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Abstract. Under quite natural assumptions we prove that a classical spin
lattice has essentially two natural quantum extensions: The quantum spin
lattice and the Fermi system. Moreover we derive a transformation from a
commuting pair of Fermi systems to a purely anticommuting Fermi system.

Introduction

It is known that quantum spin commutation relations and anticommutation
relations can be extracted from the central extension of an abelian group, in a quite
similar manner as usual commutation relations can be extracted from central
extension of an abelian group, namely the abelian group of the phase space.
(See e.g. [1,2]); this point of view has obvious advantages not only aesthetical,
and we postpone to a forthcoming paper some results which are transcribed from
the case of quantum canonical commutation relations. Our aim in this paper is to
derive a result which is analogous to the fact that, up to the value of h (the Planck
constant), there is essentially one possible central extension of the group 1R2. In
our case for a given value of h there are essentially four possible central extensions
of pΛ x pΛ [see Definition (2.1)] satisfying some homogeneity requirements. Two
of them are rather trivial from a physical point of view and the two others cor-
respond to the usual quantum spin systems and Fermi systems.

Nevertheless the C*-algebras which are built in a canonical way on these
extensions are unique up to isomorphisms if the number of points in A is even
or infinite.

The *-isomorphisms between the two algebras are of especially simple form,
namely :

where / is a function from pΛ x pΛ to ±1 and τ an isomorphism of p^ x pΛ onto
itself [Theorem (2.40)].

This theorem contains an abstract version of an old trick which connects the
Clifford algebra to the U.H.F. algebra (see e.g. [3,4]). But it contains also as
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corollary [Corollary (2.41)] the following result: if ffl^ and J 2̂

 are rea^ Hubert
space of even or infinite dimension Jf^ΘJf^ tneir orthogonal sum then:

where 9I(J^), 2ί(Jf ) are the Clifford algebras built on J^ , Jf and the ^isomor-
phisms can be chosen to send a finite product of generators in the left hand side
onto a finite product of generators in the right hand side.

1. Central Extension of Abelian Groups by the Torus

This section contains results which are needed for Sect. 2; some of them are known,
if not in the full generality that we shall need in the sequel. We shall always consider
groups equipped with the discrete topology.

Definition (LI.). Let G be an abelian group. A multiplier on G is a function
ξ:GxG->T, which satisfies :

ξ(0ι> 92)ξ(9ι92> 0a) = £(02> 03)£(0i» 0293) , V0 1 9 g2, #3e G .

The next proposition is an easy consequence of the previous definition:

Proposition (1.2). Let G be an abelian group, ξ a multiplier on G, then:

The usefulness of the multipliers is examplified in the following

Proposition (1.3). Let G be an abelian group, ξ a multiplier on G, then G x T endowed
with the product:

(g, a) (g\ α') = (gg'> ξ(g, 0>α') , V0, g'e G , α, α'e T

and the inverse law :

is α group G®^T, with identity (e, ξ(e, e)\ the central extension of G by T. Namely
one has the following exact sequence

Multipliers on G form an abelian group for pointwise multiplication, and the
subgroup of trivial multipliers of the form

where λ is any function from G-»T form an invariant subgroup. The quotient
of these two groups characterizes the different extensions up to isomorphism,
in the following sense.

Proposition (1.4). Let G be an abelian group; ξ and ζ two multipliers. The necessary
and sufficient condition for the existence of an isomorphism j between G®^T and
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G(x)ζT which makes the following diagram commutative:

G®ξT ̂
e-»T-^ ί' G-+e

is that there exists a function λ from G to T such that :

We can use this fact to simplify the calculations, so :

Proposition (1.5). Let G be an abelian group, ξ a multiplier on G. There exists a
multiplier ζ which is equal to ξ up to a trivial multiplier, such that:

G®ζT:

(1.6)

e , e = g , g = .

