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Ergosphere Instability11
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Abstract. We consider stationary asymptotically flat spacetimes having an
ergosphere but with no horizon. In the framework of linear perturbation
theory such configurations are unstable or marginally unstable to scalar and
electromagnetic perturbations.

I. Introduction

Outside the event horizon of any rotating black hole is a region in which no
physical object can remain at rest as seen by an inertial observer at infinity: all
timelike trajectories rotate with the black hole. Such regions, called ergospheres1,
are also present in models of dense, rotating fluids [1,2,3,4]. Technically an
ergosphere is the part of a stationary asymptotically flat spacetime in which the
Killing vector that corresponds asymptotically to time translations becomes
spacelike. We shall argue here that any configuration having an ergosphere but no
horizon will be unstable to scalar and electromagnetic perturbations. One expects
that an object which rotates rapidly enough to acquire an ergosphere will radiate
its excess angular momentum and spin down until no ergosphere remains (or,
perhaps, until another more disruptive instability arises).

Spacetimes with ergospheres are also presumably unstable to gravitational
perturbations. In general, however, gravitational waves couple to the source: the
linearized field equations include the perturbed matter fields. Thus a stability
analysis must specify the nature of the source; and in the case of greatest
interest—when the source is a perfect fluid—we show in a companion paper that
all rotating configurations are unstable (or marginally unstable) to gravitational
radiation. Our considerations here will therefore be restricted to nongravitational
perturbations, for which the presence of an ergosphere marks the onset of
instability along a sequence of rotating equilibrium models.

* Research supported in part by the National Science Foundation under grant MPS 74-17456 with
the University of Chicago and grant MPS 74-7456 at the University of Wisconsin-Milwaukee
1 The word is analogous to "atmosphere." Ergospheres are not topological spheres ergospheres of
stars, for example, are toroids
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In the case of scalar and electromagnetic test fields, the ergosphere instability
arises in the following way. Associated with the test field's energy-momentum
tensor Tab and with the background Killing vector ta is a canonical energy

Because ta is a spacelike within an ergosphere, initial data can be chosen on S to
make $s negative. But, because only positive energy can be radiated at future null
infinity, the value of Ss can only decrease from one asymptotically null hyper-
surface S to another, say S', in the future of S. Furthermore, we will see that the
energy can be negative (in fact nonzero) only when the test field is time dependent.
Thus, unless the system can always settle down to a time dependent but
nonradiative state, the energy S will grow without bound. If one assumes sufficient
smoothness of the field in a neighborhood of null infinity, an argument based on a
timelike uniqueness theorem due to Holmgren [5] rules out the first alternative
and implies that the system is strictly unstable.

For axisymmetric spacetimes the instability is associated with non-
axisymmetric perturbations, fields having angular dependence eιmφ (where φ is the
angle about the background symmetry axis). We find that unstable (or marginally
unstable) solutions to the test field equations exist for all sufficiently large values of
the integer m. When the ergosphere is small, unstable modes have large values of
m : along a sequence of models, the instability sets in not through a particular
mode, but via the limit as m-»oo of modes having behavior eίmφ.

The question of how rapidly the ergosphere instability is likely to grow is not
dealt with here. However Comins and Schutz [4] have recently considered the
problem in the case of a scalar field propagating on a background spacetime that
approximates a rotating fluid. Using a JWKB method, they find (for reasonably
large ergospheres) characteristic growth times long compared to the dynamical
timescale but short compared to evolutionary times. Thus the instability is
unlikely to play any role in collapse but it can be used to tighten the upper mass
limit on compact objects by ruling out relativistic configurations that rotate
rapidly enough to have ergospheres.

In § II and § III we treat scalar and electromagnetic test fields on a background
spacetime and carry through the stability argument sketched above. An appendix
deals with uniqueness of the timelike initial value problem, applying Holmgren's
theorem to wave equations on a curved spacetime.

