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Abstract. I present and discuss a class of nonlinear quantum-theory models,
based on simple relativistic field theories, in which the parameters depend on
the state of the system via expectation values of local functions of the fields.

1. Introduction

The linearity of quantum mechanics, expressed in the "superposition principle" is
anomalous. Linearity is a common feature of physical theories, but in all other
known cases it is an approximation. The range over which linearity holds may be
extensive, but is always limited: Maxwell's equations break down for very intense
fields (when pair creation is important) and the linearity of space-time itself is a
weak-field approximation.

Hitherto all the specific nonlinear generalizations of quantum theory that have
been proposed have been nonrelativistic, or at best one-particle relativistic
theories [1,2]. However, if there is a nonlinear theory underlying quantum
mechanics, it seems likely that when the nonlinearity is important interparticle
interaction, and particle creation and annihilation, are important too. Thus we
should really be seeking a nonlinear generalization not of a one-particle
Schrδdinger equation but of a quantum field theory.

In this paper, I present a class of nonlinear quantum models based on simple
field theories, and discuss their properties. It appears that these models, and some
nonrelativistic ones, do not fit neatly into the formal schemes that have been set
up to accommodate generalizations of quantum mechanics, such as the "convexity"
formalism [1,3-7] based on the operational approach of Haag and Kastler [8].
I shall indicate some of the problems in this paper, and discuss a new formal
structure in a later publication.

Quantum mechanics is among the most successful of physical theories. Many
of its predictions, especially those of quantum electrodynamics, have been verified
with unparalleled precision. So it may seem foolhardy to question its most basic
tenet. On the other hand, despite its successes, the interpretation of quantum
mechanics remains problematic [9]. There is still no generally accepted solution
to the problem of "reduction of the wave packet". Moreover, there are grave
difficulties confronting relativistic quantum theory, difficulties which have been
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circumvented but not eliminated by renormalization theory. Their resolution may
well require a thorough reappraisal of the basic principles on which the theory
is founded.

The superposition principle is hard to justify within an axiomatic framework,
except on grounds of simplicity [10-14]. The basic difficulty is that the states of
quantum mechanics are represented not by vectors but by rays in Hubert space,
or more generally by density operators. Although linearity itself is a simple concept,
the conditions it imposes on the set of states—derivable from Gleason's theorem
[15]—are far from simple. For this reason, a direct experimental test of the
superposition principle is hard to devise. Bell's inequality [16] has been checked in
several experiments [17-20] but it serves to exclude a class of hidden-variable
theories [21] rather than to test the hypothesis that quantum mechanics is a
linear approximation to some more general theory as has been suggested by
de Broglie [22] and, in connection with the problem of conciousness, by Wigner
[23].

In Section 2 I briefly recall some features of the simple nonrelativistic model
based on the nonlinear Schrόdinger equation, pointing out in particular the
difficulty of finding a consistent measurement theory for it. Then in Section 3
I present the new generalized field-theoretic models, based on the idea that the
parameters defining the theory, such as masses and coupling constants, may be
state-dependent. Some solutions for a class of simple models are presented in
Section 4, and the conclusions discussed in Section 5.

2. .Nonrelativistic Models and Measurement Theory

Let us consider a nonrelativistic particle whose pure quantum states are described
by solutions not of the linear Schrόdinger equation but of some nonlinear generali-
zation of it. If we want to preserve its locality properties, as well as its phase
invariance, we are essentially restricted to adding terms proportional to ψ multi-
plied by functions of | ψ \ 2, perhaps with derivatives inserted. Galilean invariance
imposes yet further restrictions. The simplest generalization satisfying these
conditions is the well-known non-linear Schrόdinger equation. If we include an
external potential V(x) it is

, (1)

where A is a parameter describing the strength of the nonlinear interaction. This
equation has already been discussed in the context of non-linear quantum
mechanics by Mielnik [1]. Other models of the same general type have been
considered by Bialynicki-Birula and Mycielski [2].