We can give explicitly the isomorphism j between the two groups G<S)ξT and
T:

where the subscripts indicate in which groups we consider the elements (g, α)
since as sets the two groups are equal.

In the case of groups whose elements are of order 2, according to a theorem of
Kleppner (see [5]), every multiplier is equivalent to a bicharacter. In [6] the case
where ξ is a bicharacter has been studied explicitly but most of the results are
still valid without this assumption [see Proposition (1.12)].

For classifying the different central extensions of a group G [see Theorem (2.24)]
it is more convenient to deal with the bicharacter which is associated with a multi-
plier since it has more special properties; hence it can be characterized in a easier
way. Indeed if G is an abelian group and ξ a multiplier, bξ:

(1.7) b?(g,g'} — ζ(g,

is a bicharacter of G. It characterizes uniquely the extension according to the
proposition:

Proposition (1.8). Let G be an abelian group, ξ and ζ two multipliers, the necessary
and sufficient condition for ξ and ζ to be equal up to a trivial multiplier is that:

Bicharacters associated with multipliers satisfy special properties:

(1.9) ^'^ = J
bξ(g,g')=bξ(g',g).

In the case of groups whose elements are of order 2, the antisymmetry relation (1.9)
becomes a symmetry relation, namely:

(1.10) b*(g,g') = b ξ ( g ' 9 g ) , Vg,g'eG such that g2 = g'2 = e.



222 P. Combe et al.

Moreover we shall say that a multiplier ξ is non degenerate if

(1.11)

In [6] we gave an explicit construction of a C*-algebra whose representations are
in bijection with the unitary representations of G®ξT where the center of G®ξT
is trivially represented, for ξ a bicharacter. Actually all we did there can be repeated
for ξ a multiplier, namely:

Proposition (1.12). Let G be an abelian group and ξ a non degenerate multiplier. Let
Δ(G, ξ) be the set of functions from G to C with finite support, equipped with the
following product:

F*G(g) = £ ξ(gg"\gf)F(gg"ί)G(gf)
g'eG

and ^-operation :

F*(g) = W

Δ(G, ξ) is a *-algebra which has a unique norm of C*-algebra. Let Δ(G, ξ) its closure.
The ^-representations of Δ(G, ξ) are in bijection with the unitary representations U
of G®ξT for which

The basic generators of Δ(G, ξ) are the functions δg, geG, such that

(1-13)v ; β™ [0 otherwise

which of course satisfy:

(1.14) δ *δ ' = ζ(g, g')δgg>,

the algebra A(G,ξ) has interesting properties with respect to automorphisms,
namely:

Proposition (1.16). Let G be an abelian group. Let ζ and ς be multipliers on G; let
a be an isomorphism of G onto G such that there exists a function λ:G-+T with
the property :

(g^Γ)ζ(gί g')

then there exists a ^-isomorphism ά of Δ(G, ζ) onto Δ(G, ζ):

In particular α can be the identity isomorphism which shows that Δ(G, ξ) depends
on ξ up to a trivial multiplier.

It is easy to prove that α is a ^-isomorphism of zJ(G, ζ) onto Δ(G, ξ). Then one
uses an obvious extension of Theorem (3.10) of [6].
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Finally let us remark that the bicharacter bξ associated to a multiplier is
directly associated to the commutation relations, indeed:

Proposition (1.17). Let G be an abelian group and ξ a multiplier, then:

δg*δg' = bξ(g, g')δg.*δg, M g - g ' ε G

so that the non degeneracy of ξ implies that Δ(G,ξ) has no non trivial center, see
also [6].

In the next section we shall specialize ourselves to a special group connected
with both quantum spin commutation relations and anticommutation relations.
We shall show that the central extensions of this group are essentially unique.

2. The Basic Phase Space Group for Spin Systems and Anticommutation Relations

It is possible to obtain the commutation relations of quantum spin systems and
anticommutation relations from the central extension of a group that we shall
describe in the following.

