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Abstract. The number of instantons and the number of zero fermion modes in
the field of instanton are calculated. The quantum fluctuations of instantons
are studied.

Section 1. Introduction

Let us consider gauge fields taking values in the Lie algebra of simple compact
non-abelian Lie group G. The topological number of the field AΆ having finite

euclidean Yang-Mills action S= —^ I (FφFΛβydV can be defined as

(1)

It is proved in [1] that S^8π2g~2\g\ and S = 8π2g~2\g\ if

Faβ = *FΛβ

for 4^0

(3)

for q gO. Here F&β denotes the strength of the field AΛ and *Fyβ the dual tensor.
Following [2] we use the name instanton for solutions of the duality Eq. (2) and
the name anti-instanton for solutions of (3). The Eqs. (2), (3) are conformally
invariant and therefore we can replace the fields on the euclidean space by the
fields on the sphere S4 in (2), (3). The instantons having topological number 1 were
found in [1] and used in many papers to understand the structure of quantum
gauge theories. The quantum fluctuations of such instantons were studied in
[2-4]. The examples of instantons having arbitrary topological number were given
in [5-7], G. 't Hooft found a 5g-parameter family of instantons having topological
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number g; it is shown in [7] that a slight modification of 't Hooft's construction
gives a (5q + 4)-parameter family of instantons in the case q^3 and 13-parameter
family in the case q — 2.

We have shown in [8] that the solutions of (2) having topological number q
depend on 8g — 3 parameters in the case G = SU (2). The proof is based on the
Atiyah-Singer index theory this theory was used in [8] to determine the number
of zero fermion modes in the field of instanton too1.

After publication of [8] there appear many papers concerning the questions
discussed in [8]. The essentially equivalent proof of main assertions of [8] was
published in [11]. The considerations of the papers [12, 13] are also very near to
those of [8]. They are based on the application of the index theory to the Dirac
equation and on the connection between the Dirac equation and linearized duality
equation (this connection was mentioned in [8] too). The zero fermions modes in
the field of ςt Hooft's instanton were found explicitly in [14] for fermions
transforming according two-dimensional and three-dimensional representations
of SU(2). The duality equation in the case of arbitrary gauge group was studied in
[15] by means of methods of [8]. The relation between the local index theorem
and Adler-Bell-Jackiv anomaly established in [8] was rediscovered in [16].

An important progress has been made in the paper [17], where the solution of
duality equation was reduced to the problem of algebraic geometry. This problem
is solved in [18-19].

There exists a clear and short review [20] of applications of topology and
algebraic geometry to the study of instantons and more detailed reviews [21-23]
of the same subject.

In the paper [24] we have studied the quantum fluctuations of instantons. The
contribution of instantons in euclidean Green functions is expressed in [24]
through regularized determinants of elliptic operators. To study the behaviour of
this expression by conformal transformation of metric we apply the method used
in [25] to prove the topological invariance of analytic torsion. The conformal
properties of instanton determinants can be used to obtain information on two-
instanton contribution (only a factor depending on one parameter remains
indetermined in this contribution).

As we show in separate papers [26, 27] the Ray-Singer torsion as well as
instanton determinants can be expressed through the partition functions of
degenerate quadratic Lagrangians. This physical interpretation permits to con-
struct new topological invariants using the methods of quantum field theory.

In present paper we give the detailed proof of results of [8] and [24]. To
facilitate the reading to physicists we have included in present paper the
formulation of main mathematical results used in our proofs (Sect. 2, 3, 6, and
Appendix I). Some results we have not found in the literature though they are
perhaps well known. Most of results summarized in Sect. 2, 3, 6, and Appendix I
are explained in many books and papers, but it seems that these books are not very
easy for physicists. Of course the brief summary cannot replace detailed textbooks

1 In preliminary version [9] of the paper [8] we proved by means of index theory that the equation
for infinitesimal variations of instanton (linearized duality equation) has at least 8g — 3 independent
solutions. In [10] this result was confirmed by means of direct calculation for 't Hooft's instantons
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on fibre space theory and theory of elliptic operators. However we hope that this
summary will be useful by reading of this paper and other papers (for example
[26-28]). We have defined some notions used in [26, 27] though they are not
necessary in present paper.

In Sect. 4 we calculate the number of instantons. The Sect. 5 is devoted to zero
fermion modes in the field of instantons. In Sect. 7 we use heuristic arguments to
obtain the expression of instanton contribution through regularized determinants.
In Sect. 8 we analyse the conformal properties of these determinants. In Sect. 9 we
consider shortly the two-instanton determinants (see [29]). The results of Sect. 8
and 9 overlap partially with the results of paper [30].

All manifolds, maps, bundles, sections, forms under consideration will be
supposed smooth.

Section 2. Topological Preliminaries

One says that a map p of the space E onto the space B is a trivial fibration with the
fibre F if there exists such a homeomorphism φ of B x F onto E that pφ(b,f) = b for
every beB, feF. The map φ is called a trivializatiori of the fibration p.

The map p of the space E onto the space B is called a locally trivial fibration
with a fibre F if the space B can be covered by open sets Ua in such a way that the
map p of p" 1(Ua) onto UΆ is a trivial fibration, i.e. there exist homeomorphisms φα

of l / α xF onto p'^CU^ satisfying pφa(u,f) = u. If ueUar^Uβ we can determine a
topological map ρ"β of F onto F by means of formula

The maps ρu

aβ will be called transition maps one can say that the fibre space E is
glued from the direct products Ua x F by means of maps ρ"β. It is evident that for
ueUanUβnUγ we have

Qlβ = QlβQu

βy (1)

If F is a (complex) vector space and the transition maps ρu

aβ are linear we say
that ξ(E,B,F,p) is a (complex) vector bundle. If for every u the map ρ"βeG, where
G is a subgroup of the group of linear transformations of F, we say that ς is a
G-bundle. (We suppose that the trivializations φα are fixed.)

The continuous map q of B into E will be called a section of ξ if pq(b) = b for
every b ε B . I f the fibre space is trivial then every section has a form q(b) = φ(b, r(b))
where r is a map of B into F, φ is a trivialization. In general case q(b) — φa(b, Fα(fr))
where the maps rα:£/α-»F satisfy ra(u) = ρu

aβrβ(u).
Let us consider a space F and a topological group G, acting in F on the right. If

the group G acts freely in F (i.e. eg=^e if eeF, geG, 0=1= 1) and the identification
map p of F onto coset space B = F/G is a locally trivial fibration we say that the
action of the group G determines a principal fibration ξ(E,B,G,p). (The last
condition is always fulfilled if G is a compact Lie group.) A principal fibration
having a section q is trivial; the trivialization is given by formula φ(u,g) = q(u)g.
Let us consider such a covering {ί/α} of the base E — EfG that the fibration ξ has a



236 A. S. Schwarz

section qa over l/α for every α the map φa(u, g) = qΆ(u)g determines a trivialization
of ξ over UΛ. We fix the covering {UΛ} and the sections qΛ. It is evident that

We define σ^α as an element of the group G satisfying

Then the transition map ρu

βa transforms geG into σu

βyg.
Let us describe for example the tangential fibration of n-dimensional smooth

manifold M. The space E of this fibration consist of frames in M (the set (α1? . . ., an)
of n linearly independent vectors at the point of M is called a frame at this point). It
is easy to define a free action of the group GL (n) on E [a non-degenerate n x n
matrix gt transforms the frame (α1 ?...,αn) into the frame (α'l5 ...,0J,) where
α! =: Σ aj9jϊ\ This action determines the principal fibration ζ(E, M, GL (n), p) which
is called the tangential fibration of B. The local trivialization of ζ can be
constructed by means of local coordinates in M the transition maps assign to
each point beUΛnUβ a Jacobian matrix (du\Λ)/duj

(β)) where (w^, ...,w"α)) and
(M(0)? . . . sWJy are local coordinates in L/α and Uβ respectively. If M is a riemannian
manifold one can give another definition of tangential fibration. It is convenient to
consider in this case the space E' of orthonormal frames in M. The natural action
of 0(n) in E' determines the principal fibration £'(£', M, 0(n\ p'} which is called a
tangential fibration of riemannian manifold M.

For every representation T of the group G in the group of non-degenerate
linear transformations of the vector space F we define a vector bundle associated
with the principal fibration ξ(E,B,G9p) as a fibration ξτ(Eτ,B,F,pτ) which is
trivial over£/α and has the transition maps T(ρlβ). One can give also an invariant
definition of the associated vector bundle. Namely, the space Eτ can be obtained
from ExFby means of identification (ej) ~ (eh, T(h~l)f) where he G, the map pτ

is induced by the projection (e,f)->p(e).
Let us suppose that the base B of vector bundle η(E,B,F,p] is a smooth

manifold. The space of smooth sections of the bundle η can be considered as a
linear space this space will be denoted by Γ(η). If the bundle η is trivial the space
Γ(^) can be identified with the space of F- valued smooth functions on the base. If
η = ξτ one can identify a section feΓ(ξτ) with a collection of F- valued functions
/α(u) defined for ueUa and satisfying

if we Uar\Uβ. One can say that the section feΓ(ξτ) can be considered as a function
on the base taking values in the fibres of ξτ. The exterior differential p-form on the
base taking values in the fibres of ξτ

, Λ A dufa (1)

satisfying
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if UE C/αn Uβ (here ω(α) is a F-valued p-form defined on [7α, the local coordinates in
l/α and Uβ are denoted by (u\Λ), ...,w"α)) and (ul

