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Abstract. Frobenius theory about the cyclic structure of eigenvalues of
irreducible non negative matrices is extended to the case of positive linear
maps of von Neumann algebras. Semigroups of such maps and ergodic
properties are also considered.

1. Introduction

The spectral theory of positive maps has its origin in the classical work of Perron [1]
and Frobenius [2], who considered the case of matrices with positive entries on
finite dimensional vector spaces. For a compact exposition of Perron-Frobenius
results see [3]. Let us distinguish two types of results in this theory. The first,
due to Perron [ 1], is concerned with the existence and uniqueness of the maximal
eigenvalue, the second, due to Frobenius [2], is concerned with the cyclic structure
of the spectrum. Frobenius showed more particularly that a non negative
irreducible matrix has always a simple eigenvalue r such that all other eigenvalues

-are contained in a circle of radius r around the origin. If the matrix is normalized
such that r =1 then the eigenvalues on the unit circle form a finite subgroup of
the circle group which maps the system of all eigenvalues into itself.

In this paper we extend Frobenius results to the case of 2-positive maps of von
Neumann algebras. Let us first give some references to previous work. As the
literature is quite extensive, especially concerning extensions of Perron’s results,
we shall mainly mention work related to Frobenius results (for additional references
see [4]).

Frobenius type of results for compact operators on commutative C*-algebras
and ordered vector spaces can be found in Krein and Rutman [ 5], who also extend-
ed Jentsch’s work [6] on Perron type of results. For other extensions in the case of
ordered vector spaces see e.g. [ 7]-[9].

Automorphisms of commutative C*-algebras have been studied particularly
in connection with ergodic theory, originating from classical work by Koopman
[10], Carleman [11] and von Neumann [ 12], see [ 13]. Results of Frobenius type
for groups of automorphisms in the general case of non commutative C*-algebras
have been obtained by Stgrmer [14].
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For some particular spectral results which appeared in different contexts see
the references in [14] and for recent related results see [15]-[17].

The extension of the entire Perron-Frobenius theory to the case of positive
maps on finite-dimensional C*-algebras has been obtained by Evans and Héegh-
Krohn [4].

We shall now briefly discuss our results.

We consider a von Neumann algebra M and positive linear normalized maps
& of M into itself, which are 2-positive and thus satisfy the Kadison-Schwarz
inequality ®(a*a) = P(a)*P(a) for any ae M (see e.g. [18]-[21]).

We recall that a map @ is called 2-positive if @@ 1 is positive on M QM ,,
where 1 is the unit mapping of the space M, of 2 x 2 matrices, so that in particular
completely positive maps are 2-positive. Such maps have found several applica-
tions recently, see e.g. [22]-[26].

Consider now a state invariant under @ and extend & to the Hilbert space
H# generated by applying M to the cyclic separating vector given by the state.
Let @ be ergodic, then we show that the set of eigenvalues on the unit circle for
@ in M and for @ in # is the same, it consists of simple eigenvalues (“roots”) a
which form a subgroup of the circle group acting by complex multiplication on
the spectrum of @ as an operator in . The corresponding eigenvectors give
unitary operators u, and the map a —u, is a unitary multiplier representation of
the group I'(®) of roots. The restriction of @ to the subalgebra M of M generated
by the operators u, is an ergodic automorphism and the restriction of the state
to My is a trace. We give also more detailed results for the cases where I'(®) is
cyclic or finite.

We then extend (Theorem 2.8-2.10) the considerations to the case of semigroups
®,,t = 0 obtaining Frobenius type of results for their infinitesimal generators.

2. Dynamical Systems

Let M be a von Neumann algebra and @ a positive linear normalized map of M,
ie. ®(M*)= M*, where M* is the positive cone in M and @(1) = 1. We say that
@ is 2-positive if @@ 1, is positive on M ® M,, where M, is the algebra of
2 x 2-matrices and 1, is the identity map of M, . It is easily seen that any 2-positive
map of M satisfies the Schwarz inequality

P(a*a) = P(a)*P(a) (2.1

for any ae M.