Definition (2.ί). Let A be at most a countable set; pΛ (resp. 0>Λ) is the group of
finite subsets (resp. all subsets) of A equipped with the symmetric difference as a
group law : viz.

(2.2) V*!, X2, ..., Xne0>Λ , X1ΔX2Δ...ΔXn

is the subset of A whose points belong at most to an odd number of X/s.
This law is clearly associative and symmetric; the identity element is the void

subset:

(2.3) A^Δ0-X,

and every element is of order 2:

(2.4) *Δ* = 0, MXtA.

pΛ is a subset of ̂  they coincide if A is finite. pΛ and 0*Λ have natural topologies,
namely for pΛ the discrete topology; 3PΛ is isomorphic to the topological product
of {0, 1}71, hence compact for the product topology and it is isomorphic to the
dual group of pΛ, through the natural bilinear form:

(2.5) (X,Y)epAx&Λ^(X\Y) = (-ψx«γ\,

where |ΛΓ| denotes the number of points in X.
The structure of automorphisms of pΛ is especially simple.

Lemma (2.6). Let τ be a homomorphism of pΛ, it is completely characterized by a
function

so

τ(X) = τ Δ {Xi}= Δ
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Actually for describing the commutation relations of a quantum spin system or
anticommutation relations, we need the group pΛ x pΛ. Despite of the fact that it
is isomorphic to some pΛ, we want to quote some more special results:

Proposition (2.7). Any isomorphism τ ofpΛx pΛ into itself is of the form

τ(X, Y) = (XΔF1(X)ΔF2(Y\ YΔGί(Y)ΔG2(X)),

where the F/s and G f's are homomorphisms of pΛ such that the two equations

X = F1(X)ΔF2(Y), Y = G1(Y)ΔG2(X),

have the unique solution X=Y = 0; moreover if τ commutes with τθo:

τ β o ( X , Y ) = ( Y , X ) , VX,Y€pΛ,

then

F1 = G1 and F2 = G2.

The proof is obvious; notice that the F/s are not necessarily isomorphisms as
examplified by the following.

Proposition (2.8). Let θ be a homomorphism of pΛ into itself. Then:

τe(X, Y} = (XAΘ(XAY), YAΘ(XΔY}) , \/X, YepΛ ,

is an isomorphism of pΛ x pΛ onto itself. Moreover τ is an isomorphism of the group
of homomorphisms of pΛ into itself onto the group of isomorphisms of pΛ x pΛ onto
itself, which commutes with τθΌ and preserves pointwise the diagonal A = {(X,X)ι
Xe pΛ} moreover τl = i the identity isomorphism.

Proof. If an isomorphism τ commutes with τθo and preserves pointwise the diagonal
A then:

so that F1=F2 and τ rewrites:

τ(X, Y) = (XΔF1(XΔY), Y

Conversely let θ be a homomorphism of p^; τθ is injective since the equations

imply ^ΓΔ7^0 and Θ(XAY) = 0; hence X— y = 0. It is surjective since its square
is the identity isomorphism :

(2.9) =(XΔΘ(XΔY)ΔΘ(XAΘ(XΔY)ΔYΔΘ(XΔY)) ,

YAΘ(XAY)ΔΘ(XAΘ(XΔY}AYΔΘ(XΔY}) = (X, Y) , MX, YepA .

This relation is a special case of the obvious relation :

(2.10) τθloτθ2 = τθl^θ2
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where Θ1AΘ2 is defined for a pair of homomorphisms of pΛ into itself by:

(2.11) Θ1ΔΘ2(X) = Θ1(X)AΘ2(X)9 VXepA;

they form a group with identity:

(2.12) Θ,(X) = 0, VΛ e P y l ;

another remarkable homomorphism is ΘQ :

(2.13) Θ0(X) = X,

Among these isomorphisms we shall need two special ones which are described
in the following definition.