II. A Test Scalar Field

Consider an asymptotically flat spacetime, M, whose metric gab admits a Killing
vector ία, c£?ίfαfe = 2P(αίί,)==0. The spacetime is supposed stationary: that is, near
infinity ta is timelike and has asymptotic norm tata = — 1. There is to be no horizon,
but an ergosphere - a region in which ta is spacelike - will be present. No further
symmetry assumptions need be made, so that if stationary nonaxisymmetric fluids
exist in relativity, analogous to the Dedekind ellipsoids of Newtonian theory, the
analysis will apply to them as well.
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The first aim of this section will be to prove that all such stationary
configurations with ergospheres are at least marginally unstable to scalar per-
turbations, in the sense that there are always perturbations which do not die away
at large times; and unless there are time dependent but nonradiative per-
turbations, such configurations will in fact be strictly unstable, radiating infinite
energy in the linearized theory. In fact, when the background geometry is
axisymmetric, strict instability can be avoided only if there are time dependent but
nonradiative scalar fields having angular behavior eimφ for all sufficiently large
integers m, where φ is the angle about the symmetry axis. Physically, this would
indicate that real perturbations radiate away the angular momentum of the
background spacetime until no ergosphere remains.

Denote by Su a family of Killing related spacelike hypersurfaces, indexed by a
scalar u with taVaιt= 1. With the definition

μ = (-FauFαu)1'2, (1)

the unit normal na to Su is

na=-μ^Fau. (2)

The Killing vector ta can be written in terms of na and an orthogonal vector in the
manner

, (3)

where

and

n"ka = 0. (4)

The projection operator orthogonal to n" and k" is

i\ = δ\ + 4n^kc\bkc}. (5)

A scalar field on the background spacetime satisfies

FβF> = 0. (6)

Its energy-momentum tensor,

Tab=7aιp7bψ-^gab7cψ7cψ9 (7)

is divergence-free

F Γ^O, (8)
and so to the Killing vector ta corresponds a conserved current

Ja = Tabtb; (9)

that is,

F(Λ) = 0=>PβJ' = 0. (10)
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Consequently, if the field ψ has, say, compact support on a member S0 of the
family of surfaces Su, then

δv=lJadsa=\jadsa=δ0, (ii)
Su So

for surfaces Su near S0.
Suppose, now, that at large distances the surfaces Su become null, and consider

fields ψ whose support on Su may extend to null infinity. Let (w,r, θ, φ\ with
— oo<ι/<oo, r>r0, 0:g0<π, and Orgφ<2π be a standard null chart for M
outside a bounded region. That is, lines of constant w, θ, and φ are null geodesies
with affine parameter r lines of constant r, 0, and φ are trajectories of the Killing
vector ί f l; and the metric has the asymptotic behavior given, for example, by
Newman and Unti [6],

2M
— +0(r-2), 0rβ = 0(r-3), 0p* = 0(r-3) (12)

characteristic of a time independent geometry. Let us consider a region ̂  bounded
by the surfaces S0, SM, and by an r = constant cylinder.

We have

0 = f iyβ = f JβdSfl, (13)
^ 5^?

whence
u

^ιι-^0=- lim $Jrr2dΩdu
r-+co o

M

= - lim $ψ2r2dΩdu (14)
r->oo o

where ip = taVaip (and where asymptotic regularity, the condition

Ψ^ - Ψι(u, θ, φ) + o(r — 1), has been assumed). In other words, a radiative solution

loses energy between S0 and Su and, consequently (fw is a decreasing of M.
If (f0^0 for all initial values (φ, Ffltp) on S0, then the symmetry implies <%^0

for all u by (12), only a finite amount of energy can be radiated and the functional
$u is bounded by <ί0. The scalar field is consequently either strictly stable, <ίu-»0 as
tί— κx)2, or at worst marginally unstable, Su finite as w-»oo. If, on the other hand,
there is some initial data on S0 for which <ί 0 < 0, than the field is at best marginally
unstable; and, unless it can settle down to a nonradiative state with fixed
$ < /Q < 0, it will radiate infinite energy to null infinity. Furthermore, the energy
can be negative only if the field ip is time dependent, and thus a field for which

2 * <%->0 implies that Pαψ->0 (i.e. components of Va\p along a Killing transported tetrad converge to
zero) ψ itself can asymptote to a constant
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will be strictly unstable unless there are time dependent nonradiative states
available to it. To see this, one manipulates the expression for $, using the field Eq.
(6) and integrating by parts to obtain the following form involving the symplectic
product (Klein-Gordon inner product) of the field ψ and its time derivative ψ :

^ = ̂ (ψ^ψ-^aψ)dSa + ̂ ΨFa

ΨtbdSah. (15)
S dS

If ψ is a time independent solution of (6), the first term on the right hand side of
this equation clearly vanishes; and asymptotic regularity (when φ = 0) requires
that the surface term vanish as well. Thus for time independent fields, § — 0.

