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Quark Confinement in the Two-Dimensional
Lattice Higgs-Villain Model*

Robert B. Israel** and Chiara R. Nappi***
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Abstract. We prove quark confinement in the two-dimensional lattice Higgs-
Villain model in the weak coupling region by using a Kirkwood-Salsburg
equations for unbounded spins.

0. Introduction

In [1] Polyakov pointed out the role that instantons might play in the problem of
confinement in gauge theories by showing that in the U(l) three-dimensional pure
gauge theory in the weak coupling region, due to the instantons' effect, external
charges are confined.

His argument also predicts charge confinement in the Abelian two-
dimensional Higgs model because of the presence there of the Nielson-Olessen
vortices. The Wilson loop expectation value [2] has indeed been computed in this
model [3, 4] by taking into account only the instantons' contribution to the path
integral in the dilute gas approximation. The answer for the quark-antiquark
potential is the typical one-instanton contribution ~<?~1/ί?2 where g is the gauge
coupling constant.

We want to test these ideas on lattice gauge theories, which combine the
advantage of a rigorous formulation with many of the features of the continuum
theories. We consider therefore the two-dimensional Higgs- Villain model [5-8],
which differs from the usual x — y version adopted for lattice scalar electro-
dynamics by the substitution

In the weak coupling region, the one we are going to investigate (T->0), the
above two functions are practically identical. Nevertheless the latter version is
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more suitable for the use of duality transformation methods. In fact the strategy of
our proof is to use the duality transformation to eliminate from the action the spin
waves and isolate the vortices. We are able to give an upper and lower bound on
the expectation of the Wilson loop in terms of the ratio of two partition functions
in the vortices variables, one of which has an imaginary external field [3, 4]. In the
statistical mechanics language, we deal with a system of unbounded discrete spins
in an exponentially decaying potential. For this system we work out a Kirkwood-
Salsburg equation and prove that it has solution in any finite (or infinite) volume

for g2 smaller and — larger than given constants. Then we are able to compare

Mayer series associated with the above mentioned partition functions and prove
that, in this range of parameters, the dominant contribution to the difference
comes from the one-vortex configurations. This will prove the confinement, with
the predicted potential, of two external test charges, as long as they are fractionally
charged to avoid binding with the Higgs field.

For previous rigorous results on quark confinement in lattice gauge theories
see [9-13]. For the Higgs-Villain model, in particular, quark confinement is
proved in [14] for g2 sufficiently large, as communicated privately to us by one of
the authors. High and low temperature expansions are also worked out.

1. The Model

We define

and

Σ x- qAxμ - 2πmxμ}
2

•Π Σ
x'eΛ mx>(=Z

where φx, the Higgs field, is an angle variable associated with the lattice site x Axμ,
the gauge field, is an angle variable associated with the link between neighboring
sites x and x + μ (μ, v being the unit displacements on the lattice) and Ax, (with
prime we indicate the points in the dual lattice) is the "plaquette" variable defined,
as usual, by

x' x μ x + μ v x + vμ jcv *

We assume periodic boundary conditions. The partition function is

ZΛ= ] dσΛe
hΛ , (1.1)

— π

and the Wilson loop expectation value that we are going to estimate is

π
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Fig. 1
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where dC is an oriented closed path on the lattice with enclosed surface C. Above q
and q' are integer numbers which measure respectively the charge of the Higgs
field and of the quark in units of the elementary charge g. We assume that the ratio
q'/q is not an integer.

By using the Fourier transformation and the identity

x= Σ δ(x-n) , (1.3)

we get

Σ exP

T\ 1/2

Σ ί
ΊxμtTL ~~ 00

Σ eχp +a

Analogously,

2 \ l / 2

exp -

We perform in (1.1) and (1.2) the integration over the Axμ variables. In (1.1) we get
the constraint (see Fig. 1)

qεΛβmxβ = dΛmx, (1.4)

where a = μ,v, β = μ,v, εμv is the completely antisymmetric tensor and

Now we suppose the Wilson loop oriented in such a way that

ΣdcA

xμ= - Σ A

X' = - Σ σ

X'
A

X' >
x'eC x'eΛ
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where σx is the characteristic function of the region C. Then, in the numerator of
(1.2), instead of (1.4) we get

qεaβm

xβ = dzm

X'-q'd«σ

X' (1.5)