Definition (2.14). τl = τθl and τ2 — τθ2 are the isomorphisms oϊpΛ x pΛ which come
from the homomorphisms Θ1 and Θ2 of pΛ which are defined by

V f > l .

for an arbitrary given order on the points in A.
We give in the next proposition some formulas which are useful in the fol-

lowing.

Proposition (2.15). Let 0t be the homomorphisms defined in the previous proposition
then one has the relations :

ntf^(2.16)
πy | mod 2

(2.17) |^nθ1(Λ-)|=im(|ΛΊ-l) + ffl(ffl-l)(|X|-2) mod 4 VXε P y l ,

(2.18) \Θ2(X)\ = 0 mod 2 VXepΛ,

(2.19) |Λ nθ2(y)| + |yn0 2(Λ )| = |Λ | |y | + |Λ ny | mod 2

(2.20)

We shall not prove these relations since the calculations are easy but tedious.
Let now σe β be a finite permutation of the points in Λ.

(2.21) θσ({xi})={xί}Δ{.xσ(i)} Vx;e/l

induces an isomorphism τσ of pΛ x p^ which commutes with τβo and represents
the finite permutations by taking in Proposition (2.7)

(222) FιW = θ«W
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This isomorphism does not preserve pointwise the diagonal; it is an isomorphism
since XAΘσ(X) = 0 implies that X = θσ(X) but

(2.23) θσ(X)= Δθσ({x ί})= Δ {Xi}Δ{xσ(ί)},=XΔσ(X)
XieX XieX

where σ ( X ) = { x σ ( i ) ' 9 x i e X } 9

hence σ(X) = 0 and X = 0.

This group of isomorphisms is of central importance to reduce the number of
possible central extensions of p^ x pΛ which is our next aim.

As we noticed any central extension of pΛ x pΛ by the torus is completely
characterized up to the equivalence by a bicharacter bξ which is both symmetric
and satisfies :

bξ((X,Y),(X,Y))=ί

using this remark we can state the

Theorem (2.24). Let pΛ be the group of finite subsets of a set A (\Λ\ = 2N or oo)
endowed with the symmetric difference as group operation; let pΛ x p^ be the direct
product of pΛ by itself. Let 6 be the group of the finite permutations of A denote
by τσ the induced isomorphism ofpΛ x pΛ (see (2.21)).

τσ(X, Y) = (XAΘσ(X), YAΘσ(Y)), VAT,

Denote by τθo the automorphism of pΛ x pΛ :

τ θ o ( X , Y ) = (Y,X), V

then there exists only four bicharacters b on pΛ x p^ which are
i) symmetric, i.e. b((X, Ύ\ (X', Y')) = b((X', Y'), (X, Y))

ii) invariant by τσ for any σe 6, viz

b(τσ(X, 7), τff(X', Y'))

iii) invariant by τθo, viz

b(τθo(X, 7), τθo(X', Y')) = b((X, Ύ\

iv) non degenerated, viz

b((X, Y), (X1, Y')) = 1 , VX', Y'

v) and satisfy :

b ( ( X , Y ) 9 ( X 9 Y ) ) = l 9 VX,Yep

They are respectively :

bs((X, Y)9(Xf

9 y')) = (-

bF((X Y\ (X', y/)) = (—

bφ((x Y} (X1 y'))=(—
bσ((X, Y)9(Xf

9 y')) = (-
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The two bicharacters bσ and bφ are degenerate when \Λ\ = 2/c+l. In what follows
we denote b((X, Y)\(X', Y')) by b(X9 Y;X\Y'). Proof of theorem (2.24) uses a
number of lemmas.

Lemma (2.25). Let χ be a bicharacter of pΛ which is invariant by σ that is:

χ(σ(X),σ(Y)) = χ(X, Y}

then it is of the form :

χ(X9 y) = (-l)αl

where α and β are 0 or 1.

