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The Positivity of the Pressure in Thomas Fermi Theory*
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Abstract. We prove the positivity of the pressure and compressibility for
neutral systems in the Thomas-Fermi theory of molecules. Our results include
some new properties of the Thomas-Fermi potential and a proof that the
kinetic energy is superadditive.

I. Introduction

The Thomas-Fermi (TF) theory of atoms, molecules and solids has been given a
firm mathematical foundation and many of the qualitative properties of the theory
are understood and have been proven [1] (see also [2] properties of the many-
body TF potential are proved in [3]). There were, however, some open questions
in [1], one of which we solve in this paper: the positivity of the pressure and
compressibly for neutral systems.

The TF theory is defined by the energy functional (in units in which
/z2(8m)~1(3/π)2/3 = l and |e| = l, where e and m are the electron charge and mass)

) = K(ρ)-A(ρ) + R(ρ)+U (1.1)

A(ρ)=$V(x)ρ(x)d

V(x) = Σzjlx-R
j=ι

U= Σ z^R^R^1. (1.2)
ί^i<j^k

Here z1? ...,zk^0 are the charges of k fixed nuclei located at Rl9...,Rk. jώc is
always a three-dimensional integral. <ί;(ρ) is defined for electron densities ρ(x)§:0
such that Jρ and jρ5/3 are finite.
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The TF energy for λ (not necessarily integral) electrons is defined by

λ} (1.3)

k

It is known [1] that for λ^Z= ]£ z there is a unique minimizing ρ for (1.3). It is
j= i

the unique solution to the TF equation

ρ(x)2/3 = max[</>(x) - Φ0> °1 (L4a)

for some Φ0^0, and with

φ(x)=V(x)-l\x-yΓlρ{y)dy. (1.4b)

— Φ0 is the chemical potential [1], i.e.

de(λ) Λ

• o (1.5)

For Λ,:gZ, φ(x)>0, all x. Φ0 = Q if and only if λ = Z and hence, for the neutral case
the TF equation is

If A >Z, there is no minimizing ρ for (1.3), and e(λ) = e(Z) in this case.
There are various possible definitions of the pressure. The one we shall use is

the "change in energy under uniform dilation" defined as follows : Replace each Rt

by lRt, I being a scale factor, and let e(λ, I) be the TF energy for a given λ and /.
Then P = —de/dV which we interpret as

P=-(3l2Γ1de(λ,t)/dL (1.6)

dP
The reciprocal compressibility, K \ should be — V— - which we interpret as

(1.7)

We shall prove that in the neutral case P and κ~l are nonnegative (in the
atomic case they are, of course, zero). In the process of doing so, we shall prove
several interesting facts about the dependence of φ(x\ K, A and R on the z . (Note :
here and in the sequel, φ(x\ K, A, R, etc. mean the respective quantities evaluated
at the unique, minimizing TF density, ρ.) We are not able to prove that P and K are
non-negative in the ionic (i.e. subneutral) case but conjecture that they are. The
only thing we shall have to say about the ionic case except for appendix B is to give
a formula (1.14) for P in terms of e and K. We are led to make the further
conjecture that P is a decreasing function of λ and thus that the neutral case is the
worst case. When Λ, = 0, P>0 and κ>Q because e = Γl ]Γ z^^ — R^1. In other

ί<j
words, the pressure is positive because the nuclear repulsion dominates the
attractive forces; this repulsion presumably grows stronger as electrons are
removed from the system.

The above definitions (1.6, 1.7) of P and K carry over, in the thermodynamic
limit, to the ordinary definitions for a solid (see [1], Sect. VI). There are, however,
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two other useful definitions which we will not touch upon in the main text (see
Appendix B, however) except to conjecture that P and K are non-negative for these
definitions as well.

(i) Dilation in one direction: Let Rt-^(lRl, Rf, Rf\ instead of R^IR^ Since this
is a one dimensional expansion it seems appropriate to define P = — de(λ, ΐ)/dl and
κ~ 1 = —IdP/dl As far as nonnegativity is concerned, this new definition changes K
but not P.

(ii) Separation relative to a plane: choose any plane which does not contain
nuclei. For convenience it may be assumed to be the x — y plane {(x1, x2,
x3)|x3 -0}. If £. = (£?, R?, Rf\ replace Rf by JRf + / if Rf >0 and by Rf - 1 if Kf <0.
Note that in this case we shift by I instead of dilate by /. Again, P = — de(λ, 1)1 dl and
κ~ 1 = — IdP/dl. In appendix B we will prove that P>0 if the plane is a symmetry
plane. This latter case was also proved by Balasz [4] but our proof is somewhat
different it uses reflection positivity. Balasz assumed there were only two nuclei,
but his method works for any symmetric situation. One reason for being interested
in this special case is that our (and Balasz') proofs are valid for the ionic case as
well.

The definitions we shall work with (1.6, 1.7) have one virtue, namely the
dependence of e on / can be converted into a dependence of e on the zf. This is a
consequence of the following scaling properties :

Henceforth, R19 JR2, . . ., Rk are fixed (with Rt φ Rj if i Φ j) We denote the fe-tuple
z1} ...,z f c simply by z. Let e(z,λ, I) be the energy with the uniform dilation /. Then,
from (1.1),

e(z,λJ) = ΓΊe(l3zJ3λ,l) (1.8)

and the minimizing TF density satisfies

ρ(z,λ,l'9x) = Γ6ρ(l3z,Pλ,l',x/l). (1.9)

Substituting (1.8) in (1.6, 1.7) yields (assuming that all derivatives exist)

3/10P = 7e-3P £ ziei-^λe2 (1.10)
i = l

9J10κ-1=70e-42ί3 £ Z;e;-42l3Ae2
i= 1

+ 9/6 £ Zίzjeίj + 9l6λ2e22 + M6λΣzίe2ί. (1.11)
ί , j = l i = l

In (1.10, 1.11) the notation is the following:

et = de(x, y, l)/dxt , e2 = de(x, y, l)/dy , etc.

These quantities are evaluated at x = Pz and y = Pλ. A numerical error in the
expression for κ~^ was made in Ref. [1], Eq. (145).

A more convenient form for P is obtained by noting that e = K — A + R + U.
Furthermore, if (1.4) is multiplied by ρ(x) and integrated over the set on which

)^0, one obtains

(5β)K=A-2R-l3λΦ0 (1.12)
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moreover, e2= — Φ0 (cf. (1.5)). Finally,

k
/3 Σ ziei = 2U~A = 2e-(ΐβ)K + l3λΦ0 (1.13)

i= 1

([1], Theorem 11.16 or Lemma V.7). Combining these facts and then using (1.8),
yields, for all A,

3l3P(z9λ,ΐ) = e(z,λ,l) + K ( z 9 λ , ϊ ) . (1.14)

For an atom, 2K = A-R (Virial Theorem, [1], Theorem 11.22), ί/ = 0 and
e = K-A + R. Thus (1.14) gives P = 0 for all A, as it should in this case.

The conjecture stated above, that the neutral case is the worst can be given a
more transparent form :
Conjecture 1. e + K is a decreasing function of λ for fixed z and Rt.

In this paper we will prove the positivity of P and K for the neutral case. In the
next Section the list of theorems to be proved is given. These theorems have an
easy heuristic proof and these are given in Sect. III. We do so because these
heuristic proofs are a guide to the proper proofs given in Sect. IV, and because they
may be a useful guide to future work.

II. Theorems to Be Proved

We will be concerned only with the neutral case and use the notation φ(z, x), ρ(z, x),
e(z), K(z\ A(z\ R(z\ U(z) to denote the TF potential and density at the point xelR3,
the total TF energy, the kinetic energy, the attractive energy, the electron repulsion
and the nuclear repulsion, respectively, (cf. (1.1)), for the unique TF ρ that satisfies
the TF equation (1.4b, 1.4c). zeRfc+ = { ( z ί 9 ...,zjz^0}. The Rt are fixed and
distinct.