We say that the triplet (M, @, &) is a dynamical system if @ is a 2-positive map of
the von Neumann algebra M and £ is a faithful normal state on M which isinvariant
under @, i.e. 0@ = £. Any *-automorphism 6 of M is 2-positive and a dynamical
system (M, 0, &), where 0 is a *-automorphism is called a closed dynamical system.
By the GNS construction we may assume that ¢ is a vector state

&a) = (2, aR). (2.2)

Let # = MQ be the Hilbert space generated by M and the cyclic vector Q. For
aeM we define
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Pa2 = d(a)f2. (2.3)
By (2.1) we then have
| @aQ||? = & P(a)*P(a)) < {(D(a*a)) = Ela*a) = || a|>. 24

Hence @ with dense domain M€ is a contraction on # and thus extends uniquely
to a contraction on #°.

Let aeM and b'eM’, where M’ is the commutant of M. Let & on B(s#) be
given by (2.2), then b’'e(M")* if and only if &(ab’) =0 for all ae M ™*, since Q is a
cyclic and separating vector for M. Now if b'e(M’)* then for ae M ™ we have

E@(a)b) < || V]| E(Dla)) = || ¥ | ). 2.5)

Hence if b'e(M’)* is normalized such that £(b') = 1, then &(P(a)b’) is a state on M
which is majorized by the state £. It is well known that such a state is of the form

E(P(a)b’) = E(ad'(b')) (2.6)

where @'(b') is some positive operator affiliated with M’. The correspondence
b'— @'(b") is obviously linear and monotone and £o@ = ¢ implies that ¢'(1) = 1.
By the monotonicity we then get for b'e(M’)* that &'(b) < ||b'||. Hence @' is a
positive map of M'. Since (MQM,)~M @M, and if ae M@ M, and
p'e(M® M,) then

(@1, (P® 1)) =R T(uP' ® 1,)(B)), 2.7)

where 1, is the normalized trace on M,, we see that (2® 1,)’ =& ® 1,. This
together with the above argument gives us that @' is a 2-positive map of M.

Moreover &(1) =1 implies that @' = ¢ and therefore (M, @, &) is again a
dynamical system. We thus have the following theorem

Theorem 2.1. Let (M, ®, &) be a dynamical system. If # = MQ is the Hilbert space
generated by M and £, where € is the vector given by the state &, then for ae M and
b'e M’ the equation

<((a)p) = (ad (D))

defines uniquely a 2-positive map of the commutant M’ such that (M',®',€) is a
dynamical system. Moreover ®af2 = ®(a)2 defines a contraction on MQ which
extends to a contraction on H .

We shall call (M, @', &) the dual dynamical system. We say that a dynamical
system (M, @, &) is ergodic if & is the only normal state on M’ which is invariant
under @'. The following lemma follows from the fact that if ae M *, &(a) = 1, then
&(ab’) is a normal state on M.

Lemma 2.1. If (M, ®,&) is an ergodic dynamical system then the only elements in M
invariant under @ are those proportional to the identity.
From (2.1) we get with ae M and b'e(M’)* that

(' Pla*a)) z <(P(a)*b'Pla) 238
or

S(a*@'(b)a) = S(P(a)*b'P(a)) (2.9)
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which gives

(a2, @'(b)af2) = (Paf2, b’ daf?). (2.10)
Since M€ is dense in # we have for arbitrary xe # that for b'e(M’)"*
(x, @' (b")x) = (Px, b’ Px). (2.11)

Since ¢ is a contraction on S, the spectrum of @ is contained inside the unit
circle. If x, is an eigenvector of @ corresponding to an eigenvalue o on the unit
circle i.e.