The integration over the φx variables will give a constraint on the mxμ's of the form
F m = 0 which is automatically satisfied if (1.4) or (1.5) are satisfied. (The reason is
that actually the φx fields can be "gauged out" from the action, which is invariant
under the local gauge transformation

Φ*-»Φx + 0fc* and Axμ-+Axll-kx + kx + fL

for any function kx.)
Because the mxμ's are integers we get from (1.4) the constraint

mx, = qnx, + θ

and from (1.5)

mx' = qnx, + q'σx, + θ ,

where nx, takes integer values and θ is an integer O^θ^q—l. Therefore (1.2)
becomes

Σ ZA(Θ)
0 = 0

(L6)

where

-— 2 2

and 2

-•j Σ (π.-^)2 -γΣ(^ + θ)2

 n z\
v / m - V . 2 i χ - χ ' i = ι β z xeΛ (l.o)

where now both x and x' are sites in the dual lattice. By {nx} we mean the set of all
configurations of integers in A. Because the above Gibbs measures are reflection
positive, one gets by a straightforward application of chessboard estimates [15]

M !_J£L
(1.9)

The main estimate of this paper (see Sect. 3) is

ZΛ(») (1.10)

where α is a constant independent of Λ. We are assuming the ratio θ/q not to be an
integer (otherwise obviously ZΛ(θ)/ZΛ(0)=ί). As a consequence of (1.10) and (1.9)
the only contributions in (1.6), in the limit of large Λ, come from terms with 0 = 0,
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namely

Σ' ZM £
<exp(i«z' EcAJX^ - -^YW) <U1>

Σ zΛ(θ) z"(0)

0 = 0

We will always suppose to be at A large enough to be authorized to use this limit
expression. We point out that the above θ variables represent the discrete version
of the θ-vacua of the continuum Abelian Higgs model in 2 dimensions. The
formula (1.11) just means that in the statistical mixture of all the 0~vacua the Θ^O
vacuum has the largest weight. To pick up a particular θ Φ 0 we must impose over
our theory boundary conditions which correspond to fix non-zero background
electrical field. Such would be a larger Wilson loop of charge θq. Then a slight
modifications of the argument which led to (1.11) would give for the thermody-

namic limit of the Wilson loop the value — ~^-. Alternatively we can simply
ZΛ(V)

restrict the ensemble to a particular value of θ. For a more complete approach to
the θ vacua in this model see [7, 14]. In the appendix we will prove the following
theorem :

Theorem 1. There is a constant fc>0 (depending only on T, g, q and q') such that

ιc[ H

zΛ(θ]
Therefore, the estimate (1.10) will also prove the Wilson area law on (1.11) and will
give an upper and lower bound on the confinement potential (for the sake of
simplicity, we will restrict ourselves to the case 0 = 0). We point out the importance
of the requirement q'/qφZ. For q'/qεΈ (1.12) shows that we detect only a length
law. The last step is to use again the Poisson summation formula on ZΛ(q')/ZΛ(Q)
and eliminate entirely from it the spin-wave variables with the usual technique of
gaussian integration. The final answer is

vp -β Σ sxV(χ-χ')sX' it £ sx

^v / ^ e λ'-v^
{«*}

where F(x —x') is the Kernel of ( —Δ^-f m2)"1 with — Δ^ the finite difference
2π2 . q2q2

Laplacian chosen with periodic boundary conditions, β= , m2 = ,

t = ~ -— . With sx we denote the vortices variables (taking values in Z).