(β}, ...,u"β}), the sign Λ denotes the
exterior product : dul Λ duj — — duj/\ dul). The space of p-forms taking values in the
fibres of ξτ will be denoted by Γp(ξτ); it is evident that Γ°(ξτ) = Γ(ξτ). It is easy to
construct a vector bundle ξp

τ in such a way that sections of this bundle can be
identified with p-forms taking values in the fibres of ζτ [i.e. Γ(ξp

τ) = Γp(ξτ}].
Let us consider the open set 17 in the euclidean space Sn, the trivial principal

fibration £(£, 17, G, p) and the trivialization φ: l/xG-»£ of this fibration. The
vector field Aμ defined on U and taking values in the Lie algebra ^ of the group G
can be considered as a gauge field. Let K denote a curve in U with beginning point
a(K) and ending point β(K\ The T-exponent Texp / — j A dxμ\ will be denoted by

hκ. If the curve K consists of two curves Kv K2 and α(K1) = α(X), β ( K ί ) = <x.(K2\
β(K2) = β(K) then hκ = hK2hKί; for infinitesimal curve hκ=l — Aμdxμ. For every
curve K C U one can define a map bκ of the fibre over the beginning point α(K)
onto the fibre over the ending point β(K) transforming the point r — φ(a(K\ g) into
the point bκr — φ(β(K\hκg\ Of course bκ(rh) = bκ(r)h for every foeG. One can say
that the family of the maps bκ determines the connection in the principal fibration
ξ. The map bκ can be interpreted as parallel transport of the fibre along the curve
K. The gauge field Aμ determines also parallel transport along the curve K C B of
the field transforming according the representation T of the group G in the group
of non-degenerate linear transformation of the space F. The vector f± over β(K) is
obtained by means of parallel transport from vector /0 over α(K) if /x = T(hκ)f0. If
K(λ) is the set of points {u(σ)} where O^σ^/l and fλ = T(hK(λ})f0 then
dfjdλ — — t(Aμ(u(λ))fλduμ/dλ, where ί denotes the representation of Lie algebra
corresponding to T. If the field f(u) satisfies

then it is unchanged by parallel transport. The transformation law of gauge field
Aμ by the change of trivialization can be derived from the requirement that the
maps bκ do not depend from trivialization. We obtain that

Aμ(u) = q(u}Aμ(u}q- \u) - (dμq}q~l(u}

if the trivializations φ and φ' are related by the formula

We see that the fields Aμ and A' are gauge equivalent.
Let us suppose that ξ(E,B,G,p) is a principal fibration and the base B is

^-dimensional smooth manifold. We denote by {UΛ} the atlas of the manifold B
(i.e. we suppose that the manifold B is covered by sets Ua and the coordinates
(u^Ϋ ...,w"α)) are introduced in Ua). For every α we fix a section qa of ξ over [7α.
Corresponding trivialization of ξ over Ua will be denoted by φα [i.e.
φJίu,g) — qΛ(u)g~]. The fibration ξ is glued from trivial fibrations by means of
transition maps g-+σu

aβg. The gauge field Am ξ can be considered as a collection of
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fields v4(

μ

α) defined on [7α, taking values in ^ and satisfying

. _ , 5σL. .. ,.

The gauge field A determines the connection in ξ. Namely, if K is a curve in B one
must divide K onto curves Kί9 . . ., Xπ in such a way that each Ki lies in one of l/α

and define the map fc^ of the fibre over the beginning point of K onto the fibre over
the ending point of K as bKn ... bKί where bKι are defined as earlier.

The transformation λ of E is called an automorphism of principal fibration
ξ(E,B,G,p) if λ(eg) = λ(eg\ pλ(e) = p(e) for eeE, geG. It is easy to see that the
automorphism of the trivial fibration can be represented in the form
λφ(u, g) = φ(u, L(ύ)g) where L(u) is a G-valued function on the base. In general case
one can write that

where

wel/ α , La(u) = σlβLβ(u)(σlβΓ
l if

The automorphism λ transforms the gauge field A into the gauge field A' defined
as a collection of fields

Af\u) = LΛ(u)Aμ(u)L- '(«) -
(a)

It is easy to see that the maps bκ = b% and the maps bf

κ — b^ are connected by the
formula b'κ = λbκλ~1.

We say that the field A' is gauge equivalent to the field A if there exists an
automorphism transforming A into A'.

Let us consider the set He of elements cκeG satisfying bκe = ecκ [here eeE and
K is an arbitrary curve beginning and ending at p(e}]. It is easy to prove that He is
a group; this group is called a holonomy group at point e [if e = φa(u, 1) then He

consists of elements h$ where K run over the curves beginning and ending at u].
The holonomy groups at different points of E are conjugate. One can prove that
the gauge field A is gauge equivalent to the gauge field taking values in the
subgroup G' C G if and only if there exists such a point that He C G.

The gauge field Aina principal fibration ξ determines a covariant differential
dA in associated vector bundle ξτ. The differential dA acts from Γp(ξτ) into
Γp+1(ξτ); namely on l/α the operator dA transforms the form (1) in the form

ρ I , . . . , «

where VQ = — — + t(A(*}) (here ί is the representation of the Lie algebra ^
. <«>

corresponding to the representation T of the Lie group G).
The sections of ξτ can be considered as fields transforming according the

representation T of G and the covariant differential dA coincides with usual
covariant differential of such fields. The gauge field determines the parallel
transport of the fiber of vector bundle ξτ along the curve KcB. If the space Eτ is
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represented as space of pairs (<?,/), eeE, fεF with identification
(e,f)'—(eh,T(h~ί)f) then the parallel transport along K transforms (e,f) into
(bκe, /). If the field ψ transforming according the representation T (i.e. the section
of ξτ) satisfies dAψ = 0 then this field is unchanged by parallel transport and
therefore for every eeE there exists such an element /eF, /=f=0 that the pairs (β, /)
and (bκe,f) = (ecκ,f) for every closed curve K determine the same point of Eτ.
Using that (ecκ,f)^(e,T(cκ

ί)f) we obtain that T(g)f = f for every geHe. If
G = SU(2) and T is an irreducible representation, we see that in the case under
consideration the holonomy group is abelian and therefore the gauge field is gauge
equivalent to a gauge field taking values in the abelian Lie algebra.

Let us consider the adjoint representation τ of the group G in the Lie algebra &
and corresponding associated vector bundle ξτ(Eτ, B, <§, pτ). The strength of gauge
field can be considered as collection of 2-forms

Jμ Λ uv

(a) Λ UU(a)

where

It is easy to see that the forms F(α) determine a 2-form taking values in the fibres of
the bundle ξτ. The difference of two gauge fields (A(*} — A(

μ

})duμ can be considered
as a 1-form taking values in the fibres of ξτ. The infinitesimal automorphism of ξ
can be considered as a set of ^-valued functions ω(a\u) satisfying ω(α)(w)
= σ"βCn(β)(u)(σ"β)~1 the functions ω(α) determine a section of ξτ.

Let us suppose now that the vector bundle η(E,B,F,p) is provided with
hermitian structure [i.e. η is an ί7(m)-bundle and B is n-dimensional compact
riemannian manifold]. In this case one can naturally define the scalar product in
Γp(η) and the operator * acting from Γp(η) into Γn~p(η)\ the operator * transforms
the form (1) into the dual form

where

λ1,...,λp,μl,...,μn-p

(as usual g = dQtg^ aμ = gμva
v,gμv is the metric tensor). It is easy to check that the

adjoint operator to the covariant differential dA is equal to ά\ — — *dA* if the
dimension of the manifold M is even. The operator dA can be considered as
covariant divergence for example ά*A transforms the 1-form ωμduμ into the 0-form

Section 3. Elliptic Operators

Let A be a differential operator acting on vector-valued functions defined on
bounded domain D in euclidean space <ίn. The differential operator A of order N
transforms the function (f^u), ...,/m(u)) into function (//(M), . . . , fn(u)) where

//(«)= Σ Σ Af} ' ^u)dϊ...dϊfj(u),
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the coefficient functions Afj"">λn(u) will be supposed smooth. The differential
operator A will be called an elliptic operator if for every ueD and for every pε/n,
p φ 0 the symbol of this operator

<Ty(U,p) = Σ 4'-"^'..X"

\λι + ...+λn\=N

is a non-degenerate matrix. It is convenient to consider differential operators as
operators in Sobolev spaces. The Sobolev space W*(D) is defined as completion of
the space of smooth functions on D with respect to the norm

\\f\\(k)_ y ||3λι M n f j l
\\J \\(p)~~ Lu UUί " Un J \\(p)

\λl + ...+λn\^k

where \\g\\(p) denotes the //-norm:

The differential operator or order N can be continuously extended on W* if k ̂  N
and acts from W* into W^~N.

We will consider the differential elliptic operators acting from the space Γ(ξ1)
into the space Γ(ξ2) where ξ.(Ei9 M, F , p.), z = l,2, are vector bundles, M is a
compact manifold. (These operators can be defined as operators satisfying locally
the requirements above.) If A is such an operator and the bundles ξί,ξ2 are
provided with hermitian structure one can construct formally the adjoint operator
A* acting from Γ(ξ2) into Γ(ξί). It is easy to check that the operator A* is elliptic;
A* A and A A* are non-negative self-adjoint elliptic operators acting in Γ^)
and Γ(ξ2) respectively.

We denote by l(A) the number of linearly independent solutions of equation
Af — 0, i.e. the number of zero modes of operator A. In other words l(A) denotes
the dimension of the kernel of A:

l(A) = dim ker A .

