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Abstract. Frobenius theory about the cyclic structure of eigenvalues of
irreducible non negative matrices is extended to the case of positive linear
maps of von Neumann algebras. Semigroups of such maps and ergodic
properties are also considered.

1. Introduction

The spectral theory of positive maps has its origin in the classical work of Perron [1]
and Frobenius [2], who considered the case of matrices with positive entries on
finite dimensional vector spaces. For a compact exposition of Perron-Frobenius
results see [3]. Let us distinguish two types of results in this theory. The first,
due to Perron [1], is concerned with the existence and uniqueness of the maximal
eigenvalue, the second, due to Frobenius [2], is concerned with the cyclic structure
of the spectrum. Frobenius showed more particularly that a non negative
irreducible matrix has always a simple eigenvalue r such that all other eigenvalues
are contained in a circle of radius r around the origin. If the matrix is normalized
such that r = 1 then the eigenvalues on the unit circle form a finite subgroup of
the circle group which maps the system of all eigenvalues into itself.

In this paper we extend Frobenius results to the case of 2-positive maps of von
Neumann algebras. Let us first give some references to previous work. As the
literature is quite extensive, especially concerning extensions of Perron's results,
we shall mainly mention work related to Frobenius results (for additional references
see [4]).

Frobenius type of results for compact operators on commutative C*-algebras
and ordered vector spaces can be found in Krein and Rutman [5], who also extend-
ed Jentsch's work [6] on Perron type of results. For other extensions in the case of
ordered vector spaces see e.g. [7]-[9].

Automorphisms of commutative C*-algebras have been studied particularly
in connection with ergodic theory, originating from classical work by Koopman
[10], Carleman [11] and von Neumann [12], see [13]. Results of Frobenius type
for groups of automorphisms in the general case of non commutative C*-algebras
have been obtained by St^rmer [14].
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For some particular spectral results which appeared in different contexts see
the references in [14] and for recent related results see [15]-[17].

The extension of the entire Perron-Frobenius theory to the case of positive
maps on finite-dimensional C*-algebras has been obtained by Evans and H0egh-
Krohn [4].
We shall now briefly discuss our results.

We consider a von Neumann algebra M and positive linear normalized maps
Φ of M into itself, which are 2-positive and thus satisfy the Kadison-Schwarz
inequality Φ(α*α) ̂  Φ(α)*Φ(α) for any aeM (see e.g. [18]-[21]).

We recall that a map Φ is called 2-positive if Φ ® 1 is positive on M ® M2,
where 1 is the unit mapping of the space M2 of 2 x 2 matrices, so that in particular
completely positive maps are 2-positive. Such maps have found several applica-
tions recently, see e.g. [22]-[26].

Consider now a state invariant under Φ and extend Φ to the Hubert space
ffl generated by applying M to the cyclic separating vector given by the state.
Let Φ be ergodic, then we show that the set of eigenvalues on the unit circle for
Φ in M and for Φ in Jf is the same, it consists of simple eigenvalues ("roots") α
which form a subgroup of the circle group acting by complex multiplication on
the spectrum of Φ as an operator in 2tf. The corresponding eigenvectors give
unitary operators ua and the map α -> ua is a unitary multiplier representation of
the group Γ(Φ) of roots. The restriction of Φ to the subalgebra MΓ of M generated
by the operators ua is an ergodic automorphism and the restriction of the state
to MΓ is a trace. We give also more detailed results for the cases where Γ(Φ) is
cyclic or finite.

We then extend (Theorem 2.8-2.10) the considerations to the case of semigroups
Φί? t ̂  0 obtaining Frobenius type of results for their infinitesimal generators.