Ox, =ax, |oj=1 (2.12)

o

we say that x, is a root vector for @ corresponding to the root o. The set of roots
I'(®) of & consists then of the eigenvalues for @ on the unit circle. Let now x, be
a normalized root vector, by (2.11) we then have

(x5 (b')x,) = (x,, b'x,) (2.13)

for any b'e(M’)*. Both sides of the inequality (2.13) define normalized states on M’
and since one dominates the other they must be equal, hence

(x, P'(b)x,) = (x,, b'x,) (2.14)

for arbitrary b’'e M'. Thus the vector state b'— (x,, b'x,) corresponding to a root
vector X, is an invariant state for @'.

Let us now assume that the dynamical system (M, @, &) is ergodic, then we
have that

(%, b'x,) = &(B") (2.15)
for any b’'e M'. Set now b' = ¢*¢/, then (2.15) gives us

[ x|l =] ceQ]. (2.16)
Let us now define the densely defined operator x, by

X, =c'x, (2.17)
for deM’ ie. D(x,) = M'Q. From (2.16) we then have

| x,cQ| =], (2.18)

hence x, is an isometry
x¥x, = 1. (2.19)
From the definition (2.17) we have that

x,b' =b'x%, (2.20)
for arbitary b’'e M'. Thus x,e M and by (2.12) we have
P(x,) = ax,. (2.21)

Since @ is a positive map of M we have that

P(a*) = D(a)*,
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which gives us that
D(XF) = axi. (2.22)

Thus if o is a root so is & and the corresponding root vector is x*€2. Now (2.19)
with X¥ replacing x, gives

X% =1, (2.23)

so that x, is unitary.
Let us now consider the quadratic form defined on M by

ty(a, @) = C(b'(P(a*a) — D(a)* D(a))). (2.24)

Then by (2.1) we have for b'e(M')* that u,(a, a) is a positive semi-definite form.
From (2.19) and (2.21) we have that

Uy (Xys X,) = 0. (2.25)
Thus by Schwarz inequality we have
iy (%, 0) =0 (2.26)

for arbitrary b'e(M')" and aeM. Since Q is separating and cyclic also for M’
we therefore have

D(XFa) = axFd(a)). (2.27)
which again implies that
&(xX,a) = ax,P(a), (2.28)

x,£2 being again a root vector. Since M£2 is dense in # we get from (2.28) that
QR = o (2.29)

Still under the assumption that (M, @, £) is an ergodic dynamical system we get
from (2.29) that if ael'(®) then the operators @ and o® are unitary equivalent.
Especially we get that if « and f are in I'(®) then «-f is in I'(®), and we already
had that if aeI'(®) then del'(P). Hence I'(P) is a subgroup of the circle group.
Let oeI'(®) and let u, be the corresponding unitary root operator in M. From (2.28)
we get that if « and f are in I'(®) then

D(u,ug) = o fuug, (2.30)

so that u,uy, is a root operator corresponding to the root af. Let u, and v, be two
unitary root operators corresponding to the same root a. By (2.27) we then have

D(utv,) = ulv,, (2.31)
which by Lemma 2.1 gives us the following
wro, =cl, |c|=1, (2.32)

so that v, = cu,. Hence we have proved that any root « is a simple eigenvalue for &.
Especially we get that for « and f in I'(®)

uacuﬂ = y(oc, B)uaﬂ (233)
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with

ly(oc, ﬁ)[ =1. (2.34)
So that

o= U, (2.35)

is a unitary multiplier representation of the group I'(®), with multiplier y(c, f).
If I'(d) is cyclic, i.e. has a simple generator, then the multiplier y(«, ) is necessarily
trivial, hence o — u, is a unitary representation of the abelian group I'(®). Therefore
in this case the algebra generated by the root operators is abelian and

u;“ =u,. (236)

Note that one may choose (2.36) also in the general case.
We have now proved the following theorem.

