance of

) - l + \dxxe-χl2φ{x) . (6.7)
0 0

(Notice that iv) is satisfied.)
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Let now φλ be a ̂ -eigenvector. Then φλ is in the domain of x, which coincides
with that of L, and

φλ = λφλ. (6.8)

Therefore 3/λeL2([0, OO)) such that

fλ = 8/(1 + 4p2)φλ = (x + λ + 2)φλ , (6.9)

which implies

( l+4p 2 )Λ = 8 Φ λ = 8/(x + l + 2)/λ . (6.10)

Thus the function

g{x) = fλ{x-(λ + 2)) (6.11)

has an absolutely continuous derivative and solves the eigenvalue problem, in

(-4Δ-$/x)g(x)=-g(x) (6.12)

with the boundary condition:

0. (6.13)

By a standard argument, which uses the constancy of the Wronskian of the two
solutions [10], the Schrόdinger equation (6.12) has at most one solution which is
not divergent at oo. This solution may be found from the known eigenvector φ0. It
is:

g(x) = {x-2)xe-{χ-2)l2 . (6.14)

The lemma follows now, using (6.13), from the number and location of the zeroes
of g. The (— 2)-eigenvector of L is

φ_2(x) = {x-2)e-χ/2 . D (6.15)

Lemma 6.2. On the orthogonal complement of {φo,φ-2}
 t n e spectrum of L is

(—oo,2] and the spectral measure is absolutely continuous with multiplicity ί.

Proof We may use the former approach to find also generalized eigenvalues. For
distributions, however, (6.9) does not imply the last equality in (6.10). Consequent-
ly, (6.12) is replaced by

(-4Δ-8/x)0(x) = -g(x) + aδ{x) , (6.16)

with an undetermined α. In addition to (6.14), (6.16) admits the solution

\(x-2)xe-(x'2)l2

\

To the zeroes of g correspond the following generalized eigenvectors

(6.18)

with Aε(-oo, -2) . Here 0(x) = (l +sgnx)/2.
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Although φλ were found by an uncomplete argument, the following orthonor-
mality and completeness relations can be verified directly, proving Lemma 6.2.

ix)φ λ 2(x) = δ( l 1 -Λ 2 ) (6.19)
0

for ^ ( - o o , -2), A2e(-oo, -2)u{-2,0}, and

- 2

f dλφλ(x)φλ{y) + φ _ 2{x)φ _ 2{y) + φo{x)φo{y) = δ{x-y). D (6.20)
— oo

Remark 6.1. That the essential spectrum of L is (— oo, —2] may be seen without
diagonalizing L using, instead, WeyΓs theorem [10], since ( 1 + 4 P 2 ) " 1 is a
relatively compact perturbation of — (2 + x).

Remark 6.2. The kernel of the linearized semigroup can be obtained explicitly
using (6.19) and (6.20). For the discrete case this was done, independently, by Kjaer
[4] who used it to study the approach to equilibrium.

Remark 63. In the formal expansion of F(c) in φ, defined by 6.1 with N = N(c). the
linear term vanishes and

F(c)*F(cN^/2) + \]dx\φ(x)\2 . (6.21)
o

The spectral analysis suggests that whenever (6.21) is a valid approximation and
M(c(0, ))=¥N(c)112 then

|F(c(t, ))-F(CN Nί/2( ))|/[M(c(ί, fl-ΛΓ1'2]2 >N~1/2 . (6.22)

Appendix: An Exact Solution for the Laplace Transform

GO

The Laplace transform, y(t,y)= J e~xyc(t,x)dx, may be expressed in a closed form.
o

Equation (1.5) transforms to

dy y(ί5 0) — y(ί, y) dy
ft =2YKi

 y + ~ +y2-2y(t,y)y(t,0) . (Al)

y(ί,0) equals M{c{ή) given by Eq. (2.16). Setting χ{t,y) = y{t,y)-y(t,O) we obtain

H-Ϊ'-'"-1-
The left hand side is the derivative of χ along y + t = const, and along this line the
equation therefore is a Riccati equation. Using a standard substitution for Riccati

y i , . .
equations we set χ= —~τ H— , obtaining

a t-F = ί--TϊV-1 (A3)

dy \y y+y
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The solution is

v2 1 /v4
( A 4 )

where / is an arbitrary function of one variable. To determine / we consider

lim y(t, y). We have

( A 5 )

Hence for ί-+0 we get

and substituting in Eq. (A 5) we obtain an expression for y(f, y) in terms of y(0, t + y)
and 7(0,0). This expression, however, does not readily lend itself to transformation
back to c(ί,x).
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