Indeed if XΦ0, 7φ0then:

ieX jsY

Since χ is permutation invariant, χ({i}, {i}) is independent of i, the same for
χ({;}, {/'})(/ φj) since if ίή=j and fc=M there is a finite permutation σ such that
σ(i) = k, σ(j) = l; moreover χ({i}, [/'})= + 1; hence the four possibilities:

) = (-l) |ϊnr|, α=l, 5̂ = 0.
iii) χ({i},{i})=l, χ({i}, {/})=-!. x(X,Y) = (-l)*m + ̂ , α = / S = l .
iv) χ({/}, {i})=-l, rtii}, [/•})=-!, χ(A ,y) = (-l)lχ"1'l, α = 0, /? = !.

Notice that they are automatically symmetric

Lemma (2.26). Any symmetric, S invariant, τθo invariant, bicharacter of pΛ x pΛ

is of the form :

b(X, Y X\ Y')

Actually since b is a bicharacter

b(X, Y\ X', Y') = b(X, 0; X\ U) b(X,Q\ 0, Y') b(0, Y; X\ 0) b(0, 7; 0, F) .

but

χ4(Y,Y') = b(0, 7;0, Γ) .

are bicharacters of p^ which are S invariant; the previous lemma implies that:

b(X, 7; X', Γ)



228 P. Combe et al.

The symmetry of b implies that α2 = α3, β2 = β?,' >

b(X, 7; X', 7')

The τθo symmetry implies that α x = α4, βl = β4:

b(X9 7; X'9 Γ)

Lemma (2.27). Let b a bicharacter of pΛ x p^ as in Lemma (2.26), if uί=a2, then
it is degenerate.

Indeed

b(X,Y;X',Y')
'\

If X= Y and \X\ = 2K for some integer KΦO

b(ΛΓ, Y Z', Y ' ) = l , V^Γep^.

Lemma (2.28). 7"Aβ following four bicharacters do not fulfil the condition v):

Indeed for (X, 7) = (X\ Y') they are respectively

_ 1*1 + M

They all are equal to —1 if 7=0 and \X\ = 2K+l for instance.
Hence we are left with the four possibilities of the proposition. Nevertheless

we shall prove the following lemma.

Lemma (2.29).

bσ(X, 7; X', y') = (-i)l*n y 'l + l*'n yl + l * l in + l * ' i m

bφ(X, Y' X', y')=:(_i)l*n*'l + l y^ y 'M*H*'M yM y ' l .

are degenerate if and only if \Λ\ = 2N + 1.
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Indeed for X= 7 = Λ, \Λ\ = 2N+1

b σ ( A , A ; X ' , Y ' ) = (-i)^ + ̂  + \x'\ + \γ'\ = l

b « ( Λ , Λ ; X \ Y f ) = (-l)^ + ̂  + ̂  + ̂  = l.

l(now\A\ = 2N:

On the other hand if

bσ(X, 7; X\ Y'} = bφ(X, 7; X\ 7')= 1 , VX', Y'epA ,

in particular for 7' = 0:

for X' such that \X'\ = 1 and |X'n 7) (or |AΓ'n X|) = 0

(-l)m = ((-l)W = ) = l ,

but for X' such that |ΛΓ'| - 1 and | X'n 7 1 (or | A" n ΛΓ|) = 1

hence a contradiction; since 7 (or X) are different from /I as we have seen for
\A\ — 2N and of course for \A\ — oo 7 (or AT) are the void set; by symmetry X (or 7)
are the void set which concludes the proof.

The next lemma shows that bs and bF are non degenerate.

Lemma (2.30). bs and bF are non degenerate,

Indeed if X, 7epyl are such that:

in particular for Y' — 0 :

which implies that 7 = 0; symmetrically one can prove that the first relation
implies X = 0.

