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Abstract. We prove that ground states of quantum spin systems are character-
ized by a principle of minimum local energy and that translationally invariant
ground states are characterized by the principle of minimum energy per unit
volume.

I. Introduction

Let τ be a strongly continuous one-parameter group of ^-automorphisms of a
C*-algebra 21. Denote the generator of τ by δ. A state ω over $1 is defined to be a
τ-ground state if

for all A in the domain D(δ) of δ. It follows that ω is τ-invariant and hence
generates a co variant representation (J*fω, Πωί Uω, Ωω) of (91, τ). If Uω is chosen
such that Uω(t)Ωω = Ωω and if Hω is the infinitesimal generator of Uω then the
ground state condition implies H ω ̂  0. More generally a state ω is a τ-ground state
if, and only if, ω is τ-invariant and Hω g:0. (For further details see [1], Chapter V).

A state ω is called a (τ,/?)-KMS state, for /teR, if

ω(AB) = ω(Bτίβ(A)}

for all entire analytic elements A, B of τ. The (τ, jδ)-KMS states arise from the
Gibbs formalism of equilibrium statistical mechanics and correspond to equilib-
rium states at inverse temperature β. The ground states correspond to the zero
temperature states.

One can prove, for example by the Sewell condition [2] (see also [3])
characterizing (τ, β)-KMS states, that if ωβ is a family of (τ, β)-KMS states which is
weak*-convergenΐ as jβ-»oo then the limit state ω is a τ-ground state. For this
reason ground states are sometimes referred to as (τ, ~f oo)-KMS states. This
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notation is somewhat misleading because several properties of (τ, β)-KMS states
and ground states are quite different.

The simplest interesting example is the one-dimensional Ising model with
translationally invariant nearest neighbour interaction and with zero external
field. This model has a unique (τ,/?)-KMS state ωβ for all βeIR and ωβ is
automatically translationally invariant. But there are two extremal translationally
invariant τ-ground states ω + , ω+ corresponds to all spins up and ω_ to all spins
down. One has ωβ->(ω+ +ω_)/2 as β->oo. Moreover there are an infinite number
of non translationally invariant ground states. A typical such state ωx has all spins
to the left of xeZ up and all remaining spins down. These states, ωx, are all pure
and as ωxι, and ωX2 differ only by the reversal of a finite number of spins they are
equivalent, i.e. they generate unitarily equivalent representations. For finite /?,
however, two extremal (τ,/?)-KMS states are either equal or disjoint. Thus parity,
multiplicity, and equivalence properties of finite temperature KMS states and
ground states all differ for this model.

Nevertheless ground states and KMS states do have many common properties
of stability. In [4] we analyzed various forms of dynamical stability of these sets of
states and in this note we examine two properties of kinematical stability for spin
systems.

Araki and Sewell [5], [2] have shown that if τ is the dynamical group of a
quantum spin system generated by an interaction Φ then the (τ, β)-KMS states are
exactly those states ω which satisfy

SΛ(ω)-βω(Hφ(Λ)) = sup {SA(ω')-βω'(Hφ(Λ))}
ω'eC«

for all A where

Here SΛ denotes the conditional entropy of the finite set A and HΦ(A) the
conditional energy,

HΦ(Λ)= Σ Φ(X)
X n Λ Φ φ

(we use the standard notation for spin systems, see, for example, [6]). We prove the
zero temperature analogue of this result, i.e. ω is a τ-ground state if and only if

ω(Hφ(Λ)) = inf ω'(Hφ(Λ))
ω'eC%

for all A. We then deduce for the lattice L — TΓ, and 2£v-invariant interactions Φ,
that a state is a 2£v-invariant τ-ground state if, and only if, it minimizes the energy
per unit volume. This last characterization is the zero temperature analogue of a
result of Lanford-Robinson [7] and Araki [8]. Ruelle has earlier proved the if-
part of this result, [9].

2. Local Stability

The main result of this note is the following theorem whose assumptions are stated
in a somewhat implicit form. It is known that they are satisfied for all interactions
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Φ such that

£ eλnsup X \\Φ(X)\\<+ao
n^ί xeL χ9Λ;

| X | = n + l

for some λ>0 (see [6]), and they are also satisfied if there exists an increasing
sequence Λn of bounded subsets of 2£v such that

for some K, λ>0 (see [14]).

Theorem 1. Let <Ά=(J<}lΛbe the C* -algebra of a quantum spin system and let τ be
A

an automorphism group 0/21 such that ^ — (J 21̂  is a core for the generator δ of τ.
A

For each finite ΛcL, let H(A) — H(Λ)* e2I be elements such that

for all
The following conditions are equivalent for a state

1. ω(H(Λ))= inf ω'(H(Λ))
ω'eCΛ

for all ΛcL, where

C^ = {ω/;ω/eE3I,ωΊ9ίκc = ω

2. ω is a τ-ground state, i.e.

for all AεD(δ).

Remark. The existence of elements H(A) = H(A)* with the given properties follows
from [15].