It is not difficult to show that

Proposition. $<Q for some (ψ, Vaip) on So there is an ergosphere.

We have

dS. (16)
S

Now

μ~ l Ta\na

But the expression on the right-hand side is positive when |α gl, whence
when there is no ergosphere.

On the other hand when|α| >1 somewhere on S, initial data for which <
be found as follows. Let Ω be an open set in the ergosphere and (ί, x, y, z) a chart on
Ω chosen so that curves of constant ί, y, z have tangent ka'.kaVaf = d x f . There is
some ε with |α |>l+ε>0 on Ω and we can assume α>0. Let ΩR<Ω be the ball
r2^R (there is such a ball about p in Ω for small R). Consider a function ρe C°°(Ώ)
which vanishes outside of a compact subset of Ω, whose value and derivatives are
bounded by

llρll^lubiρl+lubl/c^^l+lubO^F.ρM 1/^^, (17)
Ω Ω Ω

and with

ρ = l on ΩR. (18)

Then the initial data,

= — mρcosmx + ρ^sinmx, (19)

on S gives Ss < 0, for large enough m. That is,

Ta

bfnb = - (α - 1) (fc'FΛ/ϋ2 +ΪJabVaΨmVbΨm . (20)
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Denoting the bounds on μ by μ0 and μ l 5 i.e.

μ0^μ(p)^μ1? peΩ, (21)

we have

(22)
ΩR

where |Ω| = J dS.
Ω

As ra-»oo, J sin2mχ-»^-|£y, so for sufficiently large m,
ΩK

(23)

This concludes our proof of the proposition.
Spacetimes with ergospheres are thus marginally unstable to scalar per-

turbations, and initial data on S with $s < 0 must either evolve to a time dependent
but nonradiative state, or grow without bound (\ιp\ or $ becomes infinite).

The first alternative appears to be ruled out by the following line of argument.
Define the domain of dependence D(T) of a timelike hypersurface Tto be the locus
of all deformations Tof Twith compact support on Tand which are themselves
timelike (see Appendix II). A uniqueness theorem due to Holmgren [5] implies
that when the background spacetime is analytic, any smooth (C°°) solution ψ to
the scalar wave equation is uniquely determined by its "initial data" on T. That is,
given ψ and Va\p on T, there is at most one solution to FaFaιp = 0 on D(T). In the
case of a stationary spacetime with ergosphere, the existence of a timelike Killing
vector implies that the metric is analytic outside the source and the ergosphere [7].
Moreover, supposing the whole background to be analytic does not restrict the
physics that can be described. (Any background metric can be approximated with
arbitrary accuracy in, say, a Cn norm by an analytic metric.) So for the remainder
of this section we will assume that the background is analytic.

Now suppose that ψ were time dependent inside the ergosphere IE. Then
(φ, Va\p) cannot be zero on the whole of any distant timelike surface Twith IE in its
domain of dependence D(T}. Moreover, if we take Ttangent to the Killing field ία,
the data must be time dependent on T. This is because the Killing translated data
on T gives the Killing translated solution on D(T), whence ψ time independent on
T implies ψ time independent on D(T}. Solutions to the wave equation have the
asymptotic behavior

1). (24)

The energy radiated to null infinity between ui and u2 is j (d^^dΩdu and unless
Ml

duφί-^0 as ι/-»oo, the radiated energy will be infinite.
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The possibility remains, however, that although asymptotically the field settles
down to a time independent state, its time derivatives remain finitely large in any
spatially bounded region. This lacuna can be eliminated if one assumes that the
scalar field and the null coordinate components of the metric gab can be expanded
in powers of r~l near future null infinity. That is, suppose that the series

00

V> = Σ Ψn(
U>θ>Φ)r~H>

<T = r~2 Σdβ

n

β(u,θ,φ}r-",..., (25)
n = l

converge in a region exterior to some timelike hypersurface T of the form
r = R(u,θ,φ) and in the future of S0. Then, following Moret-Bailly and Papapetrou
[8], it is easy to show that the scalar wave equation is equivalent to recursion
relations of the form