2. Dynamical Systems

Let M be a von Neumann algebra and Φ a positive linear normalized map of M,
i.e. Φ(M+) ̂  M+, where M+ is the positive cone in M and Φ(l) = 1. We say that
Φ is 2-positive if Φ® H 2 is positive on M ®M2, where M2 is the algebra of
2 x 2-matrices and 12 is the identity map of M2. It is easily seen that any 2-positive
map of M satisfies the Schwarz inequality

Φ(α*α)^Φ(α)*Φ(α) (2.1)

for any aeM.
We say that the triplet (M, Φ, ξ) is a dynamical system if Φ is a 2-positive map of

the von Neumann algebra M and ξ is a faithful normal state on M which is invariant
under Φ, i.e. ξ°Φ = ξ. Any ^-automorphism θ of M is 2-positive and a dynamical
system (M, θ, ξ\ where θ is a *-automorphism is called a dosed dynamical system.
By the GNS construction we may assume that ξ is a vector state

(2.2)

Let ffl = MΩ be the Hubert space generated by M and the cyclic vector Ω. For
aeM we define
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ΦaΩ = Φ(a)Ω. (2.3)

By (2.1) we then have

|| φaΩ \ 2 = ξ(Φ(a)*Φ(a)) ^ ζ(Φ(a*a)) = ξ(a*a) = \\a\\2. (2.4)

Hence Φ with dense domain MΩ is a contraction on ffl and thus extends uniquely
to a contraction on ffl .

Let αeM and b'eM', where M' is the commutant of M. Let ξ on B(^f) be
given by (2.2), then b'e(M') + if and only if ξ(abr) ^ 0 for all αeM+, since Ω is a
cyclic and separating vector for M. Now if fc'e(M')+ then for αeM + we have

ξ(Φ(a)W£ \\V\\ ξ(Φ(a))=\\b'\\ξ(a). (2.5)

Hence if be(M')+ is normalized such that ξ(b') = 1, then ξ(Φ(a)bf) is a state on M
which is majorized by the state ξ. It is well known that such a state is of the form

ξ(Φ(a)bl) = ξ(aΦt(bt)) (2.6)

where Φ'(b') is some positive operator affiliated with M'. The correspondence
b' -> Φ'(b') is obviously linear and monotone and ξ ° Φ = ξ implies that Φ'(l) = 1.
By the monotonicity we then get for b'e(M')+ that Φ'(fe') ̂  || &' ||. Hence Φ' is a
positive map of M'. Since (M ® M2)' ~ M' ® M2 and if αeM®M2 and
j8'e(M®M2)'then

£®τ 2(Φ® yα)00 = ξ®τ2(α(Φ'® 12)OB)), (2.7)

where τ2 is the normalized trace on M2, we see that (Φ® H2)' = Φ'® H 2 . This
together with the above argument gives us that Φ' is a 2-positive map of M'.

Moreover Φ(l) = 1 implies that ξ°Φ' = ξ and therefore (M', Φ', £) is again a
dynamical system. We thus have the following theorem

Theorem 2.1. Lβί (M, Φ, ξ) be a dynamical system. IfJtf3 = MΩ is the Hilbert space
generated by M and O, where Ω is the vector given by the state ξ, then for αeM and
b'eM' the equation

defines uniquely a 2-positive map of the commutant M' such that (M', Φ', ζ) is a
dynamical system. Moreover ΦaΩ — Φ(a)Ω defines a contraction on MΩ which
extends to a contraction on ffl .

We shall call (M', Φ', ξ) the dual dynamical system. We say that a dynamical
system (M, Φ, ξ) is ergodic if ξ is the only normal state on M' which is invariant
under Φ'. The following lemma follows from the fact that if αeM+, ξ(a) = 1, then
ξ(ab) is a normal state on M'.

Lemma 2.1. //(M, Φ, ξ) is an ergodic dynamical system then the only elements in M
invariant under Φ are those proportional to the identity.
From (2.1) we get with αeM and b'e(M')+ that

ξ(b'Φ(a*a)) ^ ξ(Φ(α)*b'Φ(α)) (2.8)
or

ξ(a*Φ'(b!}ά) ^ ξ(Φ(a}*b'Φ(a)) (2.9)
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which gives

(αΩ, Φ'(b')aΩ) ^ (ΦaΩ, b'ΦaΏ). (2.10)

Since MΩ is dense in J f we have for arbitrary xe J>f that for fe'e(M') +

Since Φ is a contraction on Jf , the spectrum of Φ is contained inside the unit
circle. If xα is an eigenvector of Φ corresponding to an eigenvalue α on the unit
circle i.e.