Definitions. I f/ is a real valued function on IR+ then:
(i) /is weakly superadditive(WSA)<^>f(zί 4-z2)^/(z1) + /(z2), Vz1 ? z2eIRfe

+, such

(ii) / is superadditive (SAJo/ί^ +z2)^/(z1) + /(z2)5 Vz 1 ? z2

(iii) / is strongly superadditive (SSA)<^>/(z1 + z2 + z3) — f(z1 + z2) — /(z1 + z3)

(iv) / is ray convex<^>f(λz1 +(1 -A)z2)^
z2elRk

+ and either zi—z2e]Rk

+ orz 2 — zίE^k

+.
(v) / is ray concaveo — f is ray convex.
(vi) / is increasing^ f(zi +z2)^/(z1), Vz1 ? z2e!R

Obviously,

/ is SSA and /(0)^0=>/ is SA^>/ is WSA (2.1)

Further relations among these definitions are proved in Appendix A. These are
the following (Cp(JRfe

+) denotes the p-fold continuously differentiable functions and
subscripts denote partial derivatives) :

Lemma 2.1. (i) ///eC2(IRfc

+) then f is SSAof^Q, Vi, j.
(ii) ///eC1^) then f is SSA<^/ is increasing.
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Lemma 2.2. (i) 7//eC2(IRfc

+), /(0) = 0, and /^O Vzφj, then f is WSA.
(ii) I//eC1(R+), /(0) = 0 and f is an increasing function of z /or jΦz, then f is

WSA.

Remark. The converse implication is false as the WSA function /(z) = z1 sin2(z2) on
1R+ shows.

Lemma 2.3. / is SSA implies f is weakly ray-convex, i.e. f satisfies definition (iv)
with λ= 1/2.

Remark. The converse implication is false, even if SSA is replaced by WSA. On IR+,
f(z) = \zί — z2|-f z t + z2 is convex (not merely ray-convex), increasing and /(0) = Q5

but /(!,!)< /(1, 0) + /(0,1).

Lemma 2.4. /// is ray-convex and /eC1(IRfo

+) then ft is increasing.

Corollary 2.5. Iff is ray-convex and /eC l(IR+) then

Σ z /^/u-f-z')-/^ Σ z;/.(z+ z%
i = l i = l

The theorems to be proved can now be stated.

Properties of φ(z, x) (neutral case) :

Theorem 2.6. For each fixed xelR3, different from JR1 ? . . ., Rk, z^φ(z, x) is in C1^)
and C^IEt^). z(->φf(z, x) and zt-^φ. ,(z, x) are equicontinuous in x. Furthermore,

(i) φtj(z, x)^0, Vz, j, and is negative semidefinίte as a matrix, i.e. Σ c Cjφ^fz, x)

for allceCk.

(ii) φij{z,Rp)= lim φ f/z,x) exΐsίs (iΦQ).
-

(iii) z\->φi(z, x)^0 α?trf is ray-convex, Vz.

(iv) lim {^(z^-lx-^Γ1}^ ^wίs. ψ i(z,x)<|x-K ί

(v) φ .(z, R^) = lim φ.(z9 x) exists for i Φ j. Moreover, φ.(z9 Rj) = φ7 (z, Rt).

(vi) For every α<(l -f |73)/2, ί/zere ^xwί an Λ(a)< oo and finite numbers M(a)
β(a) swc/z that φ (z,x)^M(a)|xΓa, -φί/z,x)gβ(a)|xΓa, (zφO), /zo/^ when \x\

Using Lemma 2.1, we have

Corollary 2.7. For each fixed xeIR3, different from R^ R2, ...,Rk,
(i) -φ(z,x) is SSA.
(ii) φ(z,x) is concave (not merely ray-concave).
(iii) — φf(z, x) ami (φ(z, x) are strictly increasing.

Remark. That φ(z,x) is increasing is Teller's Lemma [5], [Theorem V.5, [1]].
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Properties of K, A, R and e (neutral case) :

Theorem 2.8. K(z)eC1(R+) and C2(Rfc

+\Q) and:

(i) K.(z) = 3 lim U(z,x)- X zjφfax) (2.2)
~

(u)Ky(z)=-3 ΣvMZ'Λ«.) (2.3)
p = l

Remark. The limit in (2.2) exists by Theorem 2.6, and by e = lim (φ(z,x)

-z-lx-^Γ1} ([1], Theorem 11.16, Lemma V.7).

Using Theorem 2.6 we have

Corollary 2.9. (ί) Kt.(z) ^ 0 and is positive semίdeβnite as a matrix,
(ii) K(z) is convex (not merely ray-convex) and SSA on IR+,
(iii) K(Q) = 0, wWc/z implies K(z) is SA.

Theorem 2.10. (i) R(z) and A(z) are convex (not merely ray convex) and SSA on IR+.
(ii) e(z) is WSA on Rfe

+.

Remark, (ii) is just Teller's Theorem [5], [1, Theorem V.I], e(z) is not SA. For k = 1,
e(z)= — (const.)z7/3, [1], and this is not SA. However we make the following.

fc
Conjecture 2. Let e(z) = Σ £a\z^ where eat(z) is the TF energy of an isolated atom

J = l

of charge z. Then e(z) — e(z) is SA.

Remark, e — e is not SSA because

(S2/Sz?) (e - 2) = lim (φ .(z, x) - (30flVfc) (z , x)) ,
X ^ R J

and this is negative if some zj φ 0 (j φ z) by Corollary 2.7 (iii). It is obvious that e - e
is WSA since e and — e are both WSA.

Definition. X(z) = 3X(z) - Σ ^iU) - (2 4)
i == 1

Theorem 2.11. X(z) is SSA αndX(0) = 0. HenceX is SA. Moreover X(z) is ray convex
(as follows from Lemma 2.3 and Theorem 2.8J.

These theorems can be combined to yield the desired results about the pressure
and compressibility.

Theorem 2.12. For the neutral molecule, the pressure and compressibility as given
by (1.6), (1.7) exist and satisfy:

(i) 3/3P(zHe(z) + K(z), (2.5)
(ii) 9/3κ~1(z)-6PP(z) + 2φ) + 3A:(z) (cf. (2A))9 (2.6)

(iii) P and κ~l are WSA and non-negative,
(iv) /2P(z, /) is a decreasing function of I. Equivalently, e(z, I) is a convex function

of I.
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Proof. We can write (1.8) in the form e(zJ) = Γ Ίe(Pz\ where e(l3z) = e(Pz, 1).
k

Hence 3l10P = le~3l3 £ z{e{ since ztet exists [1]. (1.12), (1.13) are true [1], and so
ι= 1

(2.5) is proved [cf.(1.14)]. Since e and K are WSA, so is e + K and e + K^($um of
the e + K for isolated atoms) = 0. Using scaling again on the right side of (2.5)
(K(z,l) = ΓΊK(l3z,l) also), and Theorem 2. 8(i), we can differentiate (2.5). Again
using (1.13) and rescaling, (2.6) is obtained. By Theorem 2.11, (iiί) is true. To prove
(iv) note that for an atom, e = — (const.) z7/3 and K — — e hence 2e -f 3X — 0 in this

<9P
case. Since e ana X are WSA, 2e + 3X^Q. Thus -/— ^2P. If one writes P(z,ί)

= ΓΊπ(zJ\ then dπ/dl^Q. D

The following conjecture, if true, would show that /4F is decreasing, for the
right side of (2.6) is 12/3P(z) +X(z). It would also show that K(z, I) is decreasing in /.

Conjecture 3. X(z) = 3X(z)-2K(z) is WSA.

Remark. X(z) = 0 for an atom.

Let us define E(z) = e(z)—U(z). It has been proved ([1], Theorem V.3) that
— E(z) is WSA. We conjecture that something stronger holds, namely

Conjecture 4. E(z, 1} is monotone increasing in /, for fixed z.

Remark. It is easy to check that Conjecture 4 is implied by Conjecture 1.
Conjecture 4 means that the pressure of a molecule in which the nuclear-nuclear
repulsion is neglected is negative instead of positive. Some results in this direction
for the Schrodinger theory are given in [11].

