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Abstract. An explicit description is given for all self-dual Euclidean Yang-Mills
fields and their parameter spaces in the theory with unitary gauge group of
arbitrary rank.

§0. Introduction

0.1. In [3-5] a geometric construction was given for all instantons, i.e. autodual
solutions of the Yang-Mills equations in the compactified Euclidean space S 4 in
the theory with arbitrary classical compact simple Lie group. This paper is an
elaboration of [3]. Here we derive explicit expressions for the field potentials and
parameters involved. For brevity we restrict ourselves to the unitary gauge group
case. The orthogonal and symplectic groups can be treated in a similar way this
will be done in a subsequent publication. We first state the main results.

0.2. Parameter Space. Fix an integer n ̂  1 and consider the set of matrix triples
{Rn, B, C) fulfilling the following conditions:

a) B, C are complex (n x n)-matrices

Set D =

0

B

= diag(ρ1?...,ρn), 0<ρί SQ2^ ••• ^

c τy

0
Then

b) Q ^ 0 and moreover, Q is strictly positive on a set of 4n-vectors which will be
explicitly described in §5 below.

Call two such triples {Rn,B,C) and (R'n, B'9C) equivalent if Rn = Rf

n and there
exists a unitary matrix U such that U~1RnU = Rn, U~1BU = B\ C/-1CC7 = C/.

Then the set of such triples up to equivalence is a parameter space for SXJ(2n)-
instantons with topological charge n up to gauge equivalence.

Note that an easy count shows that the dimension of the parameter space is
4 n 2 + 1, in agreement with general results of [6] and [10].
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03. Field Potentials. Fix a triple (Rn,B,C) as in 0.2. We represent a point
x = {xμ)eR4 by the (2n x 2rc)-matrix

£ π , -(x2-ix1)En

( + i)E (x4-ix3)En

Set S = R-DD+ and

d μ = — , μ = l , . . .4 .
^ X μ

These expressions define a solution of the self-dual Yang-Mills equations Fμ

= Fnv, where

^vJ ' μv 2 ρλ '

Its only singularities are at the points x where X + D is degenerate. They are non-
physical and may be removed by a gauge transformation. Note that although the
Aμ are not antihermitian they are gauge equivalent to an antihermitian field. In
fact they represent a self-dual Yang-Mills field with topological charge n for
SU(2n) corresponding to the point (Rn, B, C) of the parameter space.

0.4. Group Reduction. The above solution is irreducible only if S has the maximal
rank 2n. In the general case r = rkS^2n this solution can be reduced to the
subgroup SU(r) C SU(2n) imbedded in the standard way.

0.5. The Completeness of the Solution Set. An arbitrary π-instanton field for SU(r)
is equivalent to one of those described above in the following sense: for r>2n it
reduces to a SU(2n)-fϊeld by means of the standard inclusion SU(2n) C SU(r) and
for r^2n by means of SU(r)CSU(2n).

0.6. Gauge Equivalence, n-instantons corresponding to the triples (Rn,B,C) and
(Rf

n, B\ C) are gauge equivalent iff these triples are equivalent.

0.7. We use here the following geometric definition of an π-instanton in SU(r)-
theory: a differentiable hermitian vector bundle L over S4 with self-dual con-
nection F, of rankr and Pontryagin number n (see [2,8]). The hermitian metric
< , > on the fibres of L is assumed to be F-horizontal. That is, if V(d) is the
covariant derivative along a local vector field d on S4 and φ,ψ are two local
sections of L, then

d(φ, xpy = { V(d)φ, tp)> + <̂ φ, V(d)ψy .

The sphere S4 is a conformal compactification of the Euclidean 4-space R4 : S4

= i^4u{oo}. If we choose Euclidean coordinates (xμ) on R4 and an orthonormal

lΨi\
basis of sections of L, then for any section ψ — \ '. and Vμ = V(dμ\

Λ

 d u< • \W
o,, = - — we obtain
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The connection coefficients Λμ are the Yang-Mills field potentials corresponding
to (L, V, < , )) in an antihermitian gauge. Change of basis in L corresponds to a
local gauge transformation of the ^ ' s . The connection form of Fis ^Aμdx^ the
curvature form is Yf μvdxμ A dxv. Global gauge equivalence of instantons is defined
as an isomorphism of the corresponding vector bundles preserving metrics and
connections.