ΦxΛ = <*xΛ, |α =1 (2.12)

we say that xα is a root vector for Φ corresponding to the rooί α. The set of roots
Γ(Φ) of Φ consists then of the eigenvalues for Φ on the unit circle. Let now xα be
a normalized root vector, by (2.11) we then have

(xα,Φ'(feX)^(xα,b'xα) (2.13)

for any b'e(M') + . Both sides of the inequality (2.13) define normalized states on M'
and since one dominates the other they must be equal, hence

) = (xα,Z/xα) (2.14)

for arbitrary bΈM'. Thus the vector state i/-»(xα,b'xα) corresponding to a root
vector xα is an invariant state for Φ'.

Let us now assume that the dynamical system (M, Φ, ξ) is ergodic, then we
have that

(xα,&'xa) = «&') (2.15)

for any fo'eM'. Set now i/ = c'*c', then (2.15) gives us

«cXj = ||C'β||. (2.16)

Let us now define the densely defined operator xa by

xαc'Ω = cX (2.17)

for c'eM' i.e. ΰ(xβ) = MΏ. From (2.16) we then have

||xαc'Ω =||cO||, (2.18)

hence xa is an isometry

xίx a =l. (2.19)

From the definition (2.17) we have that

xab' = b'xa (2.20)

for arbitary b'eM'. Thus xαeM and by (2.12) we have

Φ(xα) = αxα. (2.21)

Since Φ is a positive map of M we have that

Φ(α*) = Φ(α)*,
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which gives us that

Φ(x*)-όbc*. (2.22)

Thus if α is a root so is α and the corresponding root vector is x*Ω. Now (2.19)
with x* replacing xα gives

xβ xα* = l, (2-23)

so that xα is unitary.
Let us now consider the quadratic form defined on M by

μb,(α, a) = ξ(V(Φ(a*a) - Φ(α)*Φ(α))). (2.24)

Then by (2.1) we have for bΈ(M')+ that μb,(a,a) is a positive semi-definite form.
From (2.19) and (2.21) we have that

xαHO. (2.25)

Thus by Schwarz inequality we have

μΛ*«,*) = 0 (2.26)

for arbitrary b'e(M')+ and aeM. Since Ω is separating and cyclic also for M'
we therefore have

) = ΰx*Φ(a)). (2.27)

which again implies that

Φ(xβfl) = αxβΦ(fl), (2.28)

xαΩ being again a root vector. Since MΩ is dense in #C we get from (2.28) that

x*Φiα-αΦ. (2.29)

Still under the assumption that (M, Φ, ^) is an ergodic dynamical system we get
from (2.29) that if αeΓ(Φ) then the operators Φ and αΦ are unitary equivalent.
Especially we get that if α and β are in Γ(Φ) then a-β is in Γ(Φ), and we already
had that if αeΓ(Φ) then άeΓ(Φ). Hence Γ(Φ) is a subgroup of the circle group.
Let αeF(Φ) and let ua be the corresponding unitary root operator in M. From (2.28)
we get that if α and β are in Γ(Φ) then

Φ(uauβ) = aβuauβ, (2.30)

so that u^Uβ is a root operator corresponding to the root aβ. Let ua and vx be two
unitary root operators corresponding to the same root α. By (2.27) we then have

Φ(tt?O = M*t;α9 (2.31)

which by Lemma 2.1 gives us the following

tιβ*t?α = cl, c| = l, (2.32)

so that va = cua . Hence we have proved that any root α is a simple eigenvalue for Φ.
Especially we get that for α and β in Γ(Φ)

ιy^ = y(α,j8X0 (2.33)
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with

|y(α,j8)| = l - (234)

So that

α -» uα (2.35)

is a unitary multiplier representation of the group Γ(Φ), with multiplier y(ce,jδ).
If Γ(Φ) is cyclic, i.e. has a simple generator, then the multiplier y(α, β) is necessarily
trivial, hence α -> uα is a unitary representation of the abelian group Γ(Φ). Therefore
in this case the algebra generated by the root operators is abelian and

Note that one may choose (2.36) also in the general case.
We have now proved the following theorem.