The phase invariance leads directly to conservation of the norm :

κ = constant,

so it is possible consistently to impose the normalization condition,
3χ = ι, (2)
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and to interpret | ψ \ 2 as the probability density for measurements of position.
However, it should be noted that (2) is not merely a convenient conventional choice,
as it is in ordinary quantum mechanics, because the equation (1) lacks the scaling
in variance \jj\-* uψ.

The invariance under time translations leads to an exact conservation law
for the "energy functional"

ί — = constant,

but there is no obvious definition of an energy observable. When V = 0, there is a
corresponding exact conservation law for momentum.

If the pure states of a single nonrelativistic particle were described by normalized
solution of (1), then clearly the ordinary linear Schrόdinger equation would provide
a good approximation so long as λ \ ψ \ 2 is small compared to the typical energies
involved, that is to say except for states in which ψ \ 2 becomes very large at some
point. Provided that λ <^ e2a^ (where α0 is the Bohr radius), atomic energy levels
would not be much affected.

However there are very serious problems attached to Equation (I).1 Let us
consider its measurement theory. We have already agreed that | ψ \ 2 can be inter-
preted as a probability density for measurements of position. But this is only
half of what we need. We may also ask what is the effect of the measurement on
the state of the particle. Suppose that the apparatus consists of a counter of some
kind which either clicks or does not click depending on whether the particle is
or is not inside its volume Ω at a given time. (It may be imperfect, of course, and
sometimes give an incorrect result, but this does not affect the argument in any
essential way). Then we may ask: if the state of the particle before the measurement
is described by ψ, and if on this occasion the counter clicks, then what is the state
ψ' after the measurement?

In ordinary quantum mechanics the answer is straightforward, at least for an
"ideal" measurement. We first apply the projection operator defined by Ω (i.e.
set ψ equal to zero outside Ω while leaving it unchanged inside) and then rescale
to recover a normalized wave function i/Λ This is the "reduction of the wave
packet".

The difficulty in our case is that rescaling is no longer a trivial operation, so
it is far from obvious that this answer can be taken over unchanged.
There are several possibilities:
1. The same reduction of the wave packet may apply. This would have the rather
peculiar effect that because of the rescaling the time dependence of the wave
function would suddenly change, because the nonlinear term would become more
important. For example, if the particle is found not to be in Ω, the time dependence
of the wave function even far away from Ω would change suddenly. In a full
treatment of the problem we should of course include both particle and apparatus
within our system and set up some kind of interaction between the two. It is very

1 After completing this work, it came to my attention that a very similar argument has recently
been put forward by Haag and Bannier [28]
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difficult to think of any kind of interaction that would have the effect envisaged.
2. Possibly our choice of the set of pure states is too restrictive and we should
allow states with norm less than one. In that case however each measurement
would apparently reduce the norm, so it is not at all clear how states of unit norm
could be created in the first place.
3. Conceivably the result of the measurement might not be a pure state at all.
However, this does not help, because we can then ask what are the pure states of
which it is a mixture, and essentially the same problems apply to them. Moreover
it seems implausible that a simple measurement on a pure state should lead to a
statistical mixture (unless of course the result is unknown).
4. Since none of these possibilites seems very attractive we could try to modify
the equation so that it has a scaling invariance, i.e. to make it homogeneous of
degree one, though nonlinear. For example, we could introduce a nonlinear term
of the form λ\Vψ\2ψ/\ψ\2. However such a term spoils the Galilean invariance
of the theory, and moreover there are potential singularities when ψ = 0. A much
better solution is the logarithmic model of Bialynicki-Birula and Mycieski [2]
which is not quite homogeneous of degree one, but in which rescaling corresponds
only to an overall phase change. In that model one could take over unchanged the
usual "reduction of the wave packet".
5. Possibly the right conclusion is that we should abandon the idea of a nonlinear
one-particle model. Even in a non-relativistic context, it is hard to believe in
noninteracting particles in a regime where the individual particles are described
by nonlinear equations. It appears much more plausible that when nonlinearity is
important interaction between particles is also important. Indeed if the particles
are indistinguishable this seems almost inescapable.