Theorem 2.2. Let (M, ®,&) be an ergodic dynamical system, where & is a cyclic
separating vector state for M invariant under ®. Let # be the corresponding Hilbert
space. Then the discrete eigenvalues on the unit circle for @ as an operator in H
coincide with the discrete eigenvalues on the unit circle for @ in M. Let I'(®) be the
set of all roots of D, i.e. the discrete eigenvalues on the unit circle. I'(®) is a subgroup
of the circle group which acts by complex multiplication on the spectrum Sp(®) of ®
in . Ifael'(®) then o is a simple eigenvalue of ® and the corresponding root operator
u, in M is proportional to a unitary operator in M and x, = u £ is the corresponding
root vector in A, where £ is the vector corresponding to the vector state ¢. The
invariance of Sp(®) under multiplication by the root o is given by the unitary
equivalence

urdu, = ad,
if the root operator u, is normalized so that it is unitary. If o and f are in I'(®) with
root operators u, and u,, then u,uy is a root operator for the root aff and u is a root
operator for o. Hence if we select for each a€ I'(®) a unitary operator u, then u,u, =
Yo, Blu,y, where y(o, B) is a multiplier for the group I'(®) and o« — u, is a unitary
multiplier representation of the group I'(®) with multiplier Yo, B). If I'(P) is cyclic,
i.e. has a single generator, then a— u, is a unitary representation of the abelian
group I'(®) and therefore the algebra generated by the root operators is abelian. W

Remark. Results of this type were proven by Frobenius [2] for commutative,
finite-dimensional von Neumann algebras. For the commutative infinite dimen-
sional case with @ compact, results were given by Krein and Rutman [5] and for
the commutative infinite dimensional case with @ an automorphism by
Koopman [10] and von Neumann [ 12]. In the infinite dimensional non-commuta-
tive case with @ an automorphism results of this type were obtained by Stgrmer[ 14]
and in the finite dimensional non-commutative case with general @ by Evans and
Hgegh-Krohn [4].

If @ is compact in &, I'(®) must be a finite subgroup of the unit circle and since
any such group has the form

r, ={eX*m k=01,...,m—1} (2.37)
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we have that I'(®) = I',, where m = |I'(®)| is the order of I'(®). We shall say that
@ is primitive if |I(®)| =1 ie. I[(®) = {1} and imprimitive if not, and following
Frobenius we call |I'(®)| the imprimitivity of ®. Especially we have that if @ is
compact in # then it has finite imprimitivity. If @ is of trace class in # then the
Fredholm determinant |1 — z(DI of 1 — z@ exists and defines an entire function

folz)=|1—z0| (2.38)

such that f4(z,) = 0 if and only if z; ! is an eigenvalue for @. Especially we get that
the set of zeros of f on the unit circle is I'(®). Recalling now that for aeI'(P)

u¥du, = oad (2.39)
by the unitary equivalence of «® and &, we get then

folaz) = fy(2) (2.40)

because the Fredholm determinant is a unitary invariant. Since o in (2.40) is any
mth root of the unit and fis entire, we have that there exists an entire function
g(z) such that fy(z) = g(z"). Let us also remark that since I'(®)=1T,, is cyclic,
we have that the algebra generated by the root operators is commutative. Let now
7 = e*™/™ and u' be a root operator corresponding to y then u™ = ¢.1 where [¢| = 1.
Let now u = c!/™y’ then ™ = 1. Since u is unitary and 4™ = 1 we have the spectral
decomposition

m—1
u= Y y*P, (2.41)
k=0

where P, are the spectral projections for u.
Since ®(u) = yu we see that

®(P)=P, ,and ®(P)=P,  k=1,.. m—1. (2.42)

Especially we have that

so that @™ is not ergodic. It is easy to see that the restriction of @™ to the algebra
M, = P,MP, is ergodic and in fact primitive. These results depend obviously only
on the fact that I'(®) is of finite order. We have thus the following theorem