Theorem 2.2. Let (M, Φ, ξ) be an ergodic dynamical system, where ζ is a cyclic
separating vector state for M invariant under Φ. Let ffl be the corresponding Hilbert
space. Then the discrete eigenvalues on the unit circle for Φ as an operator in J^
coincide with the discrete eigenvalues on the unit circle for Φ in M. Let Γ(Φ) be the
set of all roots o/Φ, i.e. the discrete eigenvalues on the unit circle. Γ(Φ) is a subgroup
of the circle group which acts by complex multiplication on the spectrum Sp(Φ) o/Φ
in #6 \ //αeΓ(Φ) then α is a simple eigenvalue ofΦ and the corresponding root operator
ua in M is proportional to a unitary operator in M and xa = uaΩ is the corresponding
root vector in ffl , where Ω is the vector corresponding to the vector state ξ. The
invariance of Sp(Φ) under multiplication by the root α is given by the unitary
equivalence

u^Φua = αΦ,

if the root operator UΆ is normalized so that it is unitary. If a and β are in Γ(Φ) with
root operators ua and uβ, then uauβ is a root operator for the root uβ and w* is a root
operator for ά. Hence if we select for each αeΓ(Φ) a unitary operator ua then uauβ =
y(a,β)uaβ, where y(u,β} is a multiplier for the group Γ(Φ) and oc-*wα is a unitary
multiplier representation of the group Γ(Φ) with multiplier y(oc,β). If Γ(Φ) is cyclic,
i.e. has a single generator, then oc — » wα is a unitary representation of the abelian
group Γ(Φ) and therefore the algebra generated by the root operators is abelian.

Remark. Results of this type were proven by Frobenius [2] for commutative,
finite-dimensional von Neumann algebras. For the commutative infinite dimen-
sional case with Φ compact, results were given by Krein and Rutman [5] and for
the commutative infinite dimensional case with Φ an automorphism by
Koopman [10] and von Neumann [12]. In the infinite dimensional non-commuta-
tive case with Φ an automorphism results of this type were obtained by St^rmer [14]
and in the finite dimensional non-commutative case with general Φ by Evans and
H0egh-Krohn[4].
If Φ is compact in ffl, Γ(Φ) must be a finite subgroup of the unit circle and since
any such group has the form

Γm-{β2 π^,k^0,l,...,m-l} (2.37)
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we have that Γ(Φ) = Γm where m = |Γ(Φ)| is the order of Γ(Φ). We shall say that
Φ is primitive if |Γ(Φ)| = 1 i.e. Γ(Φ) = {1} and imprίmίtive if not, and following
Frobenius we call |Γ(Φ)| the imprimitivity of Φ. Especially we have that if Φ is
compact in ffl then it has finite imprimitivity. If Φ is of trace class in $f then the
Fredholm determinant 1 1 — zΦ \ of 1 — zΦ exists and defines an entire function

/φ(z) = | l -zΦ| (2.38)

such that/φ(z0) = 0 if and only if ZQ x is an eigenvalue for Φ. Especially we get that
the set of zeros of/ on the unit circle is Γ(Φ). Recalling now that for αeΓ(Φ)

u*Φua = αΦ (2.39)

by the unitary equivalence of αΦ and Φ, we get then

/φ(*) (2-40)

because the Fredholm determinant is a unitary invariant. Since α in (2.40) is any
mth root of the unit and / is entire, we have that there exists an entire function
g(z) such that /φ(z) = g(zm). Let us also remark that since Γ(Φ) = Γm is cyclic,
we have that the algebra generated by the root operators is commutative. Let now
y _ e2πi/m ancj u' ke a root Operator corresponding to y then u'm = c. 1 where | c = 1.

Let now u = cΐ/muf then wm = 1. Since u is unitary and um = I we have the spectral
decomposition

m - l

u= Σ ykPk (2.41)
fc = 0

where Pk are the spectral projections for u.
Since Φ(u) = yw we see that

= Pk-ι and Φ(F0) - P m _ 1 ? k = 1, ... ,m - 1. (2.42)

Especially we have that

= Pk (2.43)

so that Φw is not ergodic. It is easy to see that the restriction of Φm to the algebra
Mk = PkMPk is ergodic and in fact primitive. These results depend obviously only
on the fact that Γ(Φ) is of finite order. We have thus the following theorem