(The kernel of A is the space of solution of equation Af = 0.) It is easy to verify that
l(A) = l(A*A) and l(A*) = l(AA*). The index of elliptic operator A is defined by
formula

mdexA = l(A)-l(A*) (1)

[the numbers l(A) and l(A*) are finite therefore this definition is correct]. One can
check that the index does not change by continuous variation2 of operator A this
assertion permits to use topological methods for calculation of index [31-33]. It
follows from this fact that index A does not depend on the choice of the hermitian
structures in bundles ζlyζ2.

Let us consider a non-negative self-adjoint elliptic operator K in the space Γ(ξ)
where ξ(E, M, F,p) is provided with hermitian structure. Let R be a differential
operator of order zero (locally R can be represented as operator of multiplication

2 One can say that operator depends continuously on parameter if the coefficient functions depend
continuously on this parameter in the C^-topology
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on matrix function). The asymptotics of Sp R exp ( — Kt) for ί->0 can be studied by
semiclasical method. One can prove that for f — »0

$pRexp(-Kt)*ΣΨk(R\K)Γk , (2)

where k = — , - , - , .... N is the order of B and n is the dimension of the base
N N N

M. The coefficients can be calculated by means of Seeley formula [34], [33]. If A is
second order differential operator the coefficient Ψk(R \ K) can be represented as an
integral over M and the integrand is a rational function of coefficient functions of
R and derivatives of coefficient functions of K.

One can take jR = 1 then we obtain from (2) that for ί-»0

where

Φk(K)=Ψk(l\K) .

The index of elliptic operator A can be represented in the form

index A = Φ0(A*A)-Φ0(AA*) . (3)

Really,

Sp exp (-tA*A)-Sp(-tAA*) = index A (4)

because non-zero eigenvalues of A* A and AA* coincide and their contributions in
(4) cancel. Taking the limit t-»0 we obtain (3) from (4). Combining (3) and the
Seeley formula one can get the integral formula for index. The elliptic operators on
compact manifolds can be considered as bounded operators in Sobolev spaces too.
The Sobolev space Wk(ξ) can be defined as a completion of Γ(ξ) with respect to theykf F

'p
norm

(p) — J (p) 5

where B is a positive second order elliptic operator, \\g\\ (p) denotes the ZΛ norm.
[The space Wk(ξ) and the topology in this space do not depend on operator B and
on the choice of hermitian structure in £.] One can prove that

1/11$ (5)

if P^P\ /c§: — — k'. It follows from (5) that the space W% is imbedded in the
P P

space Wp. (This assertion is known as Sobolev's imbedding theorem.) Let A be a
differential operator of order N acting from Γ ( ξ ί ) into Γ(ξ2). The extension of this
operator gives a bounded operator A(k'p} acting from W^ξ^) into Wp~N(ζ2). If A is
an elliptic operator then l(A) = l(A(k'p}). (Every solution of elliptic equation
A(k'p}f = Q is smooth and therefore can be considered as a solution of equation
4/* = 0.) Analogously l(A*) = l(A(k p)*). In particular if l(A*) = Q the operator A(k>p}

maps W*(^) onto Wk~N(ξ2).
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At last we give the definition of elliptic complex. (This notion will not be used
in present paper.) The sequence

(6)

of linear spaces Γ0, . . . , ΓN and linear maps d{ acting from Γt into Γi+ x will be called a
complex if

di+1dt = Q . (7)

It follows from (7) that the image of dt_ 1 contains in the kernel of dt and therefore
we can consider the coset space Hi = KQΐdi/lmdi_1. The dimension of this space
(the ί-th Betti number) will be denoted by ht. If ht = 0 for i = 0, l , . . . , A f we say that
the complex is acyclic. The Euler characteric of the complex is defined as ^(— l)1^-.

If Γ = Γ(ηi\ where ηt is a vector bundle provided with hermitian structure, and
the operators

are elliptic we will say that the complex is elliptic. It is easy to check that

Ker ̂ ^

One can prove that in this case Γt is a direct sum of Imί/ ί_ 1, Imdf and Kerzl
(Hodge decomposition). In other words each element αelj admits unique repre-
sentation in the form x + y + z where x = di__1u, y = dfv, dίz = Q, df_ίz = Q.
It follows from Hodge decomposition that Ker di = lmdi_ί +Ker Δt and therefore
ht = KΔJ.

The Euler characteristic of elliptic complex can be interpreted as index of
elliptic operator. Namely, we can define the operator T acting from space
Γeven = Γ0 4- Γ2 + . . . into the space Γodd = Γt 4- Γ3 4- . . . as an operator transforming the
sequence (α0, α2, . . .)^Γeven into the sequence (b^ b3, . . )eΓodd, where b2ί_ l^d^i_ ΐa2i

+ ̂ 2i-2 f l2ί-2 ^ ΐ s easY to Prove tnat T is an elliptic operator and index

τ=Σ(-Vihi
Let Γk be the space of /c-forms on the manifold M. If dk = d is the exterior

differential, the spaces Γk and maps dk form a complex (de Rham complex of the
manifold M). The Betti numbers of this complex are equal to the Betti numbers of
the manifold M. If M is a compact riemannian manifold then de Rham complex
can be considered as an elliptic complex. An obvious generalization of de Rham
complex can be obtained, if we denote by Γk the space of fe-forms taking values in
the fibres of an 0(m)-bundle and dk denotes the exterior differential with respect to
the gauge field with vanishing strength (F-—G)3.

3 If one can find such a field the bundle is called flat. There exists a natural correspondence between
flat bundles and representations of the group π t(M) into 0(m)
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Section 4. Instantons

Let us consider a principal fibration ξ(E, M, G, p) where M is four-dimensional
compact oriented riemannian manifold, G is a simple compact Lie group. The
euclidean action of the gauge field A in ξ can be defined by formula

S(A) =w(F'F]=w J- <FΦ F'β>dv '
where F is the strength of the field A. [As we have explained in Sect. 2 F can be
considered as 2-form on M taking values in the fibres of the associated vector
bundle ξτ(Eτ, M, ̂ , pτ) where ̂  is the Lie algebra of G and G acts on ̂  by means of
adjoint representation. The scalar product (F, F) is defined by means of invariant
scalar product in ̂  and riemannian metric in M.]

It is well known that (F, *F) does not depend on the field A this number is
determined completely by topological type of the fibration ξ. By appropriate
normalization of invariant scalar product in ̂  the number

is an integer (see for example [35] or [1]). If G is an abelian group, then g = 0. We
assume further that G is a simple compact non-abelian group. Using that
(*F, *F) = (F, F) and (F, *F) = (*F, F) we obtain that

(F - *F, F - *F) = 2(F, F) - 2(F, *F) .

It follows from obvious inequality (F — *F, F — *F)§;0 that (F, F)^(F, *F) and
(F,F)-(F,*F) if and only if F = *F. We see that S(A)^π2g~2q and
S(A) = $π2g~2q if and only if the gauge field A satisfies the duality equation

F = *F. (3)

Without loss of generality we can suppose that q ̂ 0 because the sign of q depends
on the choice of orientation of M. [lfq<0 then S(A) ^ 8π2g~2\q\ and
S(A) = 8π2g~2\q\ if and only if F= - *F.]

We consider here the instantons on compact manifolds. However it is essential
to note that the duality equation is conformally invariant and therefore each
instanton on the sphere S4 with usual metric can be considered as an instanton on
the euclidean space.

Let A be a gauge field satisfying the duality Eq. (3). We will study the solutions
A of the duality equation in the neighbourhood of A imposing the gauge
condition

d*(A'-A) = Q . (4)

We consider for definiteness the case G — SU(2), M is a sphere S4 with usual
metric.

Theorem 1. There exists (8q — 3)-parameter family of solutions of duality Eq. (3)
satisfying the condition (4).
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To prove this theorem we search the solutions of (3), (4) in the form A' — A + a
where a can be considered as a 1-form on M taking values in the fibres of the
bundle ξτ(Eτ, M, ̂ , pτ). If A' satisfies (3) then a must satisfy

(here P=i(l — *) and [α, ά]\ where a = aλdxλ is defined as a 2-form [αλ, aμ~]dxλ

The gauge condition (4) takes the form

(5)

(6)

Let us consider at first the Eqs. (5), (6) neglecting the non-linear terms in (5). In this
approximation the Eqs. (5), (6) can be written in the form Ta = 0 where T is a linear
operator transforming 1-form a into a pair (/,#) where f~PdAa is an antidual
2-form (/ = — */) and 0 is a 0-form d^α (all forms under consideration take values
in the fibres of ξτ). The space of 1 -forms will be denoted by Γ15 the space of 0-forms
- by Γ0 and the space of antidual 2-forms by Γ2. One can construct bundles ηί and
η2 in such a way that Γv can be considered as Γ^) and space Γ2 + Γ0 consisting of
pairs (/, g) where / is antidual 2-form, g is 0-form can be considered as Γ(η2}. It is
easy to check that T is an elliptic operator acting from Γx into Γ2+Γ0. The
riemannian metric in M and invariant scalar product in Ή induce scalar products
in Γj_ and Γ2 + Γ0 so that we can consider the adjoint operator T* acting from
Γ2+Γ0 in Γv The operator T* transforms the pair (/?0)eΓ24-Γ0 into the form

Lemma 1. The equation T*(f,g) = Q has only zero solution [i.e. /(T*) = 0].

Lemma 2. The index of the operator T is equal to 8g — 3.

The proof of Lemma 1 will be given at the end of this section. The methods of
calculation of index will be discussed in the Appendix I.