III. Heuristic Proofs

In this section we give simple, but non-rigorous proofs that K(z) and X(z\ (2.4), are
SSA and K(z) is convex. From this, Theorem 2.12 on the positivity of P and K
follows, as mentioned in Sect. II. We think it is important to provide these "proofs"
because the main line of the argument may be obscure in the proper proofs given
in the next section. These "proofs" assume that all necessary derivatives exist. Let
us begin with some facts about the TF potential φ(z, x). Hereafter we refer only to
the neutral case. By (1.4) φ(z,x) satisfies the TF equation

-(4πTlΔφ(z,x) + φ(z,xγi2 = Σz^x-K,). (3.1)
i= 1

The kernel for [ — (4π)~1A +φll2~]~1 is positive, and z.δ(x — Rt) are positive
"functions". Therefore φ(z, x)^0 all x. Differentiating (3.1) twice with respect to
the zs we formally get

(3.2a)

and

)φj(z,X). (3.2b)
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From Eq. (3.2a) we have φ.^0, since the kernel for \_-(4π}"lΔ +(3/2)(/>1/2]"1 is
positive. For the same reason, 0ί<7 ̂ 0, all z,j, and therefore — φ is SSA. Multiplying
(3.2b) by cί9cjy with c7 eC, and summing over ij we get,

Σ -1/2

Therefore the quadratic form ]Γ ^φ^ Cz, x)cy is non-positive for all CE Ck. Hence
u=ι

is concave in R+. Finally differentiating (3.2b) with respect to zl we have,

= (3/8) </> - 3/2φ^ - (3/4) φ - u* \_φuφ. + φ^ + φpφa , (3.2c)

which in turn implies φίj7^0 all ij, /. Indeed the following is formally true:
(-l)Π + 1φ ί ι ί 2_ ί n^O for all i. and all n^l.

Remark. If one assumes that the derivative (/>ίχ M exists, then Theorem 4 of
Ref. [3] shows that the sign is indeed (— l)n + 1. To use Theorem 4 for this purpose
it is necessary to choose Rt — Rj for some ί Φ j, but this is allowed, as explained in
[3] in the paragraph after (1.6). Theorem 4 of [3] directly gives the SSA of — φ
without going through Lemma 2.1. Indeed, Theorem 4 is a generalization of SSA
for example φ(z1 + z2 + z3 + z4, x) - φ(zl +z2 + z3, x) - φ(z1 + z3 + z4, x) - ψ(z1 + z2

+ Z4,x) + φ(z1+z2,x) + φ(z1+z3,x) + φ^1+z4,x)-φ(z1,x)^0. However, we are
obliged to prove the existence of the first two derivatives of φ(z, x) because we need
them in our proof that K(z) and X(z) are SSA.

From Φiβ^O follows the ray-convexity of φt because the quadratic form
k

]Γ (φi)jlZjZl is non-negative for all zeIR+.
j,ι=ι

Now, let us formally show that K is SSA. We have to prove that Ktj^Q all ij
(see Lemma 2.1). For the neutral molecule the kinetic energy is given by

(3.3)

Differentiating (3.3) twice with respect to the z's we get,

+ (3/2)\φ(z,x)1/2φi(z,x)φj(z,x)dχ ] . (3.4)

Introducing (3.2b) in (3.4), partial integration yields

1=1

where the last equality is a consequence of (3.1). But φ^O, all ij and therefore
KijέϊQ and K is SSA. Furthermore [φfj.] is negative semi-definite [recall the
discussion after (3.2b)] hence [Kfj ] is positive semi-definite and K is convex.
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It remains to be shown that X j^.0, all ij, that is, X is SSA (Lemma 2.1).
Differentiating X twice with respect to zί5 z we have

= 3 Σ ZιZmΦiim(R,),
ί ,m=l

where the last equality follows from (3.5). Therefore X^Q, all ij because

IV. Proof of Theorems 2.6-2.11

Here we give the rigorous proofs of the theorems enunciated in Sect. II. Only
neutral systems are considered. Let us begin by recalling some of the known facts
about the TF potential φ(z, x) that we are going to need in our proofs:

(P-l) φ(z, x) satisfies,

Φ(z,x)= Σ Zi\χ-RΓl-lχ-y\-lΦ&y)3l2dy. (4.1)
i = l

(P-2) φ(z, x) is bounded and continuous on any open subset of IR3 which is at
non-zero distance from all the jR^ ([1], Theorem IV. 1). In fact, the TF potential is
real analytic away from all the JR7 , on all of IR3 ([1], Theorem IV.6).
I k \

</>(z,x) — ]Γ z |x —R l" 1 is continuous for all x.
V ί=ι /

(P-3) φ(z,x) is strictly positive for zφQ ([1], Theorem IV.3).
(P-4) |x|4</>(z,x)-^9π~2 as |x|-»oo, uniformly with respect to direction. (This is

Sommerfeld's formula, [1], Theorem IV. 10.) Moreover, for every
c<3π"13R(c)<oo such that φ(z,x)^c2|x|"4 when |x|^JR(c) ([1], Theorems IV.8,
IV. 10).

(P-5) Properties (P-l) and (P-2) imply that φ(z,x) = zj\x-Rj\~ί+g(x) near Rp

where g is a continuous function.
(P-6) By the foregoing φ(z,x)eLp for every pe[l,3), and φ(z,x)1/4eLp for

every pe(3,12).
(P-7) φ(z9x) is increasing in z for every xeIR3. (This is Teller's lemma, [1],

Theorem V.5.)
(P-8) φ(z, x) is strongly subadditive in z for every xeIR3 ([3], Theorem 4). In

particular φ(z, x) is subadditive.
(P-9) φ(z, x) is concave in z.

Proof of (P-9). Let \p(x) = (φ(z,x)-aφ(z1,x)-(l -α)φ(z2,x), with z = oczί

+ (1 — α)z2, O^α^ 1. By (P-2) ψ is continuous for all x and by (P-4) ψ goes to zero
at infinity, hence iS = {x|ψ(x)<0} is open and \p = 0 on δ5u{oo}.On S, — (4π)~1zlφ
= - φ(z, x)3/2 + αφ(z1? x)3/2 + (1 - α) φ(z29 x)3/2 ̂  - φ(z, x)3/2 + φ(z, x)3/2 - 0 because
£κ>f 3 / 2 is convex. "Hence ψ is superharmonic on S and thus φ takes its minimum
on dSu{oo} where it is zero. Then S is empty." Π
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Remark. Since the argument between the apostrophes in the last paragraph
repeats several times throughout this paper we will denote it by MMP (maximum
modulus principle) to abbreviate.

If we call φ.(z, x) the derivative of φ(z, x) with respect to z , we have formally

(4.2)

Our first task will be to investigate the general properties of equations like (4.2).

IV.i. General Properties of an Integral Equation [Eq. (4.4)]

We deal here with U spaces (R3 always being understood) and with the weak L^
spaces :

Definition. feL^ (p>0) if and only if there is a constant c<oo such that
Df(ά) = μ{χ\\f(χ)\>a}^cpa~p, all α>0, where μ is Lebesgue measure. The in-
fimum of all such c is denoted by ||/||p>w.

Remarks. (1) L'CL* (for p^O). If/eZ/, li/| |p,w^ ||/||p.
(2) I I / U p w is not a norm since it fails to satisfy the triangle inequality.
(3) It can be easily checked from the definition that \x\~1eLl,.
We will need the following later.

Lemma 4.1. If f,geL^ and L*, respectively then f-geLr

w and \\f g\\r w

^r\\f \\pjg\q^ with r-^p-^+q-i and 0<p,q,r<w.

Proof. Without loss we can assume | |/ | |p> w=||0| |g,w = l

{x I \f(x)g(x)\ >a}c{x\ \f(x)\ > a"*} u {x \ \g(x)\ > α"*} .

Therefore Dfg(a)^Df(arlp} + Dg(ar/q). But Df(arlp)£a~r\\f\\p

pwand Dg(arlq)
^~r\\β\\\^ whence Dfg(a)^2a~r. D

Notes, (i) The constant 21/r is not the best possible. It is easy to find a better one,
namely pl/pql/q/rίlr.