Theorem 2.3. Let (M, Φ, ξ) be as in Theorem 2.2. Then ifΦ has finite imprimitivity
we have Γ(Φ) = Γw, where Γm is the group ofm-th roots of the unit. Let y = e2πi/m then
a root operator u corresponding to y may be normalized so that um = 1. For this u

we have that u = Σ ΎkPk ™ ̂ ne ̂ P^ctral resolution of the unitary operator u. Hence
k = 0

{Pk} is a resolution of the identity in M and the algebra generated by the root operators
is the abelίan algebra generated by {Pk} . Moreover Φ(Pk) = Pk _ ί and Φ(P0) = Pm-ι

Especially Φm(Pk} = Pk, so that Φm is not ergodic. However the restriction of Φm

to the algebra Mk = PkMPk is ergodic and primitive. In fact |Γ(Φ)| = m only ifΦm

is not ergodic. IfΦ is compact, then Φ has finite imprimitivity. If in addition Φ is of
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trace class in B(^\ then there is an entire function g(z) such that

1-zΦ =

where \ 1 — zΦ is the Fredholm determinant ofΦ.
Let now Γ(Φ) be cyclic but not finite. Then for any root yeF(Φ) we have that

y/2π is irrational. If y generates Γ(Φ) then

Γ(Φ)={/;n = 0,±l , . . . } . (2.44)

Let now u be a root operator corresponding to y, normalized so that u is
unitary. A root operator corresponding to yn is then given by u~n. Let v be the
spectral measure on the unit circle for the unitary operator u. Since obviously Φ
restricted to the subalgebra generated by u is an automorphism, we have that Φ
induces a transformation of the spectrum of u, and since Φ(un) = ynun it follows
that this transformation coincides with the restriction to the spectrum of u of the
transformation z-+yz. Hence if

w = j zdEz (2.45)
|z| = l

is the spectral resolution of u, we must have that

Φ(Ez) = Eyz (2.46)

for v-almost all z in the unit circle. Since there are no other root operators than the
w", n = 0, ± 1 , . . . , it follows that v is ergodic with respect to the transformation
z -> yz of the unit circle. That v is invariant under this transformation follows
from ξ = ξ°Φ and Φ(un) = ynun for all neZ. Hence we have proved the following
theorem.

Theorem 2.4. Let (M, Φ, ξ) be an ergodic dynamical system, such that Γ(Φ) is
cyclic but not finite. Then for any yeΓ(Φ) we have that y/2π is irrational Let y
generate Γ(Φ), i.e. Γ(Φ)= {yn ;n = 0, ± 1, ± 2, ...}. Let u be the root operator
corresponding to y normalized so that u is unitary.

Let v be the spectral measure on the unit circle for the unitary operator u cor-
responding to the state ξ, i.e. ξ(un) = j zndv(z), and letu= J zdEz be the spectral

M = ι l* l = ι
resolution of u. Then the projection valued measure dEz is absolutely continuous
with respect to v. v is an invariant ergodic measure with respect to the transformation
z = yz of the unit circle and

for v-almost all z on the unit circle.
Let now α and β be two roots of the ergodic dynamical system (M, Φ, ξ) with

corresponding root operators ua and uβ . Since UΛ uβ then is a root operator for
the root α /J we have

Φ(uauβ) = aβuauβ = Φ(wα) - Φ(uβ). (2.47)

Hence if MΓ is the strongly closed subalgebra of M generated by the root operators
wα, αeΓ ΞΞ Γ(Φ), then Φ maps MΓ into MΓ and restriction of Φ to MΓ is an auto-
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morphism. Let tfτ = MΓΩ then 3tfτ is a Φ invariant subspace of 2tf and the
restriction of Φ to ffl Γ is obviously unitary with discrete spectrum equal to Γ, and
uaΩ, αeΓ is a complete set of orthogonal eigenvectors for Φ in JΊfΓ. Hence Ω is
the only invariant eigenvector. Since Φ is ergodic on M the restriction of Φ to MΓ

is ergodic. From the orthogonality of Ω and uΛΩ for α ̂  1 we have that ξ(ua) = 0
for α ̂  1. But then ξ(uΛuβ) = ζ(uβua) = 0 for α ̂  β and if β = a then uβ = cw*, where
c is an element in the unit circle, and since ua is unitary we have that if β = ά then
uauβ = uβuΛ so that ξ(uΛuβ) = ζ(uβua) in any case. This shows that for a and b in MΓ

then ξ(ab) = ξ(ba) i.e. the restriction of ξ to MΓ is a trace. (That the restriction of an
ergodic state to the root algebra MΓ is a trace was observed by St^rmer [14] in
the case where Φ is an automorphism.) We have thus proven the following theorem.