Proof. 1=>2. This is proved in a similar fashion to the finite temperature analogue,
[2], [5]. If A= A* £ WA then Condition 1 implies that

ω(eίtAH(Λ)e ~ UA) ^ ω(H(A))

and by differentiation at t — 0 one deduces that

- ω(δ(A)) = ω(i[A9 H(Λ)~}) - 0

and as & is a core for δ, it follows that ω is τ-invariant.
Now consider the operator yβ:2Iκ>2I; defined by

yB(A) = B*AB-{B*B,A}/2.

We argue as in [2] that if Be^ί^ and Tf = exp {tyB}9 then T^E^QE^ and
C™ for all ίe!R+. Hence it follows from Condition 1 that
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and thus

But the τ-invariance of ω implies that

-iω(B*δ(B)) = ω(yB(H(Λ)))

and hence

Since £& is a core for (5 it follows that ω is a ground state.
2=>1. Since there is no appropriate analogue of the Gibbs condition for ground
states, we have to proceed differently from [2], [5]. To this end we need a result on
extensions of normal states to semibounded self-adjoint elements affiliated with a
von Neumann algebra.

The following lemma is for convenience formulated for positive operators, but
it extends with trivial modifications to semi-bounded operators. It is a special case
of a result of [10] but we nevertheless include a proof for completeness.

Lemma 1. Let 9)1 be a von Neumann algebra on a Hubert space 3?, let A be a
positive, self-adjoint operator affiliated with 9Jί. Let ω be a normal state on $R, and
(ζn}n>ι a sequence of vectors in ffl such that

ω= Σ«v Σ IIU2 = ι
n ^ l M ^ l

The following conditions are equivalent

2. ξneD(A^)for all n and

Σ \\A*ξn\\2< + ao
M ^ l

If these conditions are fulfilled, then

+ ,B^A}= £ \\A*ξn\\2

Definition. In the situation covered by Lemma 1, we define

ω(A)= X \\A^ξn\\2 = sup{ω(B);BeW + ,B^A}
n^ 1

if the conditions of the Lemma are fulfilled, and

co(A) = + oo

otherwise.

Proof. Define
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whenever the right hand sides exist, and define Kί9 K2 to be equal to -h oo
otherwise.

Let /„ be the function defined on IR+ by

x if 0<x<n

if

It follows that An = fn(A)e^ΰl for n= 1,2, ... and by spectral theory it follows that
the quadratic forms defined by An converges monotonically to the form defined by
A, i.e. if ξeJ? then

, if ξeD(A*)
( n ζ)~* [H-OO otherwise.

As a consequence of this and the monotone convergence theorem

lim ( ξ , A ξ ) = K

Hence

But conversely, if Be^0l+ and B^A as form, then

and hence

Next we need a result on quasi-equivalence of states which coincide outside of
a finite subset of the lattice. This is covered by the following

Lemma 2. Let $ί be a C*-algebra of the form

where Mn is the full complex nxn matrix algebra and $ί0 is an arbitrary C*-algebra.
Let ω1 and ω? be states on 91 such that

It follows that ω1 and ω2 are quasi- equivalent,

Proof. Let 3Γ be the von Neumann enveloping algebra of 91, and let ω l 5 ω2 also
denote the normal extension of ω1? ω2 to 91". Further let C be an element of the
center of 21", and pick a net {Aa} in 91 converging to C in the weak*-topology on
2Γ. If {Eij}1<ij<n are matrix units for Mn then
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is a projection of norm one from $1 onto ^ίφ^M^n^l, [11]. Since C is a central
element it follows that

n

lim £(>!„)= £ limEj^.Eu
α i=l α

= £ C£

t = 1

But as JE(,4α)e2I0 we have

Thus the restrictions of ω1 and ω2to the center of 51" coincide, and the two states
have the same central support. It follows that ω1 and ω2 are quasi-equivalent.

We now finish the proof of the implication 1 => 2 in the theorem. Assume that
ω is a ground state, and let ω also denote the normal extension of ω to 9Jΐω

— 77ω(2ϊ)". The generator Hω of the canonical unitary group defined by τ on jήfω is
positive, and Hω is affiliated with 9Jίω by [12, 13].

Note that

ϊ[Hω - Πω(H(Λ)), Πωμ)]φ = (/IJS04)) - Πω(δ(A)))ψ = 0

Thus if UΛ(t) = exp{it(Hω-Πω(H(Λ)))} one has

UA(t)Πω(A)UA(t)*ψ = Πω(A)ψ

+ i } dsUΛ(s)tHω - Πω(H(Λ)\ Πω(A)-] Us(sΓ

= Πω(A)ψ

for all A e 81̂ , and φe D(HJ. Thus UΛ(t)ε Πω(^ΆΛ}'. But the Trotter product formula,

UΛ(i) = s lim ( C7

shows that UΛ(t)eΠω(yiγ. Thus UΛ(t)eΠω(^Λ)
fnΠω(^r and Hω-Πω(H(A)) is

affiliated with /IjaiJ'nΠJδT)". But it follows from [11] that

Now if ω; is a state on 51 such that

ωΊ8Iylβ = ω|2Iκc,

Lemma 2 implies that ω' extends to a normal state of $Rω, and hence ω'(Hω) is well
defined. Furthermore the positivity of Hω implies

0 = ω(HJ= inf ω;(HJ.
co'eC^

Also, since by continuity ω\Πω(<ΆΛC)" = ω'\Πω(^ίΛcy', it follows from the second
characterization in the definition of ω'(Hω) that
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In particular ω'(Hω}< + oc, and the first characterization of ω'(Hω] implies

ω'(HJ - ω'(Hω - H(Λ)) = ω'(H(Λ)) .