(ii) For more details about L^ spaces the reader can consult [6].
The main tool to show existence and uniqueness of solutions to equations like

(4.2) in some function spaces is given by :

Theorem 4.2. Let weL^(IR3), w real, and let f <p<3. Then the map

Tw:g^w(x)l\x-y\-^(y)g(y)dy, (4.3)

is a bounded map from LP(R3)-»Z/(IR3).

Note. Theorems of this kind have been proved by Paris [9] and Strichartz [10].

Proof. By the previous lemma Aw:g^~>}vg is a bounded map from L^-^UW with
r~ 1 =p~ 1 + 1/3. Also Aw restricted to U is a bounded map by Remark (1). Now,
jB /iHxΓ1*/! *s a bounded map from Lr

w->L^ with 1 + ί"1 =r~l +(1/3) (since
|x|~1eL^, and the weak form of Young's inequality, [6]), when ί>l, l<r<3/2.
Therefore Tw = A^BAW is a bounded map from L£->L£ for all pe (3/2, 3). Finally by
the Marcinkiewicz-Zygmund interpolation theorem Tw extends to a bounded map
from//-*!/, 3/2<p<3. Π



The Positivity of the Pressure in Thomas Fermi Theory 203

If we restrict the domain of Tw to L2, Tw is a bounded operator from the Hubert
space L2 into itself. Moreover Tw is self-adjoint and positive since the kernel
\x — y\~l is positive definite. Hence we have,

Corollary 4.3. The equation (Tw+l)g = u with Tw defined by (4.3) and weL3, ueL2

has a unique L2 solution, g.

We now obtain the main result of this section :

Theorem 4.4. Let weL J, and wveL2. Then there is a unique f (defined a.e.) which
satisfies the equation

f(x) = v(x)-$\x-yΓ1w(y)2f(y)dy (4.4)

a.e. and such that w/eL2.

Proof, (i) Existence : Define

f(x)^v(x)-\\x-yΓlw(y)g(y)dy, (4.5)

where g is the unique L2 solution (by Corollary 4.3) to

(Tw + l)g = υw. (4.6)

From (4.5) and (4.6) we have wf=g and therefore the /defined in this way satisfies
(4.4) and also w/elA (ii) Uniqueness: Assume there are two solutions /1?/2 to
Eq. (4.4) such that w^ and w/2elA Both w/x and w/2 satisfy Eq. (4.6) which has a
unique solution. Therefore w/Ί = w/2 a.e., and hence /t =/2 a.e. [using (4.4)]. Π

Having shown the existence of a unique solution to (4.4) for some class of v and
w, we next specialize to the particular υ of interest.

Theorem 4.5. Let welR3 and let fu be the solution to the equation

(4.7)

with weL3 and hu(x) = w(x) \x- u\~ 1 eL2(lR3)/6>r all weIR3. Then the integral in (4.7)
is finite for all xeIR3 and thus fu(x) is defined by the right side of (4.7) for all
Furthermore, if wφίeIR3, fu(t)=ft(u).

Proof. Since weL^, and hu(x)eL2. Theorem 4.4 implies that there is a unique (a.e.)
function solving (4.7) and satisfying wfu = gueL2. Since wfueL2 and hx(y)eL2 for
all x, the integrand in (4.7) is absolutely integrable for all x. Now, gu satisfies
(1 + TJθu = hu and (gt9 hu) = (g^ (1 + TJgJ = ((1 + TJgt, gu) = (ftf, gu) since Tw [defined
in (4.3)] is self-adjoint. Explicitly, this says

Using (4.7) this implies O^ίO-lί-wΓ^/^ + lM-ίΓ 1 . Π

Up to now the only assumption on w was weL3. We will now make a stronger
assumption about w in order to obtain continuity of the solution to (4.7). First, a
preliminary remark :
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Lemma 4.6. If feLp and geLq with p,q dual indices different from 1 and oo then
f*g is a bounded continuous function going to zero at infinity.

Proof. This result is standard. See [1], Lemma 11.25. Π

Lemma 4.7. Let weL^ and such that weL 6 εr\L6 + ε (for some ε>OJ. Let v be such
that vweL2 and let f denote the solution to (4.4). Then the integral in (4.4) (namely
f—v) is a bounded continuous function going to zero at infinity.

Proof. By Theorem 4.4 the solution / exists and satisfies g = wfeL2. Using
Holder's inequality, wgeLp~r\Lp+ with p± = 2(6±ε)(8±ε)~1. We can always
decompose |xΓ1 = |x|<1 + |x|>1 with |x|~1eL3~ ? 7 + , \x\~leL3 + η~ (η±, positive).
Choose η± = ε(4±ε)~1 then (3 + η±) is the dual of p±. But f—v = \x\~**gw
= \χ\<1 *^w + |x| > 1 *0w, and hence this lemma follows from Lemma 4.6. Π

Remark. The w which will eventually be used is simply φll4(z, x). This satisfies the
conditions of Lemma 4.7 by (P-6).

We now study the dependence of the solution f on v and w.

Lemma 4.8. Let wεL^, and such thatweL6~εnL6 + ε (for some ε > 0) . Let weR3 be
a parameter, and let

vlί(x) = |x-ttΓ1 + 7(x), (4.8)

where V(x) is a continuous superharmonic function, bounded and going to zero at
infinity such that wVeL2, then:

(i) The solution fu to (4.4) is non-negative for all x.
(ii) // vu is fixed and if wί(x)2^.w2(x)2 all x, the corresponding solutions /1?

(resp. f2) to (4.4) with w = w1 (resp. w = w2) are such that f1(x)^f2(x) all x.
(ίii) Now keep w fixed. Let vlu,v2u be of the form (4.8) with vlu — υ2u superhar-

monic, then the corresponding solutions /lu,/2u are such that fίu(x)^f2u(x) all x.

Proof. Since weL 6~ εnL 6 + ε and Ix-MΓ^L3"^ +L3 + η~ with η± =ε(4±ε)"1,
using Holder's inequality we have w(x)|x — u\~1eL2. Therefore vuweL2 and, by
Theorem 4.4, there is a unique solution fu to Eq. (4.4), with this vu, satisfying
w/MeL2. Moreover by Lemma 4.6 and the properties of vu,fu [defined by the right
side of (4.4)] is continuous away from u and goes to zero at infinity, (i) Let
5 = {x|/(x)<0}. Since /u-*oo as x->w, S is disjoint from u and open (since fu is
continuous away from u). On 5, the distributional laplacian of fu is given by

Then (i) follows from MMP. (ii) Call φ=/2— /i ψ is continuous everywhere and
goes to zero at infinity. Let 5={x|t/;(x)<0}. Sis open and ψ = 0 on δSu{oo}.On S,
— (4π)~1Aιp = wlf1 — w2f2^ — w2ψ>0 and (ii) follows using MMP. (iii) is a
consequence of (i) and the linearity of fu in υu. Π

Theorem 4.9. (Asymptotic Behavior of f(x)). Consider υ(x} = \x\~l and w as in
Lemma 4. 8 and, moreover, w(x)2^.c\x\~2 for \x\>R and some c>0. Then f(x)

~α(c) for \x\>R where α(c) = (l + 1/1 + 16πc)/2 and M(c) = a(cΓlRa(c}~1.
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Proof. Take w1 defined by w^xJ^φΓ2 for |x|>jR and w2 = 0 for |xi<.R, the
solution to (4.4) corresponding to this w is given by /1(x) = M(c)|x|~α(c) for |x|>R
and /1(x) = M~1(l + ΦI) for M<# with M(c) = α(c)~1JRα(c)~1 and
a — (I — α(c))/(α(c)JR). We have w(x)2 ̂  w^x)2 all x and hence, by Lemma 4.8(ii)/(x)
^/Λx). In particular /(x)^M(c)|x|~α(c) for |x|>K. Π

To close this section we prove the following,

Lemma 4.10. // ϋ(x) = |x|~1, and w as in Lemma 4.8, then Jw(x)2/(x)dx^l, //,
moreover, w(x)2^c|x|~2 for |x|>JR (for some c, R), then jw(x)2/(x)dx = l.