It follows from the lemmas that l(T) = index T + /(T*) = 8g-3. We see that in
linear approximation the Eqs. (5), (6) have (8g — 3)-parameter family of solutions.
To obtain rigorously the existence of (8q — 3)-parameter solution of (5), (6) we
consider the non-linear operator R which transforms 1-form ae^ into the pair
(f,g)eΓ2 + Γ0 where

f = P(dAa+ίa9ά])9 g = d*a.

It is convenient to regard R as an operator acting in Sobolev spaces. Namely R can
be extended on W^η^ if p>4 and the extended operator R acts from W^η^) into
Wp~ί(η2). [This assertion can be deduced from Sobolev imbedding theorem.
Really it is easy to check that the non-linear part of JR can be considered as an
operator acting from W^η^ into W^j2(η2) and for p >4 the space Wpf2 is imbedded
in Wp~l~\. Moreover the operator .R is continuously differentiate (i.e. R is a
C1-map); the differential of R at the point a = 0 is the linear operator T obtained
by means of extension of T on W^η^. It follows from Lemma 1 that the operator
f maps Wp(η^) onto Wp"1^^. We can apply therefore the infinite-dimensional
version of implicit function theorem (see for instance [33]) and obtain that the
equation Ra = 0 has a family of solutions depending on /(T) parameters. The
solutions of elliptic equation ,Rα = 0 are smooth and hence can be considered as
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solutions of equation Ra — 0. To complete the proof of Theorem 1 we note that
l(f) = l(T) and use Lemma 2.

Now we must give the proof of Lemma 1. This proof is based on the following
assertion.

Lemma 3. If ψ is a non-zero field transforming according irreducible representation
V of SU(2) (i.e. ψ is a section of vector bundle ξv associated with principal fibration
ξ) and there exists a gauge field A in ξ satisfying dAψ = Q then the topological
number q vanishes.

Really as we have mentioned in Sect. 2 the holonomy group of the field A is
abelian if the conditions of the Lemma 3 are fulfilled. Therefore the field A is gauge
equivalent to a gauge field taking values in the abelian Lie algebra and hence q — 0.

To prove that /(T*) = 0 in the case M-S4 we note that l(T*) = l(TT*) and
consider the equation

where /eΓ2,0eΓ0. The operator ΓT* transforms the pair (/,0)eΓ24-Γ0 into the
pair (A^f, Δ^g] where the operator zJ2 acting in Γ2 and the operator Δ^ acting in Γ0

are defined by the formulae

The Eq. (7) breaks up into equations

Λl f=0, (8)

ΔΛ

0g=0. (9)

It follows from (8) that

(dj, dAf) = (d*ΛdJ,f) = (*d*AdAf, */) = (dAdU f) = (Δif, /) = 0

and therefore dAf — Q. Now we obtain from (9) that (dAg,dAg) = (AQg,g) = Q and
hence dAg = Q. Using Lemma 3 we conclude that 0 = 0 and hence I(AQ) = U. To
prove that l(Δ*) = Q we consider the form / corresponding to / into euclidean
space (one can say that / is the form / in stereographic coordinates). The form / is
smooth therefore the form / has the asymptotics

for |x|->oo. (To check this assertion one can note that the map x^->|x| 2xμ

transforms / into a smooth form.) The equations dAf = ΰ, f:=~*f are confor-
mally invariant and therefore

= Q , (11)

/=-*/. (12)
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In em
form
In euclidean space the Eqs. (11), (12) breaks up into independent equations of the

for coefficient functions of / (This fact can be verified by direct calculation. It
follows also from assertions of Sect. 5.) Using the asymptotics (10) o f/ we obtain
that (V* u, V*) = -(Fμ V*u, u) = 0 and therefore V*u = 0.

From Lemma 3 we conclude that u = Q and hence / = 0, i.e. l(Δ^[) = §.
The operators Δ^ΔQ introduced above will be important in the Sect. 6 as well

as the operator

acting in Γv We use the notations hf = l(Af) for i = 0,1,2. Noting
that l(A*) = l(T) we see that /if = 8g — 3 in the case under consideration.,

We have assumed that M is a sphere with the usual metric. However it is well
known that the number l(T*) cannot increase by small variation of operator T*
and therefore /(T*) = 0 if the metric on M is sufficiently near to the usual one. We
see that the assertion of Theorem 1 remains correct by small variation of usual
metric of the sphere.

We found that the solutions of (3) in a neighbourhood of A satisfying (4) form
(8g — 3)-dimensional manifold. It is important to note that the gauge condition (4)
eliminate the gauge freedom. Really, let us consider the infinitesimal gauge
transformation determined by ωeΓ0. If A' satisfies (3), (4) the gauge equivalent field
A' + dA,ω cannot satisfy (4) because the equation d^dA,ω has only zero solution if
A1 is sufficiently near to A [the operator d*dA, is obtained from A^ — ά\άA by
means of small variation and I(AQ) = ® as it follows from Lemma 1]. One can
replace here infinitesimal gauge transformation by small gauge transformations.

Another proof of theorem using the elliptic complex

0 - ,Γ0-^UΓ1-^^Γ2 - >0 (13)

is given in [11]. This complex is equivalent to the elliptic operator T.
The main part of considerations above can be applied also in the case of

arbitrary simple non-abelian compact Lie group G. Generalizing the con-
siderations above one can prove that h^ is equal to the dimension of the largest
subgroup of G which commutes with holonomy group of A [11, 15]. If h$ =0 then
in the case M = S4 our arguments show that h* = 0 and the number o.' instanton
parameters is equal to index T. This index can be calculated easily (see Appendix I).
There exists also another proof of equality h^ ^0 which shows that this equality
is valid for arbitrary instanton on the sphere S4 [11, 15].

Section 5. Fermions in the Field of Instanton

Let us consider now the euclidean Dirac operator D in the gauge field A where A
takes values in the Lie algebra of the compact simple Lie group G and D acts on
the byspinor ψ. We suppose that ip has N isotopic indices and transforms
according to a representation of the group G which will be denoted by V. The fields
under consideration are defined on four-dimensional riemannian manifold M. We
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denote by B the operator D considered only on the right spinors. The operator B
transforms the right spinors into the left spinors and the operator B* coincides
with the operator D on the left spinors. We will study the zero modes of the
operator D (i.e. the solutions of equation Dip = 0). It is evident that l(B) is a number
of right zero modes of D and l(B*) is a number of left zero modes of D. By
definition

index B = l(B)-l(B*) .

This index is well known [31-33]. (The methods of calculation of this index are
discussed in Appendix I.) We obtain

Theorem 2. The difference between the number of right zero modes and the number
of left zero modes of Dirac operator on the compact rίemannian manifold M is equal
to

avq+-τ(M), (1)
o

where q is the topological number of the gauge field, τ(M) is the signature of the
manifold M and av is the Dynkin index of the representation V.

The signature of riemannian manifold can be expressed through the Riemann
tensor Raβyδ by the formula

(2)

The Dynkin index of the representation is equal to

where υ denotes the homomorphism of the Lie algebra ^ of G into the Lie algebra
of SU(n), x,yε& and the scalar product in the Lie algebras is normalized by the
condition that the maximal length of the root is equal to 2. The Dynkin index
coincides up to trivial factor with the quadratic Casimir operator of the
representation V. [The signature and the Dynkin index admit simple homological
interpretations. For example av can be defined by formula

where a and b are the generators of the homology groups H3(G,Z) and
//3(SU(ft),Z) and J/. denotes the homomorphism of homology groups induces by
V. It follows from (4) that av is an integer.]

The well known formula (1) for index of Dirac operator was rediscovered by
Coleman (unpublished) and Kiskis [12] in the flat case by means of Adler-Bell-
Jackiv anonaly. As was mentioned in [8] the Adler-Bell-Jackiv anomaly can be
obtained from local index theorem and therefore the proof based on the index
theorem and the proof using Adler-Bell-Jackiv anomaly are closely related.

The signature of the sphere S4 is equal to zero. The Dynkin index of the
/-dimensional irreducible representation of the group SU(2) is equal to
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!(/ -1)1(1+1). Therefore in the case M = S\G = SU(2) the index B is equal to q if V
is the two-dimensional (spinor) representation of SU(2) and to 4q if V is the adjoint
representation of SU(2). Let us consider now the case when the manifold M is flat
(for example M is an euclidean space or M is a torus).

Theorem 3. // M is a torus then the Dirac equation in the field of instanton cannot
by satisfied by non-zero left spinor [i.e. l(B*) = QJ.

The operator D on a torus can be written as in euclidean space in the usual
form

Hence

jr)2 μ v p y _lyy/j7 (7 i |7 |7)4-lγ^v(P
/ / μr v 2 i f \ μ v ' v μ / 1 2 / ' \ μ

Using that

we obtain that the operator D2 on the left spinors (i.e. the operator BB*) is equal
to —VμVμ. If ψ is a left spinor satisfying Dψ = 0 then (Vμιp,Vμ\p]= —(VμVμ\p,\p)
= (D2ιp,ψ) = ΰ therefore Fμt/; = 0. If follows now from Lemma 3 that ψ = 0.

The proof above shows that the assertion of Theorem 3 remains correct in the
case when M is an euclidean space. However in this case we must consider only
solutions decreasing fast enough to justify the equality (Vμ\p, Vμ\p)

= -Wv,v>)=o.
There exists a remarkable connection between linearized duality equation in

euclidean space and Dirac equation. It is easy to check that

T(σyμφ(x)) = (\ σ(yμyv - yvyμ)Bφ(x\ - σBφ(x)) , (5)

where spinor φ(x) transform according adjoint representation of the group G, σ is
a fixed right spinor and φ(x) is a right spinor depending on x. It follows from (5)
that

(6)
, σip) - (^σ(/yv - yvyμ)BB*ιp, -

[here \p(x) is a left spinor, the antisymmetric tensor σ(yμyv— yvyμ)ψ(x) determines
antidual 2-form.]