(n-l)duψn + 0^φ,dΘίdφ)ψn_1±...+On_1(θ,φ,dθ^φ)ιp1=Q, (26)

where the On are linear operators of second order involving dθ and dφ with
coefficients depending on the coordinates θ and φ. For a nonradiative field, δutp1

must vanish the recursion relations (26) then imply that ψn is a polynomial in u of
degree less than or equal to n— 1. Thus either all the ιpn are of degree zero or else
some ψn increases without bound. If all ψn were degree zero in u, ψ would be time
independent outside T. By the timelike uniqueness theorem, ψ would then be time
independent everywhere to the future of some SU9 which contradicts the assump-
tion that <f<0. If, on the other hand, some ιpn grew without bound, then ψ would
be unbounded as well. Thus, as asserted, any bounded, time-dependent scalar field
satisfying (25) must radiate.

There are in principle time-dependent sources with constant amplitude that
radiate finite energy (for example, machines that change their shape with a time
dependence <2(w)~sinlogM (as in Bardeen and Press [9]), but their time derivatives
must become arbitrarily small. In the case at hand, the existence of a finite
amplitude solution with arbitrarily small time derivatives would presumably
again, by (15), be inconsistent with the fact that the energy is bounded away from 0
by δ <<f0<0.

III. Electromagnetic Perturbations

The analogous demonstration that for a test electromagnetic field initial data
exists for which $ = J Ta

btadSb < 0 if and only if an ergosphere is present is provided
s

in this section. The remaining argument is the same as that for the scalar field,
Holmgren's theorem applying also to the free electromagnetic field.

A test electromagnetic field Fab satisfies

FtF* = 0, F[έΛc] = 0, (27)
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and has the energy-momentum tensor

i~r<(ib T?ctcT?b _!_ πttb 17 T?cd C*)Q\i — r r c —4g r cdr . ^zoj

Defining the electric and magnetic field associated with the hypersurface S by

pa _ γab Ώa_^pabcdΉ p _ * fab^ (JQλ
& —Γ "b> D — 2b nbr cd~ r nb> \Δy>

we can characterize an initial data set on S as a pair of vector fields (Ea,Ba]
satisfying

DaE
a = 0 and DaB

a = Q, (30)

where the operator Da is the covariant derivative on S. Equivalently, one could
specify vector fields Aa and Aa on S with

then

and

will satisfy equation (39). We will first show that the electromagnetic energy $ can
be nonzero only if the field is time dependent3, and will then turn to the more
complicated demonstration that Es < 0 for some initial data on a hypersurface S if
and only if the background spacetime has an ergosphere.

By defining fields Ea = Fabt
b and Ba — *Fabt

b, one writes the energy,

s

in the form

(34)

From the second of Maxwell's equations (27) and the fact that ta is a Killing vector
follow the relations

VaEb-VbEa = ̂ tFΛ (35)

Vβb-V,βa=<e*Fttb. (36)

Then, using (32) to express Ea and Ba in (34) in terms of Aa and Aa, we obtain

*Fbc])dS^ + ί (AlaEn + ΆίaBb])dS°». (37)

3 Alternative versions of the demonstration below are apparently known. I am indebted to R. Geroch
for the one given here
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When Fab is time independent, asymptotic regularity requires that the surface term
at infinity vanish, and since the first term in the above expression for $ is
manifestly zero, the energy $ vanishes as well. In analogy with Eq. (15) for the scalar
field, this equation requires finitely large time derivatives in order that the energy
$ be bounded away from zero.

The stability of a test electromagnetic field then depends on whether the
quantity Ss is positive for all initial data sets on 8. Using Eq. (3) and the relation

bcdBcnd (38)

we can write the integrand in (33) in terms of Ea and Ba:

Ta

btanb = μ - 1 [i(E"JEβ + BaBa) + αββh£ βBb] (39)

where εab = QabcdKcnd is the antisymmetric tensor in the subspace orthogonal to Ka

and na. When there is no ergosphere, the vectors ta and na are both timelike and the
integrand is itself positive : this is the dominant energy condition.