Let us proceed therefore to try to find a relativistic many-particle model.

3. Field-Theoretic Models

In any interacting field theory the equations of motion for the fields are nonlinear,
but this is of course a quite different kind of nonlinearity from the one we are
discussing, which is a nonlinearity in the state-vector. In looking for nonlinear
generalizations of field theories it is best therefore to start with a formalism in
which the state-vector appears explicitly, i.e. to work in the Schrόdinger rather
than the Heisenberg picture.

In the nonrelativistic model considered in the previous section, the states of
the system at a given time are represented by functions of exactly the same class as
in the conventional linear theory. The nonlinearity enters only through the time-
dependence, which is now described by a nonlinear equation. Let us now consider
relativistic models constructed in the same way. This means that the states at a
given time may be represented as usual by normalized vectors | ψ, t > in a complex
Hubert space $C, but their time-dependence is now given by a generalized
Schrόdinger equation of the form

ί^ψ,ty = Hψ\ψ,ty, (3)
dt
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which is nonlinear by virtue of the fact that the Hamiltonian operator HΨ depends
explicitly on the state Ψ.

In order to preserve the locality of the theory, we must require that

(4)

where Jtf* Ψ(x) is a local function of the field operators and their derivatives, and
depends on local characteristics of the state Ψ. Consider for simplicity a theory
of a single scalar field φ which with its canonical conjugate π satisfies the canonical
commutation relations

[φ(x,ί),π(y,ί)]-^3(x-y). (5)

Then a simple way of implementing the nonlinearity is to make the parameters
of the theory, like the mass and coupling constant, dependent on the state of the
system via the expectation values of some local operators. For example, as a
generalization of the usual φ4 theory, we may take

tfψ(x) = |π2(x) + i[Vφ(x)]2 + n,(φ(x))? (6)

where 1S°Ψ is a quartic polynomial

Here/, h and g are local functions of the field </>(x), and the expectation values are
defined in the usual way for instance,

<Ψ\f(Φ)\Ψ> ,fi,=

Notice that because of the explicit denominator in this definition, the
Schrόdinger Equation (3) is invariant under the rescaling Ψ > h> λ \ Ψ > . It is
consistent to impose the normalization condition

< y | y > = ι, (9)
which is then preserved in time. Thus the problem associated with "reduction
of the wave packet", discussed in the preceding section, does not arise for this
model. On the other hand the scalar product < Ψ \ Φ > of two different states is
not time-independent in general.

The models described above have many desirable features, as we shall see:
they are Lorentz-invariant and local, and reduce to standard linear quantum
field theories for states that are sufficiently "diffuse".

Lorentz-invariance is easy to establish, though of course the realization of
Lorentz transformations, like that of time translations, is nonlinear. The essential
point is that although the Hamiltonian density Jff depends on Ψ it satisfies (in
the usual formal sense) a commutation relation independent of Ψ, namely

[^(x),̂ (y)] - iV-{δ,(x - y)π(x)Vψ(x)}-(x~y) . (10)

This is enough [24] to establish that the generators obey the Lie algebra of the
Lorentz group. (Invariance under translations and spatial rotations is of course
trivial).
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The theory is local in essentially the usual sense. We have hitherto taken the
field operator φ as a basic, undefined entity, but it can be defined operationally
in terms of the response of the system to a small external perturbation. Then in
general the response to a finite perturbation should be represented by a unitary
operator function of φ, possibly state-dependent. If the perturbation is confined
to a finite volume, then it does not alter the expectation values of functions of φ
outside this volume, and consequently does not affect the time evolution of the
state in relatively spacelike regions.

Since /, h and g are local functions of φ(x), it is clear that their expectation
values will be significantly different from those in the vacuum only for states in
which (in a Fock-space picture) some of the particle wave functions are reasonably
large near x. For states which are sufficiently diffuse, in the sense that no particle
wave function is concentrated in any particular region, the functions/, h and g may
be replaced by their vacuum expectation values. Then we recover the conventional
φ4 theory. For example, suppose that the three functions depend linearly on φ2.
Then a state | Ψ > may be regarded as near the vacuum if < φ2 yψ <^ m2, where m is
some characteristic mass, depending on the parameters of the model. For such
nearly vacuous states, the theory reduces to the usual linear theory.