We know that the operator D2 = BB* on left spinors is equal to — FμPμ. Using
this assertion and (6) we obtain that the equation TT*(f, g) = 0 breaks up into four
independent equations of the form ^μ^μu = Q (this fact was used by the proof of
Lemma 1).
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Section 6. Determinants of Elliptic Operators

Let A be a non-negative self-adjoint elliptic operator on compact manifold. The
determinant of this operator in usual sense is infinite. We say that the expression

£ Γ 1 exp ( - λf)dt (1)
i ε I

is obtained from the (infinite) determinant of A by means of proper time cutoff
(here λi run over positive eigenvalues of A)4. The expression (1) for detε^4 can be
rewritten in the form

oo

logdetε^-- J Γ1Sp(exp(-tA)-Π(A))dt .
ε

Here and later Π(A) denotes the projector on the kernel of A [i.e.
Π(A)f = Σ(f>Φi)Φi where φ- run over zero modes of A]. The asymptotics of
Iogdetετ4 for ε->0 can be obtained by means of asymptotics of Spexp( — tA) for
f->0. It is well known [34] that for £-+0

Spexp(-ί4)«£αkr* (3)

[in notations of Sect. 3 αfe = Φfc(^4)]. Using (2) and (3) we see that for ε->0 the
divergent part of logdetε/l can be represented in the form

k>0

where ak = Φk(A) and p denotes the number of zero modes of A. The finite part of
Iogdetεv4 will be denoted by log det' ̂ 4:

log det' A = lim /log detε A + £ k ~ 1 αkε ~ k - (α0 - p) log ε\ . (4)
ε-+Q\ k>0 ]

It is easy to check that log det' A can be represented in the form

0 k > 0

-Θ(l-t)a0-θ(t-l)p)dt. (5)

In present paper we will define the regularized determinant of non-negative elliptic
operator by formula (4). There exists another definition of regularized determinant
based on the notion of zeta function (see [25] for instance). All our results remain
correct by this definition of regularized determinant too.

The zeta function ζ(s\A) of non-negative elliptic operator A for large Res can
be defined by formula

J t*-1 $p(exp(-tA)-Π(A))dt , (6)
1 (s) o

4 The definition of detε,4 is prompted by the formula

oc

log det,4 - log det A0 = - J t ~1 (Sp exp (- tA) - Sp exp (- tA0))dt
o

which is valid for finite-dimensional operators
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where λ{ run over positive eigenvalues of A. For other s zeta function must be
defined by means of analytic continuation. For £-»oo the integrand in (6) decreases
exponentially, the asymptotics of the integrand for £-»0 is given by Seeley formula.
Using these facts one can prove that ζ(s\A) is meromorphic function; if the
asymptotics of Spexp (— tA) for ί-»0 contains a termαkί~~k, fcφO then the function
Γ(s)ζ(s\A) has a simple pole at the point s = fc with residue αk. For s->0 we have
sΓ(s)->l and therefore ζ(s\A) is analytic at the point s = Q and ζ(0|/4) = α0 — p. The
regularized determinant D(A) can be defined now by the formula

d

ds s = 0 '

[This definition is correct because ζ(s\A) is analytic at 5 = 0.]
The analytic extension of ζ(s|y4) in the half-plane Res^O can be written in the

form

1 / Λ/ Λ/ T» °̂

£(S|A) = —- X —^7- + -̂
-* \s) \k > 0 s ^ 5

1

+ ίι
o \

Using (1) and (8) we obtain

/ c > 0

(Spexp(-L4)- X^ry-^ί. (8)

- - i~k

0
-M)- Σ «it~kdt

Comparing (5) and (9) we conclude that

The eigenvalues of Aκ are expressed through eigenvalues of A as λf , therefore
ζ(s\Aκ) = ζ(Ks\A) and hence

(11)

From ζ(s\ρA) = ρsζ(s\A) we conclude that

logD(ρA) = logDμ)-ζ(0|^)logρ . (12)

For arbitrary elliptic operator we define D(A) by the formula

-ζ(s\A*A)\s=0 . (13)

It follows from (1 1) that for non-negative self-adjoint operator A this definition
is equivalent to the definition by means of (7).
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The definitions of regularized determinants given above can be applied for
some non-elliptic operators too. However the existence of determinants of non-
elliptic operators cannot be guaranteed.

One can replace det' A by D(A) in considerations of present paper.

Section 7. Instanton Contribution in Green Functions

In present section we express the instanton contribution in euclidean Green
functions through regularized determinants of elliptic operators. Our conside-
rations in this section will be heuristic.

We consider the euclidean action

describing fermions ψ interacting with gauge fields Aμ [the gauge fields take values
in the Lie algebra ^ of the simple non-abelian compact gauge group G; the
fermions fields transform according the representation T of G, SYM is the Yang-
Mills euclidean action (4.1), DA is the euclidean Dirac operator in the gauge field,
the eigenvalues of the matrix M determine the masses of fermion fields].

The euclidean Green functions (Schwίnger functions) can be defined formally
as quotient of two functional integrals. Namely if Φ(A) is a gauge invariant
functional we define the euclidean Green function by the formula

φ J exp ( — S)dAdipdιp

(here ψ,ψ must be considered as anticommuting variables [36]). For example we
can take

where

Of course (1) is not well defined expression; the rigorous definition of (1) must
include cutoff and renormalization.

After integration over fermion variables we obtain

= f Φ(A) det (DA - Jt] exp ( - SYM)dA
φ j det (DA - Jί] exp ( - SYM) dA ' ( }

One can use the method of steepest descent for calculation of (2) in weak coupling
case. We study the instanton contribution in (2). [One can construct approximate
extremals as superposition of distant instantons and anti-instantons. These
extremals and other approximate extremals must be taken into account by
calculation of (2) but we consider the contribution of instantons only]. The
contribution of instantons having topological number q contains a small factor
exp( — 8π2g~2q) for g>0, however this contribution is essential by calculation of
numerator of (2) (for example in the case when the long range correlations are
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studied). The contribution of instantons having non-zero topological number in
the denominator of (2) will be neglected. The constant factors in our formulae will
be omitted.

The method of steepest descent for integrals of invariant functions is studied in
Appendix II for finite-dimensional integrals. We will use formally the lemma
proved at the end of Appendix II for the infinite-dimensional integrals. (To be
rigorous one must make the lattice cutoff, apply the lemma in the finite-
dimensional case and remove the cutoff.) The euclidean Yang-Mills action SYM

plays the role of the function d ~ 1 g(x) entering in lemma. The functional ^(F, F)
plays the role of the function g(x). To calculate the Hessian of this functional
on the manifold of instantons we note that for gauge fields having the form
Aμ + qμ where Aμ is an instanton one can represent (F, F) in the form

= 16π2q -f- 2(PdAa, PdAd) -f . . .

[here P = ̂ (l — *), the terms having third and forth degree with respect to a are
omitted]. We see that the Hessian of functional ^(F, F) can be considered as
determinant of the operator A' = d%PdA =(PdA)*PdA acting in the space of 1-forms.
By calculation of determinant only non-zero eigenvalues of A' must be taken into
account these eigenvalues coincide with non-zero eigenvalues of the operator
A2=PdA(PdA)*=PdAd

:

AP acting in the space of antidual 2-forms: /= — */ [all
forms under consideration take the values in the fibres of the fibration
ξt(Et,M,ί?,pτ)].

The group of local gauge transformations G^ plays the role of the group G in
the lemma of Appendix II. The operator Δ^ = d\dA acting on 0-forms plays the
role of the operator T in lemma (this assertion follows from identity

because the infinitesimal gauge transformation transforms the field A into dAφ).
Using the lemma we represent the g-instanton contribution in the form

μ°' (3)

where

λ(A) = dQt(DA — J?)(d£tA2)~ΐ/2(dQtAQ)ll2(vo\umQHA)~l (4)

and λ(Q) is given by the same formula with ^4 = 0. The integration in (3) goes over
the manifold Rq obtained from the manifold Nq of regular instantons5 having
topological number q by means of identification of gauge equivalent fields, HA

denotes the group of gauge transformations leaving invariant the instanton A and
dμ0 denotes the measure on Rq corresponding to the natural riemannian metric. [If

5 The instanton A is called regular if all instantons in the neighbourhood of A have equivalent
holonomy groups [15]. We do not take into account the irregular instantons because the measure of
the set of irregular instantons is equal to zero (this assertion can be derived from [19])
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A and A + a are instantons, α-»0, then the distance between the corresponding
points of Rq can be defined as (a + dAφ, a + dAφγ12, where φ satisfies
d%(a + dAφ) = Q.'] In the notations of the end of Sect. 4 dimJ^0 = /ιJ=0 and
dimR =hA where A is a regular instanton. Further, dimHA = hA and
dim # = /IQ = dim G. The number σ is equal to dimNq — dimN0. The (infinite)
dimension of Nq can be represented as dimRq + (dimGao — dimHA) = hA — hA

)

•4- dim GOO, where A is a regular instanton with topological number q. In particular
dimN0 = fc°-feg + dimGΛ=dimGT O-dimG. We see that σ = (hA-hA)
— (h® — /IQ) (one can avoid the operations with infinite quantity dimG^ introducing
the lattice cutoff).

The determinants in (4) diverge. To obtain finite answer we must perform
cutoff and renormalization. To eliminate the infrared divergences we will consider
all fields on compact riemannian manifold M. (In other words we make the
volume cutoff. Further one can assume that M is a sphere of radius 1 for
definiteness.) The momentum cutoff is essentially equivalent to the proper time
cutoff of determinants if ε = CΛ ~ 2. (Here ε denotes the lower bound of proper time
and A is the maximal momentum.)