Proof. Assume Jw 2/>l. Define the spherical average [/] (r)ΞΞ(4π)~ l j f(rΩ}dΩ.
s2

From (4.4) we have [/] (r) - r~ 1 - $w(y)2f(y) [(4π)~ l j dΩ\rΩ -y\~ l]dy. Using the
s2

well known formula (4π)-1 j dQ\rΩ-y\~l ^{max(r, \y\)}~1 we get [/] (r)
s2

^r~ 1 (l— j w(y)2 f(y)dy). Therefore for r large enough [/](r)<0 which con-
lyiύr

tradicts Lemma 4.8(i). Hence Jw 2/^l. Let us now consider w such that w(x)2

^c|x|"2 for |x|>Λ [/](r)^r~1(l— Jw2/) by the same arguments as above. If
Jw 2/<l, then \_f~\(r)^dr~ l for some positive d which contradicts Theorem
4.9. Π

I V.2. Proof of Theorem 2.6: Properties of the TF Potential

The strategy to prove that z->φ(z,x)eC1 is the following: we first show that a
unique solution to Eq. (4.2) exists (Lemma 4.11) and is continuous in z uniformly
with respect to x (Lemma 4.13). We then show that Φl(z9x) = ε~ί[_φ(z + εei,x)
— φ(z,x)], with et = (δty a unit vector in IR+ along zt, converges to φf(z,x) as ε-*0
uniformly in x. (Lemma 4.14). We then imitate the same argument to show that
φeC2.

In what follows we study the equation

φu& x) = \x - u\- 1 - (3/2)$dy\x -y\~l φ(z, y}l'2φu(z, y) . (4.9)

Note that WΞ(3/2)1 / 2φ1 / 4eL^ (since w goes as x]"1 at infinity) and weLp for all
pe(3,12) [(P-4), (P-6)]. In particular weL 6 ~ ε nL 6 + ε, for some e>0, therefore
|x — u\~1weL2 as discussed in the proof of Lemma 4.8.

Lemma 4.11. (Existence of φu(z,x)). There is a unique φu(z,x) satisfying Eq. (4.9)
with φuφ1/4eL2, and it has the following properties:

(i) φu(z, x) — \x — u\~l is a bounded continuous function going to zero at infinity.
(ii) z-*φu(z,x) is non-negative and decreasing
(iii) z-*φu(z,x) is ray-convex.

(iv) For every α<(l -f |/73)/2^4.77, there exists an JR(α)<oo and a finite
number M(α) such that φu(z,x)^M(α)|x|~α/or |

Proof. Since weL^ and |x~M|~ 1 weL 2 , Theorem 4.4 implies the existence of a
unique φu(z,x) satisfying (4.9) with wφueL2. (i) follows from Lemma 4.7, since
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επL6 + ε. As for (ii), Lemma 4.8(i) implies that z^φu(z,x)^Q all x; (P-7)
together with Lemma 4.8(ii) imply that z\-*φu(z,x) is decreasing. To prove (iii), let
z1; z2e!Rk

+ with zv-z2£^k

+ and define z = λz1+(ί-λ)z2 with O ^ A ^ l . Define
tp(x) ΞΞ λφu{z^ x) + (1 — λ)φu(z2, x) — φu(z, x). Because of (i) ψ(x) is continuous every-
where and goes to zero at infinity. Then S={x\ψ(x)<Q} is open and ιp = Q on
δSu{oo}. From (4.9)

Because of (P-9), (P-7) and part (ii) (since z1—z2e1R!i

+) we have — (4π)

Hence (iii) follows using MMP. (iv) given α < (1 + |/73)/2 (i.e. c < (9/2π)) there exists
R(c)<oo such that \v(x)2 = (3/2)φ(z,x}1/2^c\x\~4 (P-4). Hence, by Theorem 4.9,

Π

Remark. In the atomic case, Hille [7] used methods of ordinary differential

equations to prove that the asymptotic formula with α = (l+ l/73)/2 was exact
[[7], Eq. (4.5)].

We now prove a general theorem that we will later need :

Theorem 4.12. Let f be a real (or complex) function on IR+. Suppose f satisfies the
following condition:

\f(zl)-f(z2)\<K\\z1-z2\\«2, (4.10)

for α// z l 5 z2eIR+ such that z1 — z2e!R+, for some α>0 and some K>0, thenz\-*f(z)
is continuous in the whole of IR+.

Proof. Assume first that ze!nt(lRfc

+). Let n = (l, 1, ..., 1), and Z O Ξ Z — δn, with
δ^ min (z ) (i.e. z0elR+). Let z'eB(z9δ\ the ball of radius δ centered at z.

1 ^i^/c
Applying (4.10) twice we get |/(z')-/(z)|^(||z'-z0||^-f ||z-z0||^)X, because
z' — z0eIR+, z — z0eIR+. But, as δ->0, ||z — z0||2->0 and ||z'~- z0||->0 uniformly in
J5(z, (5), so / is continuous at z. Now, if z is in one face, F, of IR+ (of dimension 0 ̂  /
< /c) the same argument can be repeated using n= projection of n on F. Π

Lemma 4.13. (Continuity of φu(z,x) in z). φu(z,x) defined as the solution to (4.9)
(Satisfying φίl4φueL2) is continuous for all zelR^ uniformly with respect to x.

Proof. We divide the proof into two steps. First we prove continuity at z φ Q, and
then at z = Q. (i) zφQ. There is a z*elR^, z*ΦQ such that z-z*elRV Let z x,
z2e(z*+lR fe

+) with zί ~z26lR fc

+. From Eq. (4.9) we get,

ΦΛ^xJ-φ^x^^
-y\-iφ(z2,ymφu(z^y)-φu(z2,yK^ (4.11)

Since z1 — z2eIR^, φu(z2,x) — φ t t(z l5x)^0 because of Lemma 4.11(ii). Hence, (4.11)
implies

1^2, x) - Φu(^ x)\ < (3/2)f |x - y| ~ VM(z*, y) (φ(zl9 y ) ί / 2 - φ(z2, y)^2) .
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Because of (P-8) we have,

φ^y^-φ^yΓ-ίφ^-z^yyi^lz.-z^2 £ * (4.12)
ί=ι \y~~J^i\

where the last inequality follows from Eq. (4.1). Hence

\φu(z2,x)-φu(z1,x)\< \z,-z2\ "2g(x)9 (4.13a)

where

(4 13b),
ί=ι \Ly~~ Λίl

By Young's inequality g(x)GLao because \x\~1eL4-\-L5/2 and
\y-RίΓ

ll2φu(z^,y}ELp for any l^p<2, in particular for p = 4/3 and ρ = 5/3.
[Lemma 4.11(i), (iv)]. Theorem 4.12 and Eq. (4.13) then imply that φjz9x) is
continuous in z, uniformly with respect to x, for all ze(z* +R+). But (J (z*

-lRk

+\{Q}. (ii) z = Q, Equation (4.9) and Lemma 4.11(ii) imply

^x-yΓ1φ(z,y^2\y~uΓίdy. (4.14)

Using Young's inequality we get,

and thus H/zWIL gc||φ1/4||6, with c< oo because φ 1 / 4 |y-M|~ 16Lp for any (3/2) <p
<(12/5) and W<1eL ί?(p<3), |xi;1eLp(p>3). From (4.14) we finally get \\φu(z,x)

-φ^x}\\^c\\φll4\\^c(^}ll6 = cz11^ where z- ^ z, Π
i = l

Let us define φ.(z9 x) to be φu(z, x) with M = jR^ Then the last step to prove that
(/>(z,x)eC1(lR+), uniformly with respect to x, is the following:

Lemma 4.14. (Convergence of Φ1(z9x) to φ^z.x)). Let </> -(z, x) ΞΞ ε 1[φ(z + εfί, x)
— φ(z, x)] with et = (δty being a unit vector in 1R+, along zt and ε^ — zt. Then φ\(z,
x}-*φi(z, x) as ε-»0, uniformly with respect to x.