Theorem 2.5. Let (M, Φ, ξ) be an ergodic dynamical system with root system Γ.
Let MΓ be the root algebra, i.e. the strongly closed subalgebra of M generated by
the root operators and let ΦΓ be the restriction of Φ to MΓ . Then ΦΓ is an auto-
morphism ofMΓ and (MΓ, ΦΓ, ξr\ where ξr is the restriction ofξ to MΓ, is an ergodic
dynamical system. Moreover ζr is a trace on MΓ .

One could now ask if it is so that MΓ is always commutative for an ergodic
dynamical system. The following example shows that this is not the case.

Example 2.6. Let W = L2(R) and set (V(x)f)y) =f(y - x) and (U(x)f)y) = eιxyf(y).
Then V and U are both strongly continuous unitary representations of the abelian
group IR on L2(R). Moreover

U(x)V(y) = eixyV(y)U(x).

Let λ ̂  0 and nί , n2 in Z, then

Let un= U(λn1)V(λn2) for n = (w1 ?n2)eZ2. Then n~+un is a unitary multiplier
representation of Z2. Let C be the C*-algebra spanned by un and set τ(un) = δ0n.
It is easy to see that τ defines a faithful trace on C. In fact let a = Σ%nun, then we
have τ(a*a) = Σάnαwτ(w*wm) = Σ|ocJ2, which shows that τ is faithful. Moreover
we have τ(w*wm) = 0 = T(MOTM*) for n =/= m and τ(w*wn) = 1 = τ(wπw*), which shows
that τ is a trace on C. Let now M be the von Neumann algebra given by the repre-
sentation of C induced by the trace τ. Then M is non commutative if and only if
λ2 is not an integral multiple of 2π. Let α and β be two real numbers and set
W = U(a)V(β). Then

W*U(λn)W = V*(β)U(λn)V(β) = eίλβnU(λn)

and

W*V(λn)W = V*(β)U*(a)V(λn)U(<*)V(β) = e~iλanV(λn).

Set now for aeM,θ(a) = W*aW, then θ is an automorphism of M and (M9θ9ξ)
is a dynamical system. Moreover it follows from the above equations that if
α, β and 2π/λ are independent over Z (the ring of integers) then (M, θ, ξ) is an
ergodic dynamical system. We have from the equation above that the root system
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Γ = Γ(θ] is given by

and a root operator corresponding to eίλ(αm+^") is given by U(λm)V( — λn). M is
noncommutative if λ2 is not an integral multiple of 2π, and M = MΓ .

We shall now consider the case of semigroups of positive maps, instead of
the iterates of a single positive map Φ.

Let M be a von Neumann algebra and Φί? t ̂  0 a semigroup of positive norma-
lized maps of M i.e. Φ0 = 1, Φ,° Φs = Φ ί+s, Φt(M+) c M+ and Φ,(l) = 1 such that
the Φt are 2-positive, hence satisfy the Schwarz inequality

Φt(a*a) ^ Φt(a)*Φt(a) (2.48)

for any αeM and all ί. Moreover if ξ is a cyclic and separating normal state on
M such that ξ(aΦt(b)) is measurable as a function of ί, and ξ is invariant under
Φt i.e. £°Φ r = ξ, we say that (M, Φί? ξ) is a dynamical system with continuous time
or a dynamical flow. We say that the dynamical flow is ergodic iff ξ is the only
invariant normal state for the dual flow (M'? Φ[, ξ). As for the discrete dynamical
systems (M, Φ, ξ) considered before, (2.48) implies that Φt extends to a measurable,
hence strongly continuous, contraction semigroup on ffl, where ffl is the Hubert
space obtained by the GNS construction from the state ξ. We denote the continuous
extension to Jtif also by Φ f, and we let IA be the infinitesimal generator of Φt in

Φt = eίtA ί^O. (2.49)

Since Φt is a contraction, we have that i(A — A*) Ξ> 0 so that the spectrum of A
is confined to the closed upper half plane. Let Γ be the discrete part of the spectrum
of A on the real line. Then of course for any t ̂  0 we have that eltΓ is the discrete
spectrum of Φt on the unit circle. Let now αeΓ and xa be a corresponding norma-
lized eigenvector. As in the proof of Theorem 2.2 we get that xα = uαΩ with wα

unitary in M. In this way we prove the following theorem.