Explicitly,

(40)

whence

when α^l . (41)

Within an ergosphere, however, the integrand (39) can be negative, and we will
find initial data for which the integral $ is negative as well. Consider as in II, an
open set Ω in IE and a chart with origin at some point peΈ. The chart is to be
spatially geodesic at p so that (writing concrete indices ίj, /c, to refer to components
in the chart (ί, x, y, z)\

tiij-η^Kr2 (42)

for some constant K, where y/ίj. = diag(— 1, 1, 1, 1); by aligning the coordinate axes
at p, we can require

fa- δ$<Kr2 and \ki-δ*\<Kr2 (43)

(i.e., at p, rfd^dp K'δf = dx), redefining K if necessary in order that (27) and (28)
hold for a single constant K. By Eq. (3), ti = μ~1(ni + akl). Because Ω is compact
in IE, α > 1 + δ on Ω. Similarly, as in II, μ is bounded on Ω by

0<μ0<μ(p)<μ, peΩ.

Writing

τ = εtxyznt,

we have by (42) that

(44)

Again, as in treating the scalar field, we will use functions of the form ψm = Q sinmχ,
where ρ vanishes outside Ω and satisfies Eqs. (17) and (18).
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(r\
Here we will take ρΛ = ρ — , where ρ(s) is a smooth function, vanishing for

\KJ
s > 1 and satisfying

ρ(s) = l, s<i, (45)

|ρ||^lublρ| + lub|ρΊ<K. (46)

It will also be convenient to introduce the following shorthand. The letter Γ will
represent functions bounded on Ω by a constant independent of the integer m.
Only a finite number of such functions will be considered and so we can assume
that they are all bounded by a single constant K. Then

ψm = Γ9 dyψm = Γ, dzψm = Γ, dxψm = mΓ (47)

and

τ-l+Γr 2 . (48)

(In each occurence of the letter Γ it represents a different function bounded by K),
Consider now initial data of the form

A

X = Ψm> A

X = Az = At^ι

A

z=-ψm, Ax = Ay = At = Q, (49)

with

φw-ρsinmχ. (50)

We have

Ex = sxyztnt(dyAz-dzAy)

Ez = mτρcosmχ + Γ , (51)

and

BZ = Q. (52)

Then, from (39)

Ta

btanb - iμ - 1 ίgzz(Ez)2 + gyy(βy)2 + 2aEzB^ + mΓ + Γ

— 2 !^~ 1(dyy + 9zz ~ ^Syz)m2τ2ρ2 cos2 mχ + mΓ + Γ . (53)

Now Eqs. (43), (44), and the definition of the tensor εab imply

9w + 0*z - 2™vz < 2 - 2α + Γr2 (54)
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it follows that by making Ω sufficiently small, we can require that on Ω,

9yy + 9ZZ~^yZ<-δ (55)

for some positive number δ. Then

Ω

m2 -1 Γ 2 2
^ J- J 1 z

where C^ and C2 are constants.
Again, by restricting the size of Ω we can make τ— 1 small; and, as m-»oo,

J cos2mχdS->± f dS = ±|ΩΛ |. (57)
ΩR OR

Thus for sufficiently large m,

Ss^-m2(^μ-1\ΩR\)δ + mC1 + C2<0 (58)

as was to be proved.
In the case of an axisymmetric background with an axial Killing vector φfl, one

considers data with angular dependence eιm(t>, where φ is an angular coordinate
about the axis of symmetry chosen in such a way that φaVaφ = l in other words,
(Ea,Ba)= Re(£fl,5fl), where

^φ£α-im£fl, ^φB
a = imBa. (59)

Then for all integers m greater than some m0 there is initial data with angular
dependence eιmφ for which <ίs>0. Because the time evolution preserves the φ-
dependence of the perturbation, each such initial data set gives rise to an
independent unstable or marginally stable perturbation with angular dependence
eimφ. The magnitude of m0 depends on the detailed configuration, and crucially
upon the size of the ergosphere. In particular, suppose Q(J) represents a
continuous sequence of equilibria, parameterized, say, by increasing angular
momentum J and suppose that for J>J0 there is an ergosphere that shrinks to a
point as J-+J0. Then WO-KX) as J-+J0

+ and the instability can be said to set in as
a limit m-»oo of perturbations with angular dependence eϊmφ.