Theorem 2.3. Let (M, ®, &) be as in Theorem 2.2. Then if @ has finite imprimitivity

we have I'(®) = TI',,, where I',, is the group of m-th roots of the unit. Let y = e*™/™ then

a root operator u corresponding to 7 may be normalized so that u™ = 1. For this u
m—1

we have that u= ) y*P, is the spectral resolution of the unitary operator u. Hence
k=0

{P,} is aresolution of the identity in M and the algebra generated by the root operators
is the abelian algebra generated by {P,}. Moreover ®(P,) = P,_, and ®(P,)=P, _,.
Especially ®™(P,) = P,, so that ®™ is not ergodic. However the restriction of ®"
to the algebra M, = P, MP, is ergodic and primitive. In fact | (®)| = m only if ™
is not ergodic. If ® is compact, then ® has finite imprimitivity. If in addition ® is of
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trace class in B(5), then there is an entire function g(z) such that
|1 — 2| =g(z™)

where |1 — z®| is the Fredholm determinant of ®. |
Let now I'(®) be cyclic but not finite. Then for any root yeI'($) we have that
y/2m is irrational. If y generates I'(®) then

r@)y={y"n=0,4+1,...}. (2.44)

Let now u be a root operator corresponding to 7, normalized so that u is
unitary. A root operator corresponding to y”" is then given by u™". Let v be the
spectral measure on the unit circle for the unitary operator u. Since obviously @
restricted to the subalgebra generated by u is an automorphism, we have that @
induces a transformation of the spectrum of u, and since @(u") = y"u" it follows
that this transformation coincides with the restriction to the spectrum of u of the
transformation z — yz. Hence if

u= | zdE, (2.45)

Izl =1

is the spectral resolution of u, we must have that
?(E)=E, (2.46)

for v-almost all z in the unit circle. Since there are no other root operators than the
u,n=0,+1,..., it follows that v is ergodic with respect to the transformation
z—yz of the unit circle. That v is invariant under this transformation follows
from & = éo @ and P(u") = y"u" for all neZ. Hence we have proved the following
theorem.

Theorem 2.4. Let (M, ®d,&) be an ergodic dynamical system, such that I'(®) is
cyclic but not finite. Then for any yeI'(®) we have that y/2n is irrational. Let y
generate T'(®), ie. [(®)={y";n=0,+1,+2,...}. Let u be the root operator
corresponding to y normalized so that u is unitary.

Let v be the spectral measure on the unit circle for the unitary operator u cor-
responding to the state &, i.e. Eu") = | Z'dv(z),andletu= | zdE, be the spectral

lzj=1 lz|=1

resolution of u. Then the projection valued measure dE, is absolutely continuous
with respect to v. v is an invariant ergodic measure with respect to the transformation
z =z of the unit circle and

D(E)=E,

Sor v-almost all z on the unit circle. n

Let now « and f be two roots of the ergodic dynamical system (M, @, £) with
corresponding root operators u, and u,. Since u,"u; then is a root operator for
the root o § we have

Du,up) = ofu,uy = Du,) Duy). (2.47)

Hence if M- is the strongly closed subalgebra of M generated by the root operators
u,,ael’ = I'(®), then ® maps M into M and restriction of ¢ to M is an auto-
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morphism. Let # ;= M Q then # is a @ invariant subspace of # and the
restriction of @ to # . is obviously unitary with discrete spectrum equal to I', and
u,2,ael is a complete set of orthogonal eigenvectors for @ in # .. Hence Q is
the only invariant eigenvector. Since @ is ergodic on M the restriction of @ to M.
is ergodic. From the orthogonality of Q and u,Q2 for « # 1 we have that {(u,) =0
for o # 1. But then &(u,u,) = (ugu,) = 0 for o # B and if B = & then uy = cuy, where
c is an element in the unit circle, and since u, is unitary we have that if § = a then
U,y = ugu, so that &(u,ug) = E(ugu,) in any case. This shows that for aand b in My
then &(ab) = &(ba) i.e. the restriction of € to M. is a trace. (That the restriction of an
ergodic state to the root algebra M is a trace was observed by Stgrmer [14] in
the case where @ is an automorphism.) We have thus proven the following theorem.