On the other hand if

then in particular for X'=Yf:

(-l)l*Δr"*Ί = l, VX'ep^,

which implies that AΓ= 7; but then

(-l) !*n*'Δr |-l, MX', 7'ep^,

which in turn implies X = 0 hence 7=0.
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Finally bs, bF, bσ, bψ fulfil the condition v), so

bs(X, Y X, 7) = (

(X, Y X, γ) = (-

bσ(x, 7; x, y)=(-
The next propositions shows the relations between these bicharacters.

Proposition (2.31), Let θ{ be the homomorphisms of pΛ defined in (2.14); then we
have the following relations

bF(X, Y; X', Y') = bs(τθι(X, Y), τθl(X', Y'}} .

b*(X, Y; X', Y') = b«(τβ2(X, Y), τβl(X', Y')) .

The proof of this proposition is not difficult but tedious, see Appendix A.
At this stage it is worth-while to show that these four bicharacters correspond

to the actual extensions of pΛ x pΛ. Let us consider the commutation relations of
the generators :
a) for bs

bs({i},0; 0, {/}) = bs(0, { i } ; {/}, 0)= 1 -My .

these are the commutation relations of a quantum spin system.
b) for bF

bF({i},& {j},&) = bF(0, {i};0, {/}) = 2δυ- 1 .

these are the commutation relations of a Clifford algebra.
c) for bφ

}, 0; {/},0)=ί>*(0, {«};0, {/})=2δy-l .
so that the systems splits into the tensor product of two Clifford algebras.
d) for b"

b*({i], 0; 0, l/}) = &"(0, {0; 01 0) = 2ίυ- 1

the system is of quantum spin type.
We describe in the next proposition the multipliers whose associated bi-

characters are respectively bs, bF, bφ and bσ. They are chosen such that ξ(e, e)
= ξ(g,g~1)=l', in such a way the generators of Δ(G, ξ) are both unitary and
hermitian1.

1 These conditions are not sufficient to determine completely the ξ since if μ is a function from p^ x
into + 1 which is 1 on (0, 0). Then:

ξ'(X, 7; A", Y') = μ(X, Y)μ(X\ Y')μ(XAX\ YΔY')ξ(X, Y'X\ 7'),

satisfy the same conditions
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Proposition (2.32). The following multipliers are associated respectively to bs, bF,
bφ andbσ:

ζF(X Ύ' X' 7') = I l

j\X'nθ2(X')\ + |y'n0 2(y') | - \XΔX'rΛθ2(XΔ X'}\ - |yΔ r nθ 2 (yΔ r)| / _ -^\\X'nθ2(X)\ + \Y'nθ2(Y)\

, , '\

(-ijmm+μr'ny^ vx, 7,*', 7'

They are chosen to satisfy:

ξ(X,Y',X,Y)=l, VAT,

From Proposition (2.31) one can conclude that

i) ξF(X, Y X', Y') = Fθl(X, Y ) F θ ί ( X ' , Y')Fθί(XΔX', 7Δ7')

, Y,X'9 Y'

ii) ξ ,̂ 7; X'9 Yf) = Gθ2(X, Y)Gθ2(X', Y')Gθ2(XΔX', 7ΔΓ)

- ξ*(τθ2(X, 7) τ,2(X', 7')) , VΛΓ, 7, ΛΓ', 7'

where

(2.34)

(2.35)

moreover Fθί(X, 7) and Gθ2(X, 7) are equal to ±1 and Ffll(0,0) = Gθ l(0,0)=l.
They can computed by a tendious calculation using essentially Proposition
(2.15).

From this result and using Proposition (1.16) we can conclude the following
theorem which is nothing but the fact the Clifford algebra is isomorphic to the
U.H.F. algebra.