The strategy now is to compare the two free energies pΛ(t)= -~r l o g Z Λ ( q f ] and

PΛ~ Γ7T^0§^^) an<^ Prove ^at, uniformly in /ί, pΛ>pΛ(t) for some opportuneI/LI
range of parameters β and m. This will prove (1.10) and the Wilson area law.
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2. The Kirkwood-Salsburg Equation for Unbounded Spins

We will now formulate a Kirkwood-Salsburg [16] equation which applies to
lattice models with unbounded spins. Because we desire estimates on (1.7) for a
finite volume, we will not bother to take an infinite volume limit, although this
could be done (see [17, 18]). We assume that at each site x of the finite lattice A
there is a spin sx taking integer values. The Hamiltonian will be

HΛ= Σ sxV(x-y)sy9
x,yeΛ

the partition function ZA= ^e~PH *(($*» an(j ̂  Qibbs equilibrium state

The potential V(x - y) is assumed to be real, symmetric, translationally invariant
and positive definite with

Σ sxv(χ-y)sy^*Σs2

x (2-1)
x,yeΛ xeΛ

for some constant ε>0, so the above sum over configurations {sx} converges
absolutely. In order to express the equilibrium state as a perturbation of the
"vacuum state" where all spins are 0, we introduce a complex "activity" z, with

ZΛ(z)= ΣzΣs2χe~βHΛ({sx})

{sx}

and [assuming ZΛ(z)Φθ]

The variable z will sometimes be suppressed. It will also be convenient to
introduce some notation. Qx will always denote a configuration {5x};ceX defined on
XCA, with all sx Φ 0. The set of all such configurations for all X C A will be denoted
by Q note that this includes an empty configuration 0 for the case X = Q. We will
sometimes join two or more configurations such as QXQY, where the sets X and Y

will always be disjoint. We write v(Qx)= Σ sx and H(QX)= £ sxV(x-y)sy. For
xeX x,yeX

any constant r>0, a norm on complex- valued functions on Q is defined by

|| φ || r = sup \φ(Qx)\ erv(Qx\ The Banach space of functions φ(Qx) with || φ \\r < oo will be
X,Qχ

denoted Fr. In particular, the equilibrium state determines a function ρΛ on Q, where
QΛ(Qx) is the probability that the configuration of spins inX is Qx. It can be expressed
as

γ} (2.2)
YCΛ\X Qγ
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Note that ρAeFr if l^r^βε, |z|^l and Z^(z)Φθ, since

Iρ^Qx^^^zM'1 Σ Σ^*),-/^βy)
YCΛ\X Qγ

^IZM'1 Π Σ^εf2

y<=Λ\X teZ

and £X^ i 2<2for βε^l.
ίeZ

If X Φ 0 and xeX, let X'-X- {*}, and let Qx, be the restriction of Qx to JT.
Then

YCΛ\X Qγ

where WX(QX) = F(0)s^ -f 2^ Σ v(χ ~ y)sy Now

yεX'

e-
2βs**Y

v(χ-y)s*= ^ ^(^-2^^-^^!^
ΓcΓ yeΓ

Letting S=Y\T, we can rearrange terms to obtain

ρ^Hz^rvv™*) Σ Σ Σ

where k(sx,QT)= [] (e~2feFU~^- 1); note fe(sx,0)- 1. Performing the sum over
yeT

S and Qs, we obtain

eΛ(βx) = z'*e-'IBrx(β*> Σ Σ*Mr)K*eΛβχ βτ)> (2.3)
Γc^\^ QT

where Rxφ(Qγ) ~ φ(Qγ) — ̂  φ(^6Γ) represents the probability of having spins 0 at
ί Φ O

x and Qy on Y The Eq. (2.3) together with

<?Λ0) = 1 (2-4)

constitute our Kirkwood-Salsburg equations for suitable choices of x. Formulas
(2.3)-(2.4) can be expressed as ρΛ = δ + KΛρΛ where δ(0) = l, δ(Qx) = 0 for non-
empty Qx, and

Σ Σfc(^δτ)^φ(e^βτ) (2 5)
We want to show that under suitable conditions, KΛ takes Fr to Fr with

IIK^II <1 for |z|gl. Then the equation φ=^δ + KΛφ has a unique solution in Fr,
which is analytic as a function of z in a neighborhood of |z| ̂  1, and can be