In the case when M is a sphere of radius jR and the coordinates on the sphere
are dimensionless the dimension arguments show that C = KR~2 where K is a
dimensionless constant. We see that the contribution of determinants in the
divergent part of (3) is equal to exp (κ(A) — κ(0)) log A where

κ(A) = -Φ0((DA-Jί)2) + (Φ0(AA

2)-hA

2)-(Φ0(ΔA}-hA) . (5)

[The linear and quadratic divergent terms cancel. To check this assertion we note
that the coefficients Φi((DA — Jί}2\ Φi(AA\ Φ^Λ^) can be expressed through the
Riemann tensor RΛβγδ, strength of the gauge field Faβ and their covariant
derivatives. However simple dimensionality arguments show that the expression of
these coefficients for i— 1,2 cannot contain the gauge field, therefore

for i = 1,2]. One can see that dμ0 and (volume HA)~l also contribute in divergent
part of (3), namely the contribution of dμ0 is equal to

(6)

and the contribution of (volume HA}~1 is equal to

A ~ 2 άimHA = exp ( - 2hA log A) . (7)

To verify this assertion one can use the lattice cutoff. This cutoff is essentially
equivalent to the momentum cutoff if the maximal momentum A is connected with
the lattice spacing a by the formula A = a~l. (We suppose here for simplicity that
M is a torus.) We fix the direction of all lattice bonds and consider the gauge field
on the lattice as a G-valued function gy on the lattice bonds [37]. The
correspondence with the continuous case is given by the formula

(8)
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The integration in the integral for Schwinger function in lattice case goes over all
gy (i.e. we integrate over the direct product Y[ G of gauge group G assigned to each

y
bond of the lattice). The measure of integration corresponds to the riemannian
metric

y

If α->0 and gy is given by (8) then

ds2πa-2 J (δAμ,δAμydV = A2(δ

We see that after the cutoff the integration over the manifold Rq contains an extra
factor AdιmRq. The lattice counterpart of the group of local gauge transformations
is the direct product iQ G of gauge groups assigned to each lattice point α. Each

α

local gauge transformation g(x) generates an element {g(α)}e Y[ G and in the limit
α

α— »0 the riemannian metric in J~[ G is connected with the metric in the group of
α

local gauge transformations by the formula

^α'4 J <^g'ί(X)δg(x)9g-1(x)δg(x)ydV.

We see that after the cutoff the (volume HA)~ 1 contains an extra factor A~ 2dimHΛ.
The divergent factors arising from determinants, dμ0 and (volume HA)~l give
together a factor

exp(ρ(>4)-ρ(0))lnyl, (9)

where

ρ(A) = κ(A) + hA - 2hA = Φ0(AA) - 2Φ0(ΔA) - Φ0((DA - J/}2} .

[We have used here the equality

which can be derived from the coincidence of non-zero eigenvalues of operators
TT* and T*T where T is the operator considered in Sect. 4, T*T = zlf,
TT* = zl2+^o ] The last expression for ρ(A) does not contain the numbers hf. The
numbers Φ0((DA — Jί)2\ Φ0(AA\ Φ0(^o) can be calculated by Seeley formula (see
Appendix I). We obtain from this calculation that the divergent factor (9) and the
divergent factor coming from usual one-loop renormalization of coupling constant
cancel. We use here the well-known formula [46]

1 1 1 / 1 1 2 \ A
~2 = ~Ύ~ + ̂ ~2 ΓZατ~ όαΓ l°§~8 π 2 6 3 Ό
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giving the expression of the bare coupling constant g through the physical
coupling constant gphys and the subtraction point Ό.

In this formula ατ denotes the Dynkin index of the adjoint representation of the
group G and ατ denotes the Dynkin index of the representation T.

We can write now the expression of instanton contribution through re-
gularized determinants. In the case when M is a sphere of radius 1

+ (^«t - f «rte log 0 j Φ(A)d(A)dv
#phys

where

(det'ΔjΓ112 /det'J^W2 /volume HΛ"1

\def j f j \detXJ \volume H°j ' (10)

The constant K must be choosen from the requirement of coincidence of our
regularization procedure with the usual one. However the value of this constant is
inessential for us because we omit all constant factors in instanton contribution
therefore we can take K = 1.

Let us consider the case when the fermion masses are small. Without loss of
generality one can assume that the fermion fields ψ(x) consists of the fermion fields
ψί(x),...,ψN(x) transforming according irreducible representations K l 5 . . . , VN and
the mass matrix Jt is diagonal, i.e. the fermion part of Lagrangian has the form

Σ ψjDfψj- Σ Mjψjψj*
i ^ j ^ w i ^ j ^ w

where D^ is the Dirac operator in the instanton field A acting on the fermions
transforming according the representation V.. Let us denote by δj the number of
zero modes of the operator D^. In the case of small fermion masses m one can
approximate det'φ^ — m^ by det^D^ ra^. Therefore

det'(DA-J() = mδ

1

1...mδ/det'DA . (11)

To check this assertion we divide log det' (D* — m^} on two parts: the contribution
of eigenvalues which have nonzero limit for m^-^0 and the contribution of
eigenvalues tending to zero for m^O. The first part give log det7 D^ in the limit
m7 ->0. The eigenvalues of second kind can be calculated by means of perturbation
theory we see that there are δj eigenvalues of second kind approximately equal to
— πij and therefore their contribution is equal to

Section 8. Conformal Properties of Instanton Contribution

The Yang-Mills action is conformally invariant. However the determinants arising
by calculation of instanton contribution do not admit conformal invariance,
because the renormalization disturbes the conformal invariance of quantum
theory. Nevertheless one can analyse the behaviour of instanton determinants by
conformal transformation and obtain from this analysis information on the
instanton contribution.
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Let us consider the variation of the expression

F = ilogdet'^-ilogdet'^ (1)

by conformal variation of riemannian metric

g'Λβ(x) = exp (σ(x))gΛβ(x) . (2)

(All fields are defined on compact manifold M.) The variation of scalar product
(ω l 5ω2) by infinitesimal conformal transformation is equal to

(2-k)(σω19ω2) (3)

if ω1 ?ω2 are fc-forms.
The variation (d%)' of operator d%=—*dA* on the fc-forms by this trans-

formation is given by the formula

[here σ is the operator of multiplication on the function σ(x)~]. The operator
P = |(l — *) on 2-forms is conformally invariant. Therefore the variations of the
operators A^^PάAά\P, Δ^ = d\dA can be represented in the form

(AA

2y=-PdAσd*P,

From (4), (5) we obtain that the variation of the expression

V(ί) = \ Sp exp ( - tΔi) - \ Sp exp ( - tA $

by infinitesimal conformal transformation is equal to

= ~ Sp (σd*APdA exp ( - ί/lf ) - 1 Sp (σd*AdA exp ( - tΔ$)

+ t-Sp(σdAd*exp(-tΔΪ)

= ~Sp(σΔiexp(-tΔA

1})-tSp(σΔ^exp(~tΔ^))

= -iί^(SP(σexp(-ίJί))-2SP(σexP(-ί^))), (7)

where Δ^ = dAd% + d%PdA as earlier. [We have used the relations

A$PdA = PdAA\, exp ( - tA$PdA = PdA exp ( - tA\ ) ,

A*d\ = d*AΔΪ, exp ( - tΔ$d$ = d*A exp (-tΔ*)

by calculation of
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It follows from (7) that the variation Φk of the expressions Φk = ^Φk(ΔA)
— ̂ Φk(Δ^\ connected with the asymptotics of V(t) for ί-»0, is given by

Φk = ̂ k(Ψk(σ\ΔA

ί)-2Ψk(σ\ΔA) . (8)

Using (6.5) one can express F through V(t)

±h*))dt. (9)

Now we can obtain the following expression for variation of F by infinitesimal
conformal transformation of metric :

) , (10)

To derive (10) we represent F in the form

F=-
o

d

0 Ui

combining (7)-(9). The asymptotics of the integrands f->0 are given by Seeley
formula and the asymptotics for f-»oo is governed by zero modes:

lim Sp σ exp (- tΔA) = Sp σΠ(Δf) .

Using these asymptotics and (11) we get (10).
To find the variation of the volume of the isotropy subgroup HA by the

conformal variation of the metric in M we must study the variation of the measure
in the Lie algebra of HA. This Lie algebra can be realized as Ker Δ^CΓ^. If the new
scalar product in euclidean space is expressed through the old one by the formula
</,0>=(JB/,0) then the new measure can be obtained from the old one by
multiplication on (detJ5)1/2. If B=l+εS, β->0, then (det J5)1/2^ 1 + ̂ >SpS

= l + 2εΣ(^/i'Λ)' wnere fi run over tne orthonormal basis. Using these well
known assertions and (3) we can calculate the variation of the measure in Ker ΔQ
by infinitesimal conformal transformation [the operator 2σ plays the role of
operator εS and ^εΣ(Sfi?fί} — ̂ Sp2σΠ(ΔA

))~]. Therefore the variation of (volume
HA}~1 is equal to

SpσΠ(ΔA)(volume HA)~l . (12)

Let us consider now the manifold R obtained from the manifold of regular
instantons N by means of identification of gauge equivalent instantons and the
measure dμ0 induced by the natural riemannian metric in R, The variation of the
measure dμ0 by infinitesimal conformal variation of the metric in M is equal to

(13)
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To prove this assertion we note that the tangential space to the manifold N can
be identified with the space of solutions of linearized duality equation in other
words with the space Ker PdA where PdA acts from Γ^ into Γ2. The tangential space
to the manifold R can be identified with the coset space Ker Pdjlm dA. If
αeKerPd^, beKerPd^ then the scalar product of corresponding elements α, b of
KeτPdA/lmdA is equal to (Π(A^)a, Π(A^)b). In other words the space
Ker PdA/lm dA is isometric to the space Kerzlf [this isometry follows from the
Hodge decomposition theorem applied to the elliptic complex (4.13)]. The
conformal transformation of riemannian metric in M does not change the
manifold R but this transformation changes the riemannian metric in R. If the
element a of tangential space T(R) corresponds to the element αeKerzlf then the
new length of a is equal to (exp (σ)Π(A'f)a, Π(A'f)a)112 where Δ'f is the operator Jf
in the new metric. Hence the variation of the length of a by the infinitesimal
conformal transformation is given by the formula ^(σa,a). We see that the new
measure in T(R) can be obtained from the old one by means of multiplication on

where at denotes the orthonormal basis in /7(Zlf). This proves the formula (13).
Let us consider now the measure dμ = y(A)dμQ on the manifold N where

Combining the formulae (10)-(13), we get the following assertions.