Theorem (2.36). Let ξs, ξF (resp. ξσ, ξφ) be the multipliers of pΛ x pΛ previously
defined. The algebras A(pΛ xpΛ, ξs) and ^(p^x pΛ, ξF) (resp. Δ(pΛxpΛ, ξφ) and
Δ(pΛ x pΛ, ξσ)) are * -isomorphic. Namely there exists an isomorphism τθί (resp. τθj
°f PΛ x PΛ an& a function Fθi (resp. GΘJ from pΛ x pΛ to ±1 such that άί1 (resp. d2)
defined by :

(resp. &2(δ$>r) = Gθ2(X, Y)δ°θ (X, Ύ)) . VAT, Y ε P/1 ,
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realizes this isomorphism which is a symmetry, i.e. it satisfies (άx)
2 — /, (resp. (ά2)

2 — i)
θl (resp. Θ2) is given by (2.14) and Fθί (resp. GΘJ is given by (2.34) (resp. (235)).

It is clear if one restricts to the sets ({ί}, 0) and (0, {/}) that these isomorphisms
are the abstract version of the usual trick which allows to transform the generators
of the U.H.F. algebra into the generators of the Clifford algebra (see e.g. [4]).

For the sake of completeness we shall derive a result which shows that bφ and
bF are connected in the previous way if \A\ is even or infinite; if \Λ\ is odd the de-
generacy of bφ excludes this fact.

Proposition (2.37). // \Λ\ is even or infinite there exist isomorphisms τ2ί of pΛ x pΛ

such that

b^X, Y; X', Y')=b2(τ21(X, Y), τ2ί(X', Y')) , VX, Y, X', Y'epΛ ,

where b1 and b2 are any of the two bicharacters described in Proposition (2.24).

Indeed it has been proved that bF and bs (resp. bφ and bσ) are connected by
such an isomorphism, hence it is sufficient to prove the statement for bs and bφ

for instance.
It can be shown that if it exists it cannot be of the form (2.8); namely it cannot

commute with τθo. We can give an abstract form of this isomorphism; nevertheless
it is perhaps more instructive to give an expression which connects the familiar
generators; let (σf, σ?)ieN be the generators of the usual quantum spin system;
define

(2.38) b(e2i+ί)= Π σ 2 j + ι σ 2 j + ι < 7 X 2 i + ί ,

i + l ) = Π °2j+2°2j+2V2i+2>
j<i

i + 2) = Π ^2j+2^2j

It can be shown very easily that the b(ef)'s and the fe(/) )'s are the generators of
A(pΛ x pΛ, ξ

φ). From this expression one can induce the form of the isomorphism
on the generating elements of pΛ x pΛ:

(2.39) τ

τsφ(0,{l}) = ({2},0),

0, {2i+l}) = ({2,4,...,2i + 2}, {2,4, ...,2/}),

τsφ(0, {2}) = (0, {2}),

) = ({2,4,...,2i}, {2,4, ...,

This form shows that \Λ\ has to be even. It is not unique but it will be useful for
the proof of Corollary (2.41).
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For the sake of completeness, in Appendix B we give explicit formulas for the
other isomorphisms which connect the different bicharacters.

Theorem (2.40). Any two of the algebras Δ(pΛ x pΛ, ξ\ where ξ is a multiplier
satisfying the conditions of Proposition (2.32), are *-isomorphic the isomorphism
ά2ι

 can be chosen such that:

a2ιΦ,y) = /2i(*, Y ) δ t 2 l ( x . γ ) , VΛ , YepΛ,

where /21 is a function from pΛ x pΛ-+{± 1} and τ2 1 is an isomorphism of pΛ x φΛ

-^pΛxpΛof the form:

τ 2 I (X; y) = (λ ΔF(2m(X)ΔF(21)2(y); yΔG(21)1(Γ)ΔG(21)2(Z))

where the F(21)ί's and the G(21)ί's are homomorphisms of pΛ.

Proof. The proof is a simple application of the previous results and essentially
Proposition (2.7).

For the sake of completeness we shall add a result pertinent to the Clifford
algebra.