Theorem 2.5. Let (M, ®,&) be an ergodic dynamical system with root system I'.
Let M be the root algebra, i.e. the strongly closed subalgebra of M generated by
the root operators and let @ be the restriction of ® to M. Then @ is an auto-
morphism of My and (M, @p, &p), where &y is the restriction of & to M, is an ergodic
dynamical system. Moreover £ is a trace on M.

One could now ask if it is so that M. is always commutative for an ergodic
dynamical system. The following example shows that this is not the case.

Example 2.6. Let # = L,(R)and set (V(x) f)y) =f(y — x) and (U(x) f)y) = "> (y).
Then V and U are both strongly continuous unitary representations of the abelian
group R on L,(R). Moreover

Ux)V(y) = e V(y)U(x).
Let A2 0 and n,,n, in Z, then
U(An,)V(An,) = €* "™V (in,)U(An,).

Let u, = U(An,)V(4n,) for n=(n,,n,)eZ?. Then n—u, is a unitary multiplier
representation of Z2. Let C be the C*-algebra spanned by u, and set t(x,) = J,,.
It is easy to see that 1 defines a faithful trace on C. In fact let a= ) o,u,, then we
have t(a*a) =Y &, T(u¥u,) =) |o,|?, which shows that 1 is faithful. Moreover
we have t(u*u,) = 0= t(u,u’) for n#+ m and t(u*u,) =1 = 1(u u*), which shows
that T is a trace on C. Let now M be the von Neumann algebra given by the repre-
sentation of C induced by the trace 7. Then M is non commutative if and only if
4% is not an integral multiple of 27. Let o and f be two real numbers and set
W = U(a)V(). Then

W*U(An)W = V¥B)U(An)V(B) = e*#"U(in)
and
W*V( )W = V¥B)U*)V(Iin)U()V(B) = e~ *"V(in).

Set now for ae M, 6(a) = W*aW, then 0 is an automorphism of M and (M, 0, &)
is a dynamical system. Moreover it follows from the above equations that if
o, f and 2n/A are independent over Z (the ring of integers) then (M, 0, &) is an
ergodic dynamical system. We have from the equation above that the root system
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I = I(0) is given by
I = {e*m" (m,n)eZ x Z}

and a root operator corresponding to ¢+ s given by U(Am)V(— An). M is
noncommutative if A% is not an integral multiple of 27, and M = M.

We shall now consider the case of semigroups of positive maps, instead of
the iterates of a single positive map ¢.

Let M be a von Neumann algebra and @,,t = 0 a semigroup of positive norma-
lized maps of M ie. ¢y =1,9,0, =, ,&(M*)=M™ and &(1)=1 such that
the @, are 2-positive, hence satisfy the Schwarz inequality

®(a*a) = G (ay*®(a) (2.48)

for any ae M and all ¢. Moreover if € is a cyclic and separating normal state on
M such that &(ad,(b)) is measurable as a function of ¢, and & is invariant under
@, ie. Lo, = ¢, we say that (M, @, ) is a dynamical system with continuous time
or a dynamical flow. We say that the dynamical flow is ergodic iff ¢ is the only
invariant normal state for the dual flow (M’, @;,&). As for the discrete dynamical
systems (M, &, £) considered before, (2.48) implies that @, extends to a measurable,
hence strongly continuous, contraction semigroup on s, where 5 is the Hilbert
space obtained by the GNS construction from the state £. We denote the continuous
extension to 3 also by &,, and we let i4 be the infinitesimal generator of @, in
Hie.