Proof, (i) Consider first ε>0. We will prove the following,

<#(z, x) - φfz + εei9 x) ̂  0 , (4. 1 5a)

(4.15b)

Consider φ(x) = 0?(z, x) — φ .(z + εei9 x). By Lemma 4.11 and (P-2), ψ is continuous
for all x and goes to zero at infinity. Then 5ί={χ|φ<0} is open and ψ — 0 on
<3Su{oo}. On S,

ei9 x) φ(z + εei9 x)
112
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where μ2 = φ(z + εet, x)/φ(z9 x) ̂  1 [by (P-7)]. Hence μ2-3 + 2AΓ1^0. MMP then
implies (4.15a). The proof of (4.15b) is analogous. From (4.15) and Lemma 4.13,
||φfex)-Φife,*)ll «,-><> as εjO. (ii) If -zί<ε<0, (4.15a, b) imply

ΦM^φfex^φte + εetX) (4.16)

which in turn implies || φ?(z, x) - φfe, x)\\ ̂  -»0 as ε|0. Π
If we denote by φ fj.(z, x) the derivative of φt (z, x) with respect to zj9 we formally

get (from (4.2)) :

- φ.J(z, x) - (3/4)f |x - y\~ 1 φ(z, y)~ 1/2Φfe yϊφfe, y)dy

(4.17)

As we have already mentioned, the strategy to prove that φ(z, x) is in C2(Rk

+ \Q),
uniformly with respect to x, will be the same as before. Now there will be an
additional difficulty, namely the control of φ(z,y)~ίl2. Let us start proving that a
solution to (4.17) indeed exists.

Lemma 4.15. (Existence ofφ^^x)). For zΦQ, there is a unique .̂(z, x) satisfying
Eq. (4.17) and such that φ^φ^^eL2. Moreover:

(i) φijfz, x) is continuous for all x. It is bounded and goes to zero at infinity.

(ii) —φ.j(z,x) is non-negative and so is £ c{( — φί;.(z, x))cj9 and ceCk.
l ^ i j ^ f c

(iii) — φ/7 (z, x) is a decreasing function of z.

Proof. Note first that, for zΦQ, φ(z, -)~1/4Φi(z, '}εLq for any 1 ̂ q<4. In fact, for
z ή= Q, φ is strictly positive (P-3) and φ(z, x) ̂  c|x| ~ 4 for |x| > R = 2 max |JR .| and some

ΐ

positive constant c (P-4). Because of Lemma 4.11(iv), φ ί(/>"1 / 4^c1 |x|1~α for |x|
>R(α) with 4<α<4.77. Then if β(0,JR(α)) = {x||x|^R(α)}, (/)^"1/4eLp(]R3\J5(0,
jR(α))), Vp^l . Inside β(0, R(α)) and away from #. φ~1/4φi is bounded since B is
compact, (P-4) and Lemma 4.11(i). In a neighborhood of R{ φtφ~114 behaves like
|x -RiΓ314, hence φtφ~ 1 / 4eL«for any 1 ̂ 4 <4. Therefore, φtφ- 1/4φjφ~ 1 / 4eL sfor
1^5<2 and, since M'^L^ .̂ = (3/4)1x1" ̂ (ΨiΦ"1^^"174)^^ for any 3<ί
<oo (by the generalized Young's inequality). Moreover, i;.^1/4eL2 because
φί/4eLp, 3<p<12. Finally, since φ1/4eL3, Theorem 4.4 implies that there is a
unique solution (/̂ .(z, x) (z φ Q) to Eq. (4.17) satisfying φ1/4φij<EL2. (i) By
Lemma 4.7, φ^ + v^ is a bounded continuous function going to zero at infinity.
Lemma 4.6 shows that t^ is continuous, bounded and goes to zero at infinity
because (φ~ίl4φi) (φ~l'4φ)€Ls for any l^s<2 and \xΓlεL* + L512. (ii) Follows
from Lemma 4.8 because vtj is superharmonic and so is ΣC U .̂ Lemma4.11(ii)
and (P-7) imply that v i j ( z ί , x ) — vij(z2,x) is superharmonic if z1 — z2eIR+. Then (iii)
follows from Lemma 4.8(ii) and (iii). Π

In order to prove the asymptotic behavior of φ^ fz, x) we will need the following
comparison Lemma. See also [[1], Theorem 4.7].

Lemma 4.16. Assume that /1? /2 are continuous positive functions on {x| |x| ̂  jR} with
the following properties :

(ϊ) ft(x), f2(x)-+0 as \x\-+n.
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(ii) — (4π)~1Af1 — ρ1 — W j / j , — (4n)~1Af1 — £?2~
w2/2' where the derivatives and

equalities are in distributional sense, and Ql(x)^Q2(
χ\ 0^w1(x)^w2(x).

(iii) f^x^f^x) for all x such that \x\ = R. Then f^^f^x) for all x such that

Proof. Define tp = /1—/2. Let S={x|ιp(x)<0}, which is open. On S — (4π)~1Aιp
= (ί?ι— ̂ 2)~wιt/;+ f2(w2~wι)^0 The Lemma follows from MMP since, by (i)
and (iii), φ = 0 at oo and φ>0 on dS. Π

Lemma 4.17. (Asymptotic Behavior of φ.j(z,x)). Let α<(l + ]/73)/2~4.77 and let
Φij^Z) χ) be the solution to (4.17) satisfying φ^φ^.eL2. Then there exists an R(α)< oo
such that — φij(z9x)^B((x)\x\~Λ for some β(α)>0, when |x|>jR(α).

Remark. The remark below Lemma 4.11 also applies to — φ.j.

Proof. Consider the equation,

-~(4πΓ1Af = br2(1-a}-dr-2f, for r = \x\>R (4.18)

where α(α — l) = 4πd, together with the boundary condition f(χ) = N for |x|=,R.
The solution f(x) to (4.18), going to zero at infinity is,

5Γί(oc-4Γ1r~aR4~a(l-(R/rγ-4). (4.19)

Given any α(c)<(l + |/73)/2 there exists R(c)< oo such that w(x)2ΞΞ(3/2)φ(z, x)1/2

^ΦΓ4 (P-4) and φ.(z,x)^M(α(c))|xΓα(c) (Lemma 4.11(iv)) for |x|^R(c). Hence
(3/4)φ-1/2φ-φX(3/4)M(c)2c"1|x|2-2α(c) for |x|^R(c). Using (4.17), (4.18) and the
comparison Lemma we get :

- Φij(z, x) ̂  [3πM2c ~ x(3α - 5) -1(α-4)~1]r-αR4-α(l~(JR/r)α

for |x|^J^, with N = max ( — φ . .(z, x)) which is finite because φu is bounded
|xj= K

(Lemma 4.1 5(i)). D

Lemma 4.18. (Continuity of φij(z,x}). φ^z.x) is continuous in z for all zeIRk

+\{Q},
uniformly in x.

Proof. Let z*ElRk

+\{Q} such that z-z*eIRk

+. Let z1? z2e(z*-f lRk

+) with
{z1 -z2)eRfc

+. Lemma 4.15(ϋi) and Eq. (4.17) imply

, x) - Φ ,̂ x) £ I(x) + J(x) , (4.20a)

with

/(x) = (3/4)J |x - y\ ~ 1 {φ(z2, y) ~ 1/2φ/(z2, y)φ /z2, y)

- φ(z1? y)~ 1/2^-(z1? y)φ .(z1? y)}rfy (4.20b)

and

J(x) - (3/2)f |x - y\~ H - φf/z*, y)) [φ(zl9 y)1/2 - φ(z2, y)1/2] dy . (4.20c)

To estimate J(x) we use (4.12) to get.