Finally, as in § II one expects on the basis of Holmgren's theorem that initial
perturbations having <ίs<0 will grow without bound and therefore that con-
figurations with ergospheres will be strictly unstable. The expectation relies,
however, on the fact that by Eq. (37), if <ί<0 the perturbation must be time
dependent and on the assumption that time dependent perturbations will be
radiative; and even for the scalar wave equation, there is no formal demonstration
that all time dependent solutions on a stationary background (with or without
ergosphere) radiate energy to null infinity.

A related result for quantum fields on a background spacetime with ergosphere
obtained by Ashtekhar and Magnon [10] should be mentioned. In constructing a
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Hubert space from solutions to the scalar wave equation, one introduces a
complex structure analogous to that obtained in flat space by the decomposition
of a real solution into its positive and negative frequency parts. Ashtekhar and
Magnon show that any definition of complex structure for which the Klein-
Gordon inner product is positive definite must be time dependent; that is, the
complex structure cannot be Lie derived by the asymptotically timelike Killing
field. Consequently any spacetime with ergosphere is unstable to particle creation,
and so is quantum mechanically as well as classically unstable. (For astrophysical
objects the particle creation would be negligible.)

Acknowledgements. I want to thank James Ipser for suggesting the problem considered here, Robert
Geroch for helpful conversations, and Bernard Schutz for comments on a previous version of the
manuscript.

Appendix

We establish here a uniqueness theorem for C°° solutions to linear wave equations
on analytic spacetimes of the form

b = Q (Al)

where ψa-b is an it-index tensor (see also [11]). As stated in §11, one can define a
domain of dependence for timelike surfaces as follows. Let TcM be a timelike
hypersurface and let τ C T be an analytic submanifold of T with compact closure.
Consider the set of all timelike surfaces τ which can be obtained from τ by an
analytic deformation that leaves δτ fixed. The union of all such τ for all compact
τC T is the domain of timelike dependence of T, written D(T).

We assume that M is an analytic manifold and that the metric gab is an analytic
tensor field on M. The uniqueness theorem is

Proposition. If λa b and μa-b are two C°° n-ίndex tensor fields on T, there is at most
one C°° tensor field ψa b on D(T) satisfying

and

where na is the unit normal to T.

Proof. By the linearity of (A2), it suffices to prove that λa b = Q and μa b = Q imply
ιpa b = 0 onD(T).The proof is based on a theorem due to Holmgren [5], a version
of which can be stated in the following manner. Let L(u) = 0 be a hyperbolic system
of r linear analytic partial differential equations of order m in r functions u of k
variables. Then if for all j, uj and its derivatives of order less than or equal to m— 1
vanish on a noncharacteristic manifold and if u is C°°, u must vanish in a
neighborhood of the manifold.4

4 The proof given by Holmgren is for single hyperbolic equations, but its extension to hyperbolic
systems is straightforward
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There is a neighborhood N of any point p of T and a chart on N for which the
Eq. (Al) satisfies the conditions of Holmgren's theorem, and so if ψa b and
nmVmιpa'"b vanish on T, ιpa b must vanish in some neighborhood of each point p of
T.

Now let τ be a submanifold of T with compact closure. Suppose that for each
Se[0,1], χs :τ-»M is a diffeomorphism of τ to τs = χs(τ), that τs is timelike and
that 8τs = dτ. Further, suppose that the map [0,1]->M, S—>χs(p) is continuous for
all peτ in other words that χs is a deformation of τ. We want to show that ιpa b

vanishes on all surfaces τs. Let S0 be the greatest lower bound of all Se[0,1] for
which ιpa'"b\τs is not identically zero. By continuity, the field ιpa b and all its
derivatives vanish on τSo, and since τSo is timelike, Holmgren's theorem implies
that \pa b vanishes in a neighborhood of each point of τSo. But τSo is compact, and
so is covered by a finite collection of open sets Oα on each of which \pa b vanishes.
Then if SO =M, τs C (Jθα for a finite range of S > S0, say for S0<S<Sl. This means
that ψa- b vanishes on τs for all S<S1? contradicting the assumption that S0 was
the greatest lower bound for surfaces on which τs vanished identically. Whence
S0 = l, and we conclude that ψa b vanishes on D(T).
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