It follows that

ω(H(/l)) = ω(H J - ω(Hω - H(Λ)}

= inf {ω'(HJ~ω'(Hω-H(Λ))}
co'eC^

- inf ω'(H(Λ)).
ω'eCΛ

3. Invariant States

Next assume that the spin system is on the lattice TD '. The group Έ has an action α
on the quantum spin algebra 5ί and the interaction Φ is Zv-in variant if

for all xeZv, andXcZv. If HΦ(Λ] is the local energy associated with Φ,

one can define a mean energy functional over the set of 2£v-in variant states £|v by

ωe£gvκ>tfφ(ω)= lim ω(Hφ(Λ))/\Λ\
Λ-+OO

whenever

!|Φ||=Σ l|Φ(χ)ll/M< + oo.
X=)0

One has

and hence |Hφ(ω)|
Under slightly more stringent conditions on Φ one can deduce that the TD

invariant ground states are the states which minimize Hφ.

Theorem 2. Let Φ be a Έv-invarίant interaction such that

HΦ|L= Σ \\Φ(X)\\eλW< + ao
XiO

for some λ>0 and let τφ denote the associated dynamical group.
Ifω is a TΓ -invariant state the following are equivalent
1. ω is a τφ -ground state,
2. ω minimizes Hφ.

Proof. l=>2. Let ω be a 2£v-in variant τφ-ground state. Theorem 1 implies that

for all Λt7ίv and all ωΈCω

Λ with

HΦ(Λ)= Σ ΦW
Xc\Λ*φ

Now let σ be a 2£v-invariant state and define ω' by
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Thus ω'eC™ and

But σ(Hφ(Λ)) = ω'(Hφ(Λ)) and hence

ω(Hφ(Λ)) ^ σ(Hφ(Λ)) + ω'(WΦ(Λ)} - ω(Wφ(Λ))

with WΦ(Λ} = HΦ(Λ) — HΦ(Λ). Dividing both sides by \Λ\ and using

lim \\WΦ(Λ)\\/\Λ\=Q
Λ-+OO

where Λ-+CO in the sense of van Hove, one finds

Thus

Jfφ(ω)= infvHφ(σ)

where E^ is the set of Zv-invariant states over $ί.
2=>1. This has already been proved by Ruelle [9].

References

1. Bratteli,O., Robinson,D.W.: Operator algebras and quantum statistical mechanics. Berlin,
Heidelberg, New York: Springer (to appear)

2. Sewell,G.L.: KMS conditions and local thermodynamic stability. II. Commun. math. Phys. 55, 53
(1977)

3. Araki,H.: On KMS states of a C*-dynamical system, in C*-algebras and applications to physics.
Lecture notes in mathematics, Vol. 650. Berlin, Heidelberg, New York: Springer 1978

4. BrattelijO., Kishimoto, A., Robinson,D.W.: Stability properties and the KMS condition.
Commun. math. Phys. 61, 209 (1978)

5. Araki,H., Sewell,G.L.: KMS conditions and local thermodynamic stability of quantum lattice
systems. Commun. math. Phys. 52, 103 (1977)

6. Ruelle,D.: Statistical mechanics. New York-Amsterdam: Benjamin 1969
7. Lanford,O.E., Robinson,D.W.: Statistical mechanics of quantum spin systems. III. Commun.

math. Phys. 9, 327 (1968)
8. Araki,H.: On the equivalence of the KMS condition and the variational principle for quantum

lattice systems. Commun. math. Phys. 38, 1 (1974)
9. Ruelle, D.: Some remarks on the ground state of infinite systems in statistical mechanics. Commun.

math. Phys. 11, 339 (1968)
10. Bratteli, O.: Conservation of estimates in quantum field theory. Commun. Pure Appl. Math. 25, 759

(1972)
11. Powers, R.: Representations of uniformly hyperfinite algebras and their associated von Neumann

rings. Ann. Math. 86, 138 (1967)
12. Borchers,H.: Energy and momentum as observables in quantum field theory. Commun. math.

Phys. 2, 49 (1966)
13. Arveson,W.: On groups of automorphisms of operator algebras. J. Funct. Anal. 15, 217 (1974)
14. Bratteli,O., Kishimoto,A.: Generation of semi-groups, and two-dimensional quantum lattice

systems. J. Funct. Anal, (to appear)
15. Elliott,G.: Derivations of matroid C*-algebras. Inventiones Math. 9, 253 (1970)

Communicated by H. Araki

Received July 24, 1978