0.8. The geometric construction of instantons and the derivation of the results in
0.2-0.4 are given here with complete proofs. We do not, however, prove the
statements of 0.5 and 0.6, for which a completely different technique is needed: see
[4] for a sketch.

The paper is structured a follows. In Sects. 1 and 2 we present the method of
"complexification" of our problem due to R. S. Ward and M. F. Atiyah and prove
the fundamental Atiyah-Ward-Belavin-Zakharov lemma. Section 3 is devoted to a
description of the SU(2)-instanton of Belavin et al. and its parameter space in a
convenient geometric framework. Section 4 deals with a generalization of this
construction to the n-instanton case, and in Sect. 5 explicit calculations in carefully
chosen bases are presented. These are the main new results of our paper. Section 6
comments on the relation between this presentation and that in notes [3] and [4].
Finally, in Sect. 7 we discuss a possible application of our technique to the
problem of approximate decomposition of an n-instanton into a combination of
1-instantons. We show that our method supplies a kind of "spectral analysis" and
Backlund transforms for instanton fields.

0.9. Notation. R (resp. C) denotes the real (resp. complex) numbers; * means
complex conjugation; + denotes hermitian conjugation; t denotes matrix
transpose.

§1. Compactification and Complexification of R4

1.1. Notation. R4 is Euclidean 4-space with a fixed orthonormal basis; (xμ),
μ = l , ...,4 are the coordinates of a point x in this basis. The point x is
conveniently represented by the complex 2 x 2-matrix X defined by

, x2

Jrixι

where the σa are Pauli matrices. We also consider the bispinor space C 4 of complex
4-vectors z = {zμ), μ = l , . . . , 4 and denote by j:C4-+C4 the map j(zί,z2,z3,z4)

= ( — z*>2ί» ~z%z*) We will also let j denote the map MM*

Iz \ ^2'
and similarly for 3 . Each point xeR4 determines a complex plane PxcC4:

4

2l_ .•„ rf\

(i)



180 V. G. Drinfeld and Yu. I. Manin

We also set

1.2. Lemma, a) j{Px) = Px for all xeR4u{oo}.
b) Each complex plane P c C 4 with j(P) = P coincides with exactly one P x

xeR4u{co}.
c) C4 = uPx, all xeR4v{oo}, and PxnPy = {0}, if xφy.

Proof. By definition (1), {zμ)ePx iff

λ = I (x4-ix 3)z 3+(Λ: 2-fx 1)z

z2)

Hence

It follows that j(Px)cPx; the inverse inclusion and the case x = oo are obvious.
It follows easily from (1) that P x φ P y if x + y. Moreover, then P x n P y = {0},

/ —z*\ /z \
because there are no j-invariant lines in C 4 : if α 2 = 1 , then z3 = — αzf

= ~α(αz^)*= — \a\2z1 whence z 1 = z 2 = 0 and similarly z3 = z4 = 0. Every point
(zμ) Φ 0 lies in the j-invariant plane Czμ + Cj(zμ), which proves b).

Finally, a point zeC^P^ lies in the plane P χ J where x is defined by the
equations

_ 7 7* 4-7Z 2 Z 3 ^ Z 4

7 7 * _L_ 7 7 *
v + I ' χ _ Z 2 Z 4 + Z 3 Z 1

4 3 — i | 2 i | 2 '

One easily cheeks this by substituting (2) into (1).

13. We let π denote the map constructed above;

π:C4\{0}-^K4u{oo}, π(z) = x iff zePx.

We also identify P 4u{oo} with the 4-sphere

S4 =
a=l

by means of the stereographic projection

2xμ = 1 - W 2 .
ζ " i + | x | 2 ' μ "••' ' ζ s i+\χ\2'

X,, — •:—*τ~.
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The center of projection (0000-1) goes to oo the natural metric on JR4 and S4 are
4 j 5

conformally equivalent: ]Γ dx2 = ———-^ £ dξ2.
μ=l ( 1 + S 5 ) a=ί

Since the self-duality condition on the curvature form is conformally invariant, we
may and will check it in the JR

4-coordinates.