4. Solutions of Field-Theoretic Models

There are of course no explicit solutions known of the fully interacting φ4 theory.
However we can gain some insight into the effects of the nonlinearity by studying
models with g = 0. Although these are in a sense generalized free-field models,
they do not represent noninteracting particles because the nonlinearity itself
induces interaction.

To be specific let us suppose that both /and h are linear functions of φ2. The
expectation value of φ2 is of course infinite in any state, because of the usual
divergence in the limit as y -> x in < φ(x)φ(y) ) . To render it finite we must subtract
out the vacuum expectation value. Let us therefore define

where the subscript zero denotes the expectation value in a specific state ΨQ > to
be determined below, and take

/-α + β:φ 2:, h = m2 + λ:φ2 :.

The value of the constant α may be adjusted to make the vacuum energy density
zero m is the mass in near-vacuum states β and λ are new parameters describing
the nonlinearity. For the present, we assume that λ > 0.

It is easy to find a class of stationary solutions of the Schrόdinger equation.
Let us enclose the system in a box of volume V9 impose periodic boundary condi-
tions, and look for states that are unchanged up to a phase by time or space
translations. Because of the translation invariance < :φ2 \yψ is a constant in any
such state Ψ. Let us pick a value for this constant, to be fixed later by a consistency
condition. Then the Hamiltonian density,
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is that of a system of free particles of squared mass (hyψ. Any stationary state
can be labelled by the occupation numbers nk for the various modes. The energy
eigenvalue (not the value of the energy functional) is

where ωk is given by

ω2 = k2 + α>=k 2 + m2 + Λ < : 0 2 : > . (13)

To ensure that E — 0 for the vacuum state | Ψ0 >, with all nk = 0, we must take

with

ω° = (k2 + m2)1'2. (14)

The value of < :φ2 :) is obtained from the consistency condition

o I'°u <'
where the second term inside the sum is determined by the requirement that
< : < £ 2 : > o = 0.

Thus, for any chosen set of integers nk, the value of < :φ2 :> may be found by
solving the implicit equation

1 / VI -L 1 i
^ k ^ " 2 __ 2

Since the right side is (for λ > 0) a monotonically decreasing function, positive
at < : φ2 : > = 0, there is always a unique solution. Then the frequencies ωk are given
by (13), and the energy E by

In the special case where λ = 0, the model becomes essentially trivial and
can be solved completely. Then ωk = ω£ for all states, and the energies of stationary
states are given by

However, in this case the nonlinear term in the Hamiltonion is merely a c-number,
albeit state-dependent. Thus if \ Ψ 9 t y Q denotes any solution of the linear
Schrodinger equation obtained by setting β = 0, a corresponding solution of the
nonlinear equation is

!P,ί>= Ψ,t>oe-l*«\

where the phase factor σ is the solution of the differential equation
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with σ(0) = 0.
If we assume that the only observables in the theory are functions of φ, it

follows that the introduction of a time-dependent phase factor is physically
irrelevant. Thus β has no physical significance, and without essential loss we
may set it equal to zero. Returning to the case λ φ 0, we find that the energy is
then given by

£ = Σ[(«k + ϊK-X] (16)
k

In the limit V -» oo we find from (15) that if only finitely many occupation
numbers nk are different from zero then <:φ 2 :>-»0. This is to be expected,
because the finite number of particles is spread out over infinite volume, so that
the state becomes infinitely diffuse. Nonlinear effects will be important in this
model only for wave-packet states with small uncertainty in position.

Qualitatively it is not hard to see what these effects would be. The nonlinear
term effectively alters the mass of a propagating particle when it is in a region
of large < :φ2 :>. Thus there will be scattering even without the presence of a
gφ4 term. Approximate plane-wave states will not scatter, but sharply concen-
trated wave-packet states will do so. Qualitatively, the effect will be a mutual
refraction of particles, and even a self-refraction, rather similar to the well-known
effects in nonlinear optics [25]. I shall not attempt to discuss the details here.
In any case they must depend strongly on the nature of the function h(φ). Here
it has been chosen to be quadratic only for reasons of simplicity; other choices
may have to be considered.