Theorem 4. The variation of the measure dμ by the infinitesimal conformal
transformation of the riemannian metric in M is equal to

§Ψ0(σ\AΪ)-ΨΌ(σ\Δt))dμ. (14)

The variation of y(0) is equal to

i«P0(σ|J?)-y0(σμ°). (15)

The conformal variation of the measure

entering in the expression for instanton contribution can be obtained from
Theorem 4.

Theorem 4'. If the riemannian metric in M is replaced by the conformally equivalent
metric g'^(X) — exp (σ(x))g ^(x) then the measure dv' on the manifold R corresponding
to the metric g'aβ is given by the formula

α, J σ(x)<Fμv,F^>^F)Jv , (16)

where ατ denotes Dynkin index of adjoint representation.

To deduce Theorem 4' from Theorem 4 we note that the variation of dv by
infinitesimal conformal transformation is given by

(17)
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as follows from (14), (15) and from calculations by means of Seeley formula. Using
the conformal in variance of (17) we obtain from (17) the expression (16) for
variation of dv by finite conformal transformation.

Let us consider now conformal properties of the determinant of Dirac operator
DA. One can prove that

exp(fσ)D^^exp(|σ), (18)

where D'A is the Dirac operator corresponding to the metric 0^(x) — exp(σ(x))$α/3(x).
[The usual proof of conformal invariance of the Dirac equation DAψ = Q is based
on (18); see [39] for example.] It follows from (18) that the variation DA of the
Dirac operator by the infinitesimal conformal transformation of the metric is given
by the formula

DA=-ϊσDA + *DAσ. (19)

The conformal variation of W(t) = Spexp( — DAt) is equal to

W(t) = - 1 Sp ((DADΛ + DADA) exp ( - tD2

A))

Dlί)). (20)

Now we can study the variation G of

G = log det' DA = \ log det' D2

A

-§pΠ(D2

A)θ(t-l))dt .

We obtain that

G=-ϊ]t-1(W(t)-Φ2(D2

A)t-2-Φ1(D2

A)Γ1)dt
0

and therefore

G = -ϊΨo(t\D2

A) + $SpσΠ(D2

A) . (21)

The expression

- exp (% log det' ΐ>\-\ log det' Dg)

enters in the instanton contribution in the euclidean Green functions.

Theorem 5. The variation of f(A) by infinitesimal conformal variation of the metric
is equal to

(22)

(the fermions transform according the representation T, αr denotes Dynkin index).
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To prove this assertion one must use (21) and calculate RHS of (21) by means
of Seeley formula.

In the proofs of Theorems 4 and 5 some ideas of [25] are used. The physical
origin of theorems proved in present section is clear: the local formulae for
conformal variations can be obtained because the breaking of conformal in-
variance is a renormalization effect. We have shown in [26, 27] that the theorems
of [25, 40] have similar origin. One can prove general assertions including the
results of this section and the results of [25,40] (see [26, 27]).

Let us consider now the instanton contribution in the case M = S4. The
15-parameter group K of conformal transformation acts on S4. It follows from
conformal in variance of duality equation that the group K acts on the manifold R.
The variation of instanton determinants by the conformal transformations of the
sphere can be studied by means of theorems proved in present section. If x' = F(x)
is a conformal transformation of the sphere then

ds/2=Qxp(σ(x))ds2 (23)

and the variation of dv and f(A) is given by the formulae (16), (22) where σ(x) is
determined by (23). The density of the measure dv and the function / depend on m
parameters where m —dimR —ftf. The conformal properties mentioned above
permit to express these functions on the orbit of the group K in R through the
values in one point of the orbit. Therefore these functions can be expressed
through an arbitrary function depending on m — d variables, where d denotes the
dimension of the orbit of the group K in R. In other words each of these functions
can be represented as a product of knwon function and conformally invariant
function on R. For example in the case G==SU(2) the manifold R is
13-dimensional and the orbits of the group K in R are 12-dimensional, therefore
the instanton contribution can be expressed through an arbitrary function
depending on one variable. In the case G = SU(2), q = 1 we have m = d = 5 and only
a constant factor cannot be determined by means of conformal properties.

Section 9. Two-Instanton Contribution

In this section we explain briefly how the results of the preceding section can be
used to get information on the two-instanton contribution in the euclidean Green
functions in the case G — SU(2), q = 2. The results of present section are obtained in
collaboration with Frolov [42].

We are interested in the mstantons in euclidean space. However it is
convenient to represent the euclidean space as a sphere of infinite radius. In other
words to find the instanton contribution in euclidean space we can study the
contribution of spherical instantons having small size with respect to the radius of
the sphere. In our case every instanton is gauge equivalent to the tΉooft
instanton:

(x-yj2 ( χ - y 2 ) 2 ( χ - y 3 ) 2 '
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where λί9λ2,λ3 are positive numbers, yl,y2->y?> are four-dimensional vectors (see
[7, 43]). The tΉooft solution does not change if λt is replaced by kλt and therefore
depends on 14 parameters. One of parameters is connected with the gauge freedom
[7]. The conformal group K acts on the manifold of parameters
) ;ι?J ;2>J ;3>^ι^2>^3 There exist two independent conformally invariant com-
binations of instanton parameters

U ~ C Cl ~ 1 3

where

The expression

u — ulu2(l + %+ u2)~3

is also gauge invariant. One can exclude the gauge freedom imposing the
conditions u2 = 1, 0<ul<l.

To study the instanton contribution in euclidean space we must calculate the
function f(A) and the measure dv only for instantons satisfying λ^R, Ij^l^jR,
where R denotes the radius of the sphere.

We restrict ourselves by the case when the gauge fields interact with N fermion
isodoublets having small masses. Using the results of Sect. 8 and the zero fermion
modes found in [14] we obtain the following expression for two-instanton
contribution :

(1)
#phys

where

dμϊnv is conformally invariant measure :

F is a conformally invariant function. [This function can be taken in the form
φ(uί)δ(u2 — i)δ(λ'l + λ2 + λ^ — l) where φ is an arbitrary function and the factor
δ(u2 — l) corresponds to the gauge condition u2 = l. The integral (1) reduces in
this case to the 13-dimensional integral] It is easy to check that p2 is gauge
invariant. In the case when the instanton can be considered as superposition of
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two distant instantons having topological number 1 p2 can be interpreted as
product of sizes of these two instantons. (One can verify that for such instantons
tiwO.)

The methods of Sects. 8 and 9 permit to calculate completely the instanton
contribution in two-dimensional non-linear σ-model [44].

Appendix I

The asymptotics for f-»0 of Spβexp( — Kt\ where Q is the operator of multi-
plication on the matrix function Q(x) = (Q* (x)), were calculated by V. Romanov for
all operators used in present paper [i.e. in the cases K = Δ^Δ*, Δ^, (DA — Jί}2~\ and
for other operators playing the role in quantum field theory [45]. In the cases
under consideration

It is convenient to represent Ψk(Q\K) in the form

Ψk(Q\K)= $ QfaWάxWίdV , (1)

where ψk(x\K) = (ψk(x\K){) is a matrix function, dV denotes the riemannian volume
element. [The operator K acts in the space of sections Γ(ξ) of vector bundle
ξ ( E 9 M 9 F , p ) . The matrix functions Q(x) and ψk(x\K) depend on the choice of local
coordinates in the riemannian manifold M and of the local trivialization of ξ, but
the integrand in (1) does not depend on this choice.]

For example one can check that in the case K = D2

A

Ψ1(X\D2

A) = -^R-^(

T20 I— I K + T92^abcd^abik^cdiky

- £ t(FJt(Fac)7

bf + |t(F Jt(F JyVy'/ (2)

We assume that the fermions transform according the representation T of the
gauge group G the corresponding representation of the Lie algebra is denoted by
t. We use the Vierbein formalism; for instance, Fab = Fab = Fμvl%lv

b, where /£(x)
denotes the Vierbein (orthonormal frame) at the point x. The expression t(Fab) is
considered as a matrix with respect to the isotopic indices.