Theorem 2.7. Let (M,Φt,ξ) be an ergodic dynamical flow. Then the discrete
eigenvalues on the real line for the infinitesimal generator ofΦt in 2ff coincide with
the discrete eigenvalues on the real line for the infinitesimal generator of Φt in M.
Let the set of these discrete eigenvalues on the real line be denoted by Γ, the root
system of the flow, then Γ is a subgroup of the additive group of the real line. Moreover
the spectrum of the semigroup Φt in 3P is invariant under this additive group Γ.
Moreover, for anyaeΓ, α is a simple eigenvalue of the semigroup Φt and a correspond-
ing root operator uaeM is proportional to a unitary operator in M. The invariance
of the spectrum of the semigroup Φt is given by the unitary equivalence

u*ΦtuΛ = e2πίatΦt

where ua is a normalized root operator corresponding to&eΓ.Ifa and β are in Γ
with root operators UΛ and uβ then wα uβ is a root operator for α -f β and u* is a root
operator for — α. Hence if we select for each αeΓ α unitary root operator ua then
uauβ = y(α, β)ua+β, where y(α, β) is a multiplier for Γ, and a-+uaisa unitary multiplier
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representation with multiplier γ. Γ is either a dense subgroup of IR or discrete i.e.
Γ = {na,neZ}. If Γ is discrete, then the strongly closed subalgebra MΓ generated
by the root operators is abelian. I

The restriction of Φt to MΓ is obviously an automorphism and as in the discrete
case we get that the restriction of ξ to MΓ is a trace. In the special case where Γ is
discrete, so that Γ = {nα, rceZ}, MΓ is abelian and generated by the root operator
u corresponding to α. Let u be normalized to be unitary, then MΓ is simply the
von Neumann algebra generated by u. Since Φt restricted to MΓ is a one parameter
group of automorphism, it is induced by a one parameter flow on the spectrum
of u. Since Φt(un) = eίt0ίnun this flow on the spectrum of u must coincide with the
flow jφ->eί(φ+aεt) on the spectrum of u. From the fact that 1 is an eigenvalue of
multiplicity one for the semigroup Φt restricted to MΓ it follows that (MΓ,Φt,ξ)
is an ergodic dynamical flow so that the flow eιφ -+ei(φ+Λt) is ergodic with respect
to the spectral measure μ for u in ξ, i.e. the measure μ such that

«/("))= ί fWμ(z). (2.50)
N = ι

Hence μ is an invariant and ergodic measure with respect to the flow induced by
the rotation of the unit circle. Hence since Φt is also strongly continuous, we have
that dμ is the Haar measure on the unit circle, and that u has constant spectral
multiplicity. We have thus the following theorem.

Theorem 2.8. Let (M,Φt,ξ) be an ergodic dynamical flow, and let Γ be its root
system. Then the restriction ofξ to the von Neumann algebra MΓ generated by the
root operators is a trace, Φt leaves MΓ invariant and the restriction of Φt to MΓ is
a one parameter group of automorphisms. Moreover (MΓ, Φ t 9 ζ ) is an ergodic dynami-
cal flow. Γ consists either of one point, or is discrete or is dense. In the discrete case
we have Γ = {rcα neZ}. Let in this case u be a normalized root operator correspond-
ing to α. Then u has Lebesgue spectrum and in fact the spectral measure for u in the
state ξ is the Haar measure on the unit circle and u has constant spectral multiplicity.
Moreover the flow (MΓ, Φt, ξ) is induced by rotating the spectrum ofu at the constant
speed α.

Remark, t -» Φt is an ergodic action of IR on the von Neumann algebra MΓ with
a discrete spectrum. In [27, Chapter 8] we have an exhaustive discussion of such
actions and we refer the interested reader to this reference for further information.
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