^W^IUi-ίzlll '^iW. (4 2i)
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k
where gf1(x) = (3/2)J|x-^Γ '(-Ψί/Λ )0) Σ Ly-#J~1/2^. Since for zΦQ φ.. is

n = l

bounded everywhere [Lemma 4.15(i)] and since it goes to zero at least as fast as
r~4 5 at infinity (Lemma 4.17), \y\~i/2φίjELp for any lgp<6. In particular
|y — KJ~1/2</> ί j.eL4/3nL2 and therefore, by Young's inequality gleLco because

2. I(x) is decomposed as,

(4.22)

where

(4.23a)

(4.23b)

(4.23c)

To find a bound for ίt(x) we use Lemma 4.11(ii) and the following estimate:

which follows from Eq. (4.1) and (P-7). Hence we have

(4.24)

with 32(x) = (3/8)||x-y|-1'/>(2*,}')"3/2Φ;(z*,}')'/>/z*,y) Σ Ix-^Γ1^. Since

φίφ~leLp for any p^6, (φiφ~1)(φjφ-1)eLp, p^3. Also, φ1'2 £ |χ-J
« = ι

Λ

l<g<2 and therefore φ"3 / 2φ.φ j ^ |χ —Rn |~ 1eL s, l^s<2. Since |x|~1εL4

+ L5/2g2eLco by Young's inequality. Equations (4.12) and (4.23) and
Lemma (4.13) imply

I2(x)^(3/4) j\x-y\~ 1g(y) \\zi -z2\\\!2φ(z*,y)~ 1 / 2φ/^*,y}dy

with

i= 1

because of Lemma 4.13. Then

/2(χ)^IU1-22 |li
/ 2g3W (4 25)

with
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Since φ~ll2φjeLp for any (3/2.5) ̂ p< 6 [Lemma 4.11(iv) and (P-4)] and [xp^L4

+ L2 we have ^3eLco. Then the lemma follows from Eqs. (4.20a), (4.21), (4.24),
(4.25) and Theorem 4. 12. Q

We conclude with the proof that φeC2(IR+\Q) uniformly in x, with the
following

Lemma 4.19. (Convergence of φ^(z, x) to φij(z,x}) : Let

Φlfe, x) = ε~ * lφ.(z + εβj, x) - φfe, x)]

wiί/i fy = [<5j] unit vector in R+ α/ongf z; and ε ̂  — z7 . Then φ^ (z, x)->φij(z, x) as ε-»0,
uniformly in x.

Proo/ (i) Consider first ε>0. As in Lemma 4.14 we prove first:

φi/z, x) ̂  φίfa x) ̂  φ^ + εep x) . (4.26)

Let ιp(x) = φε

ίj(z,x) — φij(z,x). By Lemmas 4.1 l(i) and 4.15(i), ip is continuous
everywhere and goes to zero at infinity. Then S = {x|φ<0} is open and ψ = 0 on
<3Su{oo}. Since ε>0, using Lemma 4.11(ii) we get,

βj, x) [φ(z, x)1/2 - φ(z + εep x)1/2 + (ε/2) φ(z, χ)~ 1/2φ/z, x)] .

Moreover, φ(z, x)1/2 -φ(z + εep x)1/2 + (l/2)φ(z, x)" 1/2φ/z, x) ̂  0 because φ1/2(z, x)
is concave (P-9), and φ is C2(1R+) for each x. Therefore, on S — (4π)"1zlφ^0 and
by the MMP the first inequality in (4.26) follows. The other one is proved in the
same way. Lemma 4.18 and (4.26) then imply ||ψ^(z,x) — φίj(z,x)||00->0 as ε|0 for
1ΦQ.

(ii) if - Zj < £ < 0, (4.26) is replaced by φ.J(z + εej9 x) g φ^ (z, x) ̂  φ.j(z, x) and the
lemma follows from that. Π

IV3. Proof of Theorems 2.8-2.11 : Properties of K, A, R, e, and X

We begin by proving that K(z) is in C1^) and C2(IRfe

+\Q).

Lemma 4.20. (Existence of Kt(z)). Let K(z) = (3/5) j φ(z, x)5/2dx. Then

Kjίz)= limε-^XίzH-β^-Kίz)]

exists and is equal to (3/2) jφ(z,x)3/2φ.(z, x)dx, where ^ = [̂ ] is α unit vector along
zi

Proof, (i) Consider first the case ε g: 0. Then

ε-^Cz + ε^-Kfz)]-^ (4.27)

Now,

-^^
(4.28)
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where P(μ) = (l+μ 5 / 2)~ 1(l+μ + μ2 + μ3 + μ4) and μ = φ(z,x)φ(z + εe ̂ x)'1 < 1 by
(P-7). Hence P(μ)rg5/2. Moreover, because of (P-9) and Theorem 2.6,

φ(z Hr εeis x) - ψ(z, x) ̂  804(z, x) (4.29)

Using (4.29), (4.27), and (4.28) we get:

ε " 1 [0(z + εei5 x)5/2 - 0(z, *)5/2] = (5/2) Φ& x) </>fe + εβ, x)3/2

where the last inequality follows from (P-7) (assuming εrg l ) and Lemma 4.11 (ii).
Since 03/2(z,x)eL1nL2 at least, \x-Rί\'1φ3/2{z + ei,x)eL1. Hence the lemma
follows by Theorem 2.6 and dominated convergence, (ii) In the case — z rgε:gO, an
analysis similar to the above yields

- φ(z, x)5/2] g 5/20^ + ee£, x) φ(z, x)3/2

-R^φ^x)312^1. D

Lemma 4.20 assures us that the derivatives of K(z) along the axis exist. The
proof that K(z) is in fact in C^IR^) is provided by the following:

Lemma 4.21. (Continuity of Kt(z)). Ki(z) = (3/2)§φ(z,x}3l2φί(z,x)dx is continuous
for all Z<

Proof. Let us prove continuity at z. Let z* = 2 max^X!, 1, ..., 1). Let

AΞίz'eR^I^-z'eR^}. Obviously zeA. Consider zΈA, z'->z. By Corollary
2.7(iϋ),

Moreover, as z;->z, φ(z',x)*l2φi(ϊ,x)-*φ(z9x)3l2φi(z,x) everywhere (Theorem 2.6).
The lemma follows by dominated convergence. Π

The following is a useful alternative expression for -Kf(z).

Lemma 4.22.

fe) = 3 Jim φ(z, x) - Σ
^^ l I j = l

. Because of (P-3) and Theorem 2.6(iv), the above limit exists.

Proof. From Eqs. (4.1) and (4.2) we have

7=1

(3/2) Σ ίix-yr^feyj^v^^y-jix-^rvu^)3^ (4.31)
7=1
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The two integrals on the right side of (4.31) are bounded and continuous
everywhere, therefore,

j = ι
(4.32)

Because of Eq. (4.2) and Theorem 2.6(v) we have

I\y-Rr1φ^yyf2φj(z,y)dy=^\y-Rjr
1φ(z,yy'2φi^y}dy (4.33)

for all ij. From Eqs. (4.32) and (4.33) we get,

j = ι

Combining the last equation and Eqs. (4.1) and (4.2) we finally get

F(z, R.) = (1/2) ί φ{z9 y)3l2φί(z, y}dy = Kt(z)/3 ,

which is Eq. (4.30). Note that to get the first equality we have used

f dyφ(z, y)ll2φjz, y) [J Λv|w - y\~ 1 φ(z9 w)3/2]

= j dyφ(z, j;)3/2[j dw| w - j/Γ * φ(z, w)1/20f(z, w)] ,

which is true by Fubini's theorem, since φ(z,y)1/2φ/(z,y)eL1 (Lemma 4.10) and
JdwIw-yΓ^w^eL0 0 (Theorem IV.l, [1]). Q

The right side of (4.30) can be written in terms of the right sides of the integral
Eqs. (4.1) and (4.2). Using the same kind of dominated convergence argument as in
the proof of Lemmas 4.20 and 4.21, it is easy to check that Ki is differentiable and

^=-3^^)1=1

= -3 tz,φ (z,^), (4.34)
/ - I

where the last equality follows by using Theorem 2.6.

Proof of Theorem 2.8. KeC\ XeC2(Rfc\Q) follow from Lemmas 4.20, 4.21,
Eq. (4.34) and Theorem 2.6. (i) is proved in Lemma 4.22 and (ii) is Eq. (4.34). Π

Proof of Theorem 2.10. (i) Let us start with the convexity of R(z). Define z = az1

+ (1 — α)z2, αe[0, 1]. Consider now the following identity:

)3/2 - αφ(z1? x)3/2 - (1 - α)φ(z2, x)3/2] |χ - y\ ~ ̂ (z, y)3/2

- α ί dxdylφ(z, x)3/2 -φ(zl9 x)3/2] |x - y\~ 1 [φ(z, y)3/2 - φ^ , j;)3/2]

- (1 - α) ί dxdylφ(z9 x)3/2 - φ(z29 x)3/2] |x - yΓ x [φ(z, }^)3/2 - Φ(z2, j;)
3/2] .