00

expressed as a power series φ = (l -KΛ)~1δ= Σ κ"<>. If l^r^βε this solution

must be ρΛ [if Z^(z)Φθ], since we know ρΛeFr. In fact, ZΛ(z)Φθ for |z| ̂  1 for any
configuration β^ of nonzero spins in Λ9 e

βH(QΛ}z~v(QΛ]φ(QΛ} is an analytic function
of z in |z|^l and coincides with ZA(z}~1 where Z^(z)Φθ.
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Our basic result is the following

Theorem!. LetS^= £ |7(x)| and S2= £ 7(x)2. J/r^l and I=j8(2ε-7(0))-r
x Φ 0 x Φ 0

— jS2 — — 2ρ— ̂ 0, then for \z\ ̂  1, X is an operator in Fwith norm at most
r r Λ

2\z\e~L.

Proof: Let us choose the distinguished site x = x(Qx) in the definition of Eq. (2.5) to
satisfy the inequality Wx(Qx}^(2ε- 7(0))s .̂ Note that there is always at least one
xeX satisfying the above inequality, since

X)- 7(0) £ s^(2c- 7(0))
xeX xeX xe

We will suppose such a choice is made. Moreover,

Thus [using (2.6)]

We claim that

Σ Σ\k(Sχ,Qτ)\e'"(Qτ

TCΛ\{X} Qτ

which will prove the theorem.
In fact,

Σ
TcΛ\{x} Q

= Π
ί Φ O

= Γf

y φ x

where α(y)= ^3C^X""J/- and /(α)= £ (e'^-^2 -e-rίt+a)2). Note that for r^
r ί=ι

we have /(α)^2α for all α^O. Now H-eα27W^^2f'(^2α)^^2r + 2α so that

which completes the proof since \sx ^s2.
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Corollary. Suppose 2ε— F(0)>2 J/S2. T/ϊ£w for any L0 >0 ί/zere z's α /?0 [depending
on F(0), 515 S2, βftd L0J such that if β>β0 then KΛ has norm at most 2\ze~LQin
some Fr with Irgrrg/te. In fact we can take r — β (ε — F(0)/2).

/ S \ 2S
Proof. If r = j8r0 then L = β 2e- F(0)-r0- -̂  ^. So L^L0 if

5 L 4-2S *r
2ε-F(0)-r0--^>0 and β>- - ~- - L-~^— Ξ^O. The condition on r0 can

r0 2ε— F(0j— r0— S2 r0

be satisfied if and only if 2ε — F(0)>2|/S^ and if so, r0 = ε— F(0)/2 will do.

3. Application to the Model

In application to the model of Sect. 1, we takeF(x) = <eJC,(Δyl + m2)~1^0> where
— ΔΛ is the finite-difference Laplacian with periodic boundary conditions [i.e.

-AΛf(x)= X (/(*)-/(j>)) where Λ = Z2/MZ2 for some integer M\ ex is the

function ex(y) = δxy and <,> is the inner product in 12(Λ). Note the following
properties of F(x — y ) :

1 9 _ ι 1 1
(a) Since 0 ̂  — Δ^ g 8 we have —~—- ̂  (—Δ^ -f m ) rg —^. Thus ε — —2—?r

and F(O)^ Actually

-

1

(b) F(x) ̂  0 for all x. For if not, there would be some j; with V(y) = inf F(x) < 0.

Since y + 0 and (~

| )i,Σ=ιn/)^ΪT^ny)

which contradicts V(y) < 0.

V 2 -1 1

yeΛ m

function 1 on Λ). Thus S< = —=- - F(0)^ —z and S2gS2 < —^-. So the conditionm m ^ i m»

2ε — F(0) > 2 j/S^is satisfied for m sufficiently large. Using more careful estimates, we

can in fact prove that it holds for m2 ;> 6.7. Finally, we note that -^-->Lπ + lasm-»oo
m2-
O 2

(taking r = 1). Therefore in this limit the condition β > βQ reads -j-j > LQ +1 (see Fig.