The coefficients Ψk(Q\K) can be used for calculation of one-loop renormali-
zation and anomalies. Conversely, partial information on these coefficients can be
extracted from well known results concerning anomalies; this information is
sufficient to derive the assertions of present paper.
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The index of the Dirac operator considered only on the right spinors can be
represented as Ψ0(γ5\D^) [this follows from the formula (3.3) proved in Sect. 3].
Hence this index can be obtained from (2). The index of the operator T defined in
Sect. 4 is equal to Φ Q(A^} + Φ ̂ (Δ^) — Φ Q(Δ^} and therefore can be calculated in a
similar way. However there exists a very simple method of calculation of index in
the cases under consideration. Namely, the symbols of our operators are generated
by universal construction (see [32] for example) and therefore its indices can be
expressed through the characteristic classes. It is too lengthy to describe the
expression for index in general case and therefore we restrict ourselves by the
special case which is sufficient for the aims of the present paper. Let us consider the
elliptic operator K transforming the field φ1 into the field φ2. We suppose that the
fields φl and φ2 are defined on four-dimensional oriented riemannian manifold M
and have isotopic and spatial indices. The isotopic indices transform according the
IV-dimensional representation V of simple non-abelian compact Lie group G, the
spatial indices of φi transform according the L-dimensional representation Wi of
SO (4). In other words the field φi can be considered as a section of the vector
bundle ζv®w. associated with principal fibration ξ(E,M, G x SO (4), p\ which is
defined as product of principal fibration η(Eη,M,G,pη) and tangential fibration
ζ(Eζ,M, SO(4),pζ). [The tangential fibration of oriented riemannian manifold can
be considered as principal fibration with the group SO (4). The representation F(x)
Wt of G x SO (4) is defined as tensor product of V and W^ We assume that the
symbol of the operator K is G x SO(4)-invariant in the natural sense. Then one can
express the index of operator K through the weights of representations V,Wί9W2

and lopological numbers of f ibrat ions ;/. ζ. The group SO(4) is locally isomorphic
to the product of two simple groups SU(2). Therefore the tangential f ibration can
be characterized by two topological numbers; these numbers can be expressed
through the Euler characteristic

χ(M)=

and the signature of the manifold M

Namely, the index of the operator K can be represented in the form :

index K = aavq + Nbχ(M) - N ( 3c - τ(M) .

Here q denotes the topological number of the fibration η, av denotes the Dynkin
index of the representation V.

The numbers α, 6, and c are defined by the formulae



264 A. S. Schwarz

where v f, v'f denote the weights of representations Wί9 W2 respectively, the weights
of vector representation of SO(4) are denoted by ±σ l 5 ±σ2. (The weights of
representation are considered as linear functions on the Cartan subalgebra.) For
example in the case when the operator K coincide with the operator T of Sect. 4
the representation Wl is the vector representation and has the weights ±σ1 ? +σ2

and the non-zero weights of the representation W2 are equal to +(σ 1— σ2).
Therefore in the case under consideration

0 = 2, &=-£, c = ±

index T = 2aτq - \ dim G(χ(M) -f τ(M)) .

The index of operator T was calculated in [8] by means of this method. We have
mentioned in [8] also that if it is known that the index of T has the form
λq + ρχ + ωτ then the coefficients λ, ρ can be expressed through the values of index
T for M = S4, q— 0 and q = l. This approach was used in [15].

If K is the Dirac operator considered only on the right spinors then α= 1, fe = 0,
c = Y4- We obtain Theorem 2 of Sect. 5.

Appendix II

Integration of Invariant Functions

Let T be a homomorphism of compact Lie group G in the isometry group of
riemannian manifold M. We consider the integral

I f(x)dμ , (1)
M

where /(x) is a G-invariant function on M [i.e. f(T(g)x} = f(xJ] and dμ is the
measure on M induced by riemannian metric. The isotropy subgroup at the point
xeM [i.e. the set of elements G satisfying T(fe)x = x] will be denoted by H(x). The
orbit of the point xeM [i.e. the set of points T(g)x] where geG will be denoted by
N(x). It is well known [41] that one can find such G-invariant open subset M1 CM
that all isotropy subgroups at the points xeMί are conjugate and the measure of
M — Mj is equal to zero. By consideration of (1) one can replace M by Mr We
assume therefore without loss of generality that isotropy subgroups at the points
xeM are conjugate. The space of orbits will be denoted by V; the distance between
the orbits N(x) and N(y) can be defined as the distance between the nearest points
of these orbits. In the case under consideration Visa riemannian manifold and the
identification map of M onto V is a locally trivial fibration (see [41] for instance).
The measure on V determined by the riemannian metric will be denoted by dv. The
riemannian metric in M induces the riemannian metric in JV(x) the volume of N(x)
with respect to this metric will be denoted by n(x). The integral of G-invariant
function can be transformed into integral over the space of orbits namely

f/(x)dμ=f/(x)φc)dv (2)
M V
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[the functions f(x) and n(x) are G-invariant and therefore can be considered as
functions on V~\,

Let us denote by ^ the Lie algebra of the group G. We fix a scalar product in
^ this product induces a left invariant riemannian metric in G and we normalize
the scalar product by condition that volume of G is equal to 1. The homo-
morphism T generates a homomorphism of ̂  into the algebra of vector fields in
M; therefore for every xeM a linear map τx of ̂  into tangential space at point
xeM is determined. We denote by D(x) the determinant of τjτx (the operator τ*τx

can be degenerate in this case we define the determinant as product of non-zero
eigenvalues). The map τx vanishes at the Lie algebra 2tf (x) of the group H(x) and
determines therefore a linear map τx of ^/^f(x) into tangential space at the point
xeM; the map τx is non-degenerate. It is easy to see that D(x) is equal to the
determinant of τjτ^.

One can check that

n(χ) = (D(x)Y12 (volume H(x)Γ l , (3)

where volume of the isotropy subgroup H(x) is calculated with respect to the
riemannian metric in G defined above. To prove (3) we consider the coset space
G/H(x) provided by the riemannian metric induced by the riemannian metric in G.
The group G acts transitively on the manifold G/H(x). The manifold N(x) is
homeomorphic to G/H(x) there exists a homeomorphism qx of G/H(x) onto N(x)
commuting with the action of the group G on these manifolds. Let ω1 be the
exterior form defined by the volume element in G/H(x) analogous form in N(x)
will be denoted by ω2. The homeomorphism qx transforms the form ω2 into the
form q*co2 on G/H(x). The forms ω1,a>2 and gjω2 are G-invariant. The G-invariant
m-form on the homogeneous m-dimensional manifold is determined up to constant
factor therefore q*ω2 = K(x)co1. To find the constant K we can consider the
differential (q^ of the map qx at the point of G/H(x) determined by the coset
H(x) C G. The tangential space at this point of G/H(x) can be identified with the
space ^"/Jf (x) where <tff(x) denotes as earlier the Lie algebra of H(x) and the
differential (qx)^ coincides with map τx. From this fact we get

Using the identities

volume G/H(x) = J ω t
G/H(x)

volume N(x) = j ω2= j q*ω2=K J ω1
N(x) G/H(x) G/H(x)

we obtain

n(x) = volume N(x) = D(x)ί/2 (volume G/H(x)) . (4)
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To calculate the volume of G/H(x) we can apply (2) to the case /(x) = 1, M = G
[the space G/H(x) can be considered as the space of orbits of the group H(x) acting
in G on the right; all orbits have the same volume]. We obtain from (2) that

volume G/H(x) = (volume H(x)) ~ 1 . (5)

Let us consider the most important case when the scalar product fixed in ̂  is
invariant. Then the corresponding riemannian metric in G is both left invariant
and right invariant. The volume of the isotropy subgroup H(x) does not depend on
x in this case because all isotropy subgroups are conjugate to the fixed subgroup
H. The determinant D(x) is G-invariant in this case and can be considered as a
function on the coset space V. We see that

j f(x)dμ = (volume H)~1 j f ( x ) D ( x ) ί l 2 d v . (6)
M

At last we study the asymptotics of the integral

x (7)

for α->0. We suppose that f(x) and g(x) are smooth functions on n-dimensional
euclidean space, f(x) is finite, g(x) ̂  y. The set of points where g(x) = y will be
denoted by M; we assume that M is non-degenerate r-dimensional critical
manifold i.e. the matrix d2g/dxldxj [the Hessian of the function g(x)] has n — r non-
zero eigenvalues. The product of these eigenvalues will be denoted by A(x).

One can check that the asymptotics of the integral (7) in the limit α-»0 has the
form

(πα)<"-'>'2 exp (- -y} f f(x)A(xΓll2dμ , (8)
\ α / M

where dμ is the measure in M corresponding to riemannian metric induced by
standard metric in euclidean space.

One can consider (8) as approximation to (7) given by method of steepest
descent.

Let us suppose now that the functions f(x) and g(x) are G-invariant [here G
denotes a subgroup of 0(n)]. Then the integrand in (8) is G-invariant and the
integral (8) can be transformed into integral over the space V of the orbits of the
group G in M. Using (6) we obtain the following assertion.

Lemma. The asymptotics of the integral (7) in the limit α-»0 has the form

(πα)(n-r)/2 e x p f - - y ) f/(x)dv , (9)

where V is the space of orbits of the group G in M,

dv = A(xΓ 1/2D(x)1/2(volume G) (volume H(x)ΓldvQ ,
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dvQ denotes the measure in V corresponding to the natural riemannian metric, H(x)
is the isotropy subgroup at point xeM, T(x) is the operator in the Lie algebra & of
the group G defined by formula

<T(x)M> = <hx,fcx> (10)

and D(x) denotes the product of non-zero eigenvalues of T(x) [in RHS of (10) the
symbol < , ) denotes the usual scalar product in euclidean space and in LHS of (10)
this symbol denotes the invariant scalar product in <& the volumes of G and of H(x)
must be calculated with respect to invariant riemannian metric in G corresponding
to this scalar product in G/.
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