We have found a large class of stationary solutions; indeed in the case λ = 0, it
includes all stationary solutions. When λ > 0 there are probably no other solutions,
because the nonlinear term yields effectively a repulsive potential. However,
for sufficiently large negative values of the dimensionless parameter λ, there may
well be other "bound-state" stationary solutions, in which < :φ2 :> would have a
spatial dependence. There would of course necessarily be a degenerate family
of solutions related by translational invariance, but whereas in a linear theory
one could always superimpose these solutions to yield a translationally-invariant
solution, this is not possible in our nonlinear model. We might well have quantum
solitons, like the "gaussons" obtained by Bialynicki-Birula and Mycielski [2].
However such solutions have not yet been found.

5. Discussion

In the last two sections, we have discussed a simple nonlinear generalization of
the scalar field theory with φ4 interaction. It is clear that similar generalizations
could be written down of other field theories such as quantum electrodynamics.
If the nonlinearity parameters are chosen small enough, then for a wide range of
phenomena the ordinary linear theory will apply. It should not be difficult to
preserve the successful features of conventional field theory. Whether it is possible
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at the same time to eliminate some of its less desirable features such as divergences
is not immediately clear. To answer this question we have first to set up a pertur-
bation theory. This is problematic because we no longer have a complete ortho-
normal set of unperturbed energy eigenstates in terms of which to expand.

There are perhaps two areas where models of this kind might find application.
One is in connection with the problem of "confinement" in the theory of hadronic
structure, along the lines of the model proposed by Lee and Wick [26], where a
field has different expectation values inside and outside a "bag", giving different
effective particle masses in the two regions. The other is to quantum gravity.
It has often been remarked (for example in [1] ) that there is an apparent mismatch
between the essentially nonlinear classical theory of general relativity and the
linearity of quantum mechanics. Indeed Penrose has recently suggested [27] using
a nonlinear description even for a single graviton. It seems plausible that at the
very short distances (of the order of the Planck length) where quantum fluctuations
of the space-time metric become significant, the manifold of quantum states can
no longer be treated as flat.

It would also be possible within this framework to discuss the effect of a
quantized matter field on an imquantized gravitational background, via the
equation

The fact that this equation leads to a nonlinear quantum evolution equation is
no bar.

It would be natural to try to fit the models constructed here into the axiomatic
framework for generalized quantum mechanics formulated by Mielnik [1] on the
basis of the "convexity" formalism. Indeed, this will be discussed in detail in a
later publication. However, there is a basic difficulty, common to many non-
relativistic models too, though not always recognised. There is a sense in which
a nonlinear model of this kind is more akin to classical than to quantum mechanics.
In quantum mechanics, there is a well-defined metric on the manifold of pure
states, so that one can sensibly talk about one state being near to another. Classi-
cally on the other hand any two pure states can be distinguished with certainty
by some measurement, and there is no notion of nearness of states. One can of
course define a metric in phase space, but in general two states that are initially
close will move arbitrarily far apart over the course of time. But the same is almost
certainly true of our nonlinear models. The states at any given time are described
by vectors in the Hubert space, in which there is of course a metric. However
apart from very exceptional cases the time-development described by a nonlinear
equation will carry initially neighbouring states far apart. Restricted only by the
few exact conservation laws, the states will move over the available region of state
space in a more or less ergodic fashion. It follows from this that if one is willing
to wait long enough any two pure states can be distinguished with certainty
just as they can in classical mechanics.2 Nevertheless, in a real physical sense the

2 Essentially the same point has recently been made by Haag and Bannier [28], and also by Mielnik
in an unpublished note
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models presented here are surely quantal rather than classical. The modification
in the general axiomatic framework needed to accommodate them will be discussed
in a later publication.
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