2)-

Now, in order to deal with (1.10) we define ZΛ(z, t\ < >yl(z, ί), ρ^z, ί) and K^(z, ί)
by replacing zs^ by zs*eltSχ throughout. This will not affect any of our estimates.
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0.8 b
6.7 m 2(=g 2/T)

Fig. 2. Region of convergence of the K.S. equation for q = 3

Let us define the pressures pΛ(z) = — log ZΛ(z) and p^(z, ί) = — In ZΛ(z, t). Our

goal is to show that pA(ϊ) — pA(l,t) [_ = PA — P/ι(0 °f ^ect 1] *s bounded below by
some positive number independent of A. Note that pA(Q) = pA(Q,t) and

] O^Jz) where
• Λ

z, ί). Therefore

^= ' ~z \A\ ^^Sχ

0 Δ I71! xeΛ

S χ Φ O

s^ρjsj; similarly

(3.1)

Using the power series QA(Z) — Σ ^^(z)^ an<^, ̂ yi(z? 0 = Σ Kn

Λ(z, t)δ and evaluating
n = 0 M = 0

the n = 1 terms explicitly, we have

Note that

Σ Σ

) = 0 if |X]Φ1, so ||ίC»δ|| = |

and

Σ Σ ŝ ^

_
l~2\z\e~L

if r^l and 2\z\e~L<\

(3.2)

I =\z\e'^V(0\ Thus
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Thus from (3.1) and (3.2)

which is >0 if _, _υ ,
1 - cos 2π<? /g

By the corollary of the previous section and the remark (c) this condition is
satisfied in a region of the (β,m2) plane which is asymptotic to the lines m2 = 6.1
and β/m2=LQ + l.

Finally, we note that from (3.2) as jδ->oo, the coefficient in our "area law" is
asymptotically 2e~βV(0}(l — cos2πq'/q) where βV(0) is approximately
β/m2 = 2π2/g2q2 for large m. As already mentioned, this is the same expression
computed in the dilute gas approximation for the confinement potential in the
continuum Abelian Higgs model in the 9 = 0 vacuum. Analogously working in a
Θ Φ O vacuum, we would have obtained the more general formula
2e-βv(0\cos θ - cos (θ + 2πq'/q)}.
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Appendix

Proof of Theorem 1. The upper bound of ^ is (1.9). The method for obtaining

the lower bound is basically contained in Lebowitz and Presutti [17]. Since they
assume translation invariance (which we do not have due to the Wilson loop), and
since some simplifications are possible with our model, we will present the details
below. First we want to show that (nxyΛ is bounded uniformly in x, A and C where
< >2 is the expectation corresponding to ZΛ(Θ). More generally, for h = {hx}xeΛ,
we let < yh Λ be the expectation corresponding to

T y _ 2 g2 2

ZΛ(h,θ)=Σe 2ι*-*'i = ι e 2 *zΛ
{nx}

Let PN(n) = 1 if \n\ ̂  N, 0 otherwise. If all hx 4- θ rg 0 (which we can always assure by
subtracting a multiple of q from θ) the second GKS inequality (in the form of [19],
Theorem VIII. 14 A) implies

^
Thus,

n} where all, yeΛ

Now by the chessboard estimate :

-^-fen + h'+θ)2- inf
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for some y>0 and δ depending only on g2, q, ti and θ. From this it is easy to see
that

Now for any XcΛ

Pro n$\/N\X\^M/N .
xeX

Choose N>4M. Let Xί (resp. X2) be the set of sites in C (resp. Λ\C) that have a
nearest neighbor in Λ\C (resp. C). Let B be the set of configurations {nx}xeΛ with

Σ nx=N\Xi\ for z = l or 2. Then we can write

Using (nx - n>;)
2 ̂  2

Z (^)>

+ n2) we have

Similarly ZΛ(Θ) £ \ZΛ(Θ] + eSNT^ZΛ^c(θ)Zc(θ)

so

ZΛ(Θ)
Λ g

- 32

Analogously

> _ _

=

|βc| Zc(0)

while

lϊ^<

by the chessboard estimate. Putting these together,

g l
ZM

which completes the proof.
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Erratum

Cantoni, V.: Enveloping Subspaces and Superposition of States. Commun. math.
Phys. 50, 241-244 (1976)

p. 242, line 10: Replace "Borel sets" by "closed sets".