(4.35)
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The last two terms of the left side of (4.35) are negative because x\~ 1 is a positive
kernel. Moreover from Eq. (4.1) we get the following identity

yf/2^Q, (4.36)

where the last inequality follows from the concavity of φ(z,x) (P-9). From (4.35)
and (4.36) the convexity follows. The SSA is proved in a similar way. The Virial
theorem (Theorem 11.23, [1]) yields

A(z) = (5/3)X(z) + 2R(z), (4.37)

and hence the convexity and SSA of A follow from those of K [Corollary 2.9(ii)]
and R. (ii) That e(z) is WSA on IR+ is proven in [1], Theorem V.7. See also [3],
Theorem 1. (This is in fact Teller's Theorem [5]). Π

Proof of Theorem 2.11. Equation (2.4) and Theorem 2.8 imply

(4.38)

Xt(z)= lim 6ΛΓ(z,;x), (4.39)X-+RΪ

(4 4°)

Using now (2.2), (2.3), and (4.38) we get

with

Note that in order to obtain (4.39) we have used φeC2 and also Theorem 2.6(v).
Note also that the limit in (4.39) in fact exists because of (P-2), Theorem 2.6(iv) and
(ii). Let us compute N(z + εax) — N(z,x) for εe!R+. Using (P-9) and φeC1 we have,

Φ(z + ε, x) - φ{z, x) ̂  Σ e A(* +& ̂  (4 41)
j=ι

From (4.40) and (4.41),

N(z + ε, x) - N(z, x) ̂  - Σ ^-[Φjfe + &x) ~ Φ& ̂
j= 1

+ (1/2) Σ U + εMz+4.(/)j7(z + ε,x)-(l/2) Σ zfjΦji&x)- (4 42)
j , ί = l Ϊ , J = 1

The ray-convexity of φi [Theorem 2.6(iii)] implies :

We conclude that

ε ί ε , ( z + ε,x), (4.43)
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since φjl(z + ε,x)^φjl(z,x) [Lemma 4.15(iii)]. Although the right side of (4.43) is
negative, it is second order in ε. The following Lemma 4.23 shows that under these
conditions JV(z, x) must in fact be increasing. Hence X.(z) is increasing and by
Lemma 2. IX is SS A. Q

Lemma 4.23. Suppose /:[α, b]-»IR is a real-valued function such that for every
XE {a, b~\ there is a c(x) such that f(z) — /(x) ̂  c(x) (z — x}2 for all ze [α, 6] with z ̂  x.
Suppose further that ceL1([α,b]). Then f is increasing, i.e. z>x=>/(z)g;/(x).

Proof. Let JV>1 be an integer and let /;, for 7 = l, . . . ,n be the interval

/,. = (x + (/ - 1) (* - x)/n, * +./(* - *)/

with y0 = x, yn + 1 — z and y^Ij Without loss of generality we can assume φc):gO,
all x. Then

Λ,;7>{4(z-x)»
J = 0

because yj+1-yj^2(z — x)/n. Let d7.= j c(x)dx and d= Σ^ =

7j j = 1 x α

For eachj, there exists y εIj such that c(y7.) j 1 ̂ dj>9 otherwise J c < d j f Using these
^J 13

y we have

J = l

Taking n-»oo proves the lemma. Π

Appendix A

Properties of Superadditive and Convex Functions on 1R+

The definition of superadditive and convex functions on IR+, as well as many of
their properties, were stated in Section II. Those properties, Lemmas 2.1 to 2.4 and
Corollary 2.5, will be proved here.

Proof of Lemma 2.1. (i) => is trivial because /eC2(IR+). To prove <=, define
'(z). Then, for z^eR*.,

)-/fe + ̂ ι)L (A.1)

and

k
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where the last inequality follows from /^O all ij. But FA(/l,0)^0, and hence
Fλ(Λ.,μ)§;0. Also, F(0,μ) = 0, and hence F(i,μ)^0. (ii) => follows immediately from
the definition of an SSA function and the fact that /eC1(IRfc

+). To prove <= note
that if/eC1^) and/; is increasing we get, from (A.1), Fλ(λ,μ)^Q. But F(0,μ) = 0
and therefore F(λ, μ) ̂  0. Π

Proof of Lemma 2.2. This is similar to the previous one, taking into account that
f i j ^ Q all ij, zφj, and z^z^O imply

Σ (z^z.y ̂ O. D
U=ι

Proo/ o/ Lemma 2.3. I f / is SSA, taking z3 = z2, in definition (iii) we have that
(z1 +2z2)/2). Π

Lemma 2.4 is a well known fact for differentiate convex functions. See [8], for
example.

Proof of Corollary 2.5.

o

= Σ

because /• is increasing, by Lemma 2.4. The other inequality is proved in the same
way. Π

Appendix B

Posίtivίty of the Pressure Under Separation Relative to a Plane
(in the Symmetric Case)

Consider 2k nuclei with coordinates R^, ...,Rk and R_ί9...,R_k and strictly
positive charges z1? ...,zk, z_ 1 ? . . . ,z_ k satisfying (for i=l , ...,/c)

Let e(/) denote the TF energy for this molecule when jRf is replaced by jRf + /, i>0
and by Rf — i, z<0. The electron charge λ is immaterial but is fixed at some value

Theorem B.I. T/zβ pressure is strictly positive, i.e.,

e(l)<e(Q) for />0. (B.I)

Proof. The proof consists of showing that if the charge distribution (electron and
nuclear) is cut in two parts at the x3 =0 plane, and then pulled apart by a distance
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21, the energy is lowered. Let ρ(x) be the TF density when / = 0. Define ρt(x) by

ρz(x) = 0, -l<x3<L

Clearly J ρt = j ρ = λ, and we will use ρ^ as a trial density for the I problem. We will
show that S>

l(ρl)<S'(ρ) = e(0)9 where SΊ (resp. S) is the energy functional for /
(resp. 0). Obviously, K(ρz) = K(ρ).

Let DCIR3 be the domain {(x^x2,*3)^3 ̂ 0}. For any function/:/:D->C, let

rm. (R2)

In other words, Wt(f) is the Coulomb interaction energy between a charge
distribution /, supported on the x3^0 side of the xy plane, and its (complex
conjugate) reflection through the plane x3 = — /. ΐt is easy to see that

where μ is the charge density for x3 ̂ 0 for the / = 0 problem, namely for x3 ̂

μ(x)=-ρ(x)+ Σzfix-Rj). (B.3)

Since μφO, and W0(μ) = lim F^(μ), the following Lemma B.2 completes the

proof. Π

Lemma B.2. (Reflection Posίtίυίty of the Coulomb Potential). Let f be a non-null
function with support in D - {x|x3 ̂ 0} and with feLl(D). Then, for />0, Fί^(/)>0,
and Wl(f) is a finite^ strictly decreasing function of I Moreover, Wl(f) is a log convex
function of /, vanishing at I— oo.

Proof. Using the well-known representation for jx l " 1 , we have that

= (2πΓ 1 J d2p\p\ ~ i gp(x)gp(y) exp( - 2\p\ I)

with gfp(x) = exp[ip1x1+zp2x2 — |p|x3].
We have used the fact that

00

ί dp3[(p3)2 + α2] - 1 exp [ίp3(x3 + y3 + 2/)] = (π/α) exp [ - φ3 + y3 + 21)]

~ °° ^

when x3-f-y3 + 2/>0, as it is here. For pelR2, let h(p)= § f(x)gp(x)d3x. Since
D

feL\D\ \h(p)\<> 11/11 1; and h(p) is null if and only if / is null. For />0 Fubini's
theorem yields

(B.4)

The representation (B.4) proves the lemma. Π
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Note Added in Proof

In a recent related work [12], H. Brezis and E. H. Lieb have proved that the interaction among neutral
atoms in Thomas-Fermi theory behaves, for large separation /, like ΓΓΊ.