@ = 20. (2.49)

Since @, is a contraction, we have that i(4 — A*) = 0 so that the spectrum of 4
is confined to the closed upper half plane. Let I be the discrete part of the spectrum
of 4 on the real line. Then of course for any t > 0 we have that ¢’ is the discrete
spectrum of @, on the unit circle. Let now ael” and x, be a corresponding norma-
lized eigenvector. As in the proof of Theorem 2.2 we get that x, = u,2 with u,
unitary in M. In this way we prove the following theorem.

Theorem 2.7. Let (M, ®,,f) be an ergodic dynamical flow. Then the discrete
eigenvalues on the real line for the infinitesimal generator of @, in H# coincide with
the discrete eigenvalues on the real line for the infinitesimal generator of @, in M.
Let the set of these discrete eigenvalues on the real line be denoted by T, the root
system of the flow, then I is a subgroup of the additive group of the real line. M oreover
the spectrum of the semigroup @, in A is invariant under this additive group I.
Moreover, for any oI, o is a simple eigenvalue of the semigroup @, and a correspond-
ing root operator u,eM is proportional to a unitary operator in M. The invariance
of the spectrum of the semigroup ®, is given by the unitary equivalence

* — p2miat
uy du, = e P,

where u, is a normalized root operator corresponding to acI'. If a and B are in T’
with root operators u, and u, then u,u, is a root operator for o+ f and uy is a root
operator for — a. Hence if we select for each a€I' a unitary root operator u, then
U,y = Y(o, B, 4 5, where y(o, B) is a multiplier for I', and o — u, is a unitary multiplier
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representation with multiplier . I is either a dense subgroup of R or discrete i.e.
I' = {na,neZ}. If T is discrete, then the strongly closed subalgebra M generated
by the root operators is abelian. |

The restriction of @, to M- is obviously an automorphism and as in the discrete
case we get that the restriction of £ to M. is a trace. In the special case where I is
discrete, so that I = {na,neZ}, M is abelian and generated by the root operator
u corresponding to o. Let u be normalized to be unitary, then M, is simply the
von Neumann algebra generated by u. Since @, restricted to M- is a one parameter
group of automorphism, it is induced by a one parameter flow on the spectrum
of u. Since @(u") = ¢™™u" this flow on the spectrum of u must coincide with the
flow €'? — ¢®*® on the spectrum of u. From the fact that 1 is an eigenvalue of
multiplicity one for the semigroup @, restricted to M it follows that (M, ®,,)
is an ergodic dynamical flow so that the flow ¢'® — ¢®**) is ergodic with respect
to the spectral measure p for u in &, i.e. the measure u such that

W)= | fl2)duz). (2.50)
lzl=1
Hence p is an invariant and ergodic measure with respect to the flow induced by
the rotation of the unit circle. Hence since @, is also strongly continuous, we have
that du is the Haar measure on the unit circle, and that u has constant spectral
multiplicity. We have thus the following theorem.

Theorem 2.8. Let (M, ®,,£) be an ergodic dynamical flow, and let T be its root
system. Then the restriction of £ to the von Neumann algebra M generated by the
root operators is a trace, ¥, leaves M. invariant and the restriction of ®, to My is
a one parameter group of automorphisms. Moreover (M., ®,, &) is an ergodic dynami-
cal flow. I" consists either of one point, or is discrete or is dense. In the discrete case
we have I' = {na;n€Z}. Let in this case u be a normalized root operator correspond-
ing to o. Then u has Lebesgue spectrum and in fact the spectral measure for u in the
state & is the Haar measure on the unit circle and u has constant spectral multiplicity.
Moreover the flow (M, ®,, &) is induced by rotating the spectrum of u at the constant
speed o. |

Remark. t— &, is an ergodic action of R on the von Neumann algebra M with
a discrete spectrum. In [27, Chapter 8] we have an exhaustive discussion of such
actions and we refer the interested reader to this reference for further information.
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