Corollary (2.41). Let ̂  and 3ff2 be real Hίlbert space of even or infinite dimensions;
-^e = ̂ eγ@^e2 their orthogonal sum. Let 2ί(Jf) (resp. 2l(J^ be the Clifford algebra
built on ̂  (resp. 3fJ then 2I(Jf) is *-isomorphic to SI )̂®?!̂ ). The isomor-
phism can be chosen such that it sends a finite product of generators in
into a finite product of generators in 2I(^).

Proof. If dim Jf^ = dim Jf^ it is a direct application of formulas (2.38)

for a set A with \A\= dimJ^; and

For dimJ^ Φ dimJf2 one can built explicitly the isomorphism using formulas
similar to the formulas (2.38).

Appendix A

Let us prove the relation

bF(X, Y',Xf, Yf) = bs(τθί(X, y);τβltT, Y')).

One has:

(A.1) b s ( τ θ ί ( X , Y ) ; τ β ί ( X ' , Y ' } )
— (— n | X Δ # ι ( X Δ y ) n Y ' Δ θ ι ( X ' Δ r ) | / _ ^ i X ' Δ Θ

Since X, y->(-i)l^γl is a bicharacter of pΛ:

(A.2) fes(τβl(X,y);τθl(X',Γ))
= (— nl^^y'l + l^'
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Then using the formula (2.16)

(A.3) b s ( τ θ l ( X , Y ) ι τ θ l ( X ' , Y > ) )

Using again the fact that X, Y->(~ l) |XnΓ| is a bicharacter of p^ and the obvious
formula

(A.4)

(A.5) fes(τβl(X,y);τβ^

In order to prove that

b*((X, y); (Xr, Y')) = b"(τθ2(X, Y); τθ2(X', Y')) ,

one proves first that

(A 6) (_ J \ | X Δ 0 2 ( X Δ y ) n y ' Δ 0 2 ( X ' Δ y ) | / | \ | X ' Δ Θ 2 ( Λ Γ ' Δ F ' ) n F Δ Θ 2 ( X Δ y ) |

'\ + \ Y ' \ )

in the same way as for θί since Θ2 satisfies (2.19) which is the same than (2.16).
Moreover

(A.7) ( _ _ l ) l * ^ 2 ( X Δ y ) | | y ' Δ 0 2 ( X ' Δ y ' ) | ^_^\X'nθ2(X'^Y')\\YΔΘ2(X^Y)\=:ίl\\X\\Y'\ + \X'\\Y\

if one uses (A.4) and the relation (2.18). Combining (A.6) and (A.7), one proves (2.31).

Appendix B

In this appendix, we give explicit formulas for the different isomorphisms τ0

which connect different multipliers.
Let us remark that since one has

(B.I) τ^τjί1

they are all obtained by suitable products of τθ l, τθ2, τφS and τSφ. Moreover we
use the following compact notations

(B.2) Nk={Xiii^k} fc>0

(B.3) £fc={x 2 ί ; i^fc} ^>0

(B.4) Ok={x2i_ι'J^k} /c>0

(B.5) N0 = £0=:00 = 0.

Table 1 gives the ten different τ0 . Notice that 1̂  = 1̂  = 1'.
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Table 1. Different isomorphisms of Theorem (2.37)

({2i-}~ll 0) ( ί2z-f-21 0) (0 |2ί'-l-ll) (0 |2z'-f-21)

T (N N •} (N N ) (N N ) (N N )

τθ2 (N2i+1,N2i) (N2l+l,N2l + 2) (N2l,N2i+l] (N2i+2, N2l+l)
τsφ (Oi+1,0^ (0,, 0 [+1) ( E ί + ί , E i ) ( E ί , E i + ί )

τFφ (£ ίΔ{2i+l},£ ί) (£„£,/

(£1Δ{2/ +l},£ f) (E ί+ι^

(N 2 ί + 1,{2i + l ,2 i

τσF
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