§2. Atiyah-Ward-Belavin-Zakharov Lemma

2.1. Let L be a vector bundle over JR4 or S4, ω a 2-form on JR4 or S4 with values in
L, π*(ω) its inverse image with values in π*(L). Ward and Atiyah [2] and
independently Belavin and Zakharov [1] have discovered the following important
fact.

2.2. Lemma. The form ω is self-dual iff the form π*(ω) is of type (1,1).

Proof. One easily sees that it suffices to prove this for forms with values in
functions. We consider the following basis of the space of self-dual forms on R4:

dx, A dx?+dx3 A dx, dx, A dx. — dx, A dx,
(3)

dx1 A dxΛ -f dx2 A dx3 .

Writing simply dxμ instead of π*(dxμ) etc. we find from Eqs. (1):

where ωvω2 are forms of (l,0)-type on C4. We will not use their explicit
expressions. It will suffice to note that ω 1 Λω 2 φO because dz/\dz2 occurs in
OJ/\ ω2.

Adding (4) to its complex-conjugate equations, we are then able to express dxμ

in terms of zμ,z* and ωi9ωf and subsequently to calculate the (2,0) + (0,2)-
components of the inverse images of the forms (3) on C4.

Omitting the easy details, we state the result. Let Z = 2(|z3 |
2 + |z 4 | 2). Then

[iZ2dx1 Λrfx2]
ί

= 2z%z%ωι A ω2 — 2z3z4ωf A ω | .

[iZ2dx1

One sees directly from these identities that the forms (3) in the (zμ, z*)~co-
ordinates have no (2,0) + (0,2)-components.

Now we must check that if π*(ω) = [π*(ω)] ( 1 > 1 ), then ω is self-dual. This
amounts to verifying the linear independence of the (2,0) + (0,2)-components of
the forms (3) over the functions on R4. But ω t Λ ω2 φθ, as we noted earlier, so this
follows from the linear independence of z3z4,Z3 + Z4, z\-z\ over the functions
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of x, which is evident because one sees from (1) that for any given x there is in Px a
point with arbitrary given coordinates (z3, z4).

A more general result with a more conceptual proof is given in [6].
The main application of Lemma 2.2 consists in a reduction of the instanton

classification problem to an algebrogeometric problem (see [2,6]). We will state it
here without proof, because the final presentation of our construction, although
based on this reduction, can be stripped of algebraic geometry, except for the
completeness part.

We note first of all that every 1-subspace of C 4 is contained in a unique j -
invariant plane Px. Thus, the map π:C4\{0}-*S4 can be factored through
CP3 = {projective space of lines in C4}->S4. This last map will also be denoted π.

2.3. Corollary. Let Lbe a differ entiable complex vector bundle on S 4 with a self-dual
connection V. Then the vector bundle π*(L) can be endowed with a unique complex-
analytic and hence algebraic structure in which a local section ψ of π*(L) is
holomorphic ifflπ*{V)']i0>ί)ψ = Q.

For computational purposes we will need another corollary of Lemma 2.2
which, except for notation, coincides with the original Belavin-Zakharov obser-
vation. Put in earlier notation

these are covariant connection derivatives of π*(L) on C4\{0}.

2.4. Corollary. The connection V on L is self-dual iff

In fact, the vanishing of these commutators is equivalent to the vanishing of the
(2,0) + (0,2)-component of the curvature form on C4\{0}.

§ 3. 1-Instanton for SU (2)

3.1. In this section we describe a geometric construction of the SU(2)-instanton
introduced for the first time in [7]. Our construction conveniently generalizes to
the rc-instanton case in Sect. 4.

3.2. Vector Bundle M. The map π: C4\{0}->54, defined in Sect. 1, can be completed
to a differentiable vector bundle of rank two with fibre Px over a point xeS 4 . We
let M denote this bundle. An instanton bundle L over S 4 will then be constructed
as the orthogonal complement of L in S 4 x C 4 relative to a hermitian metric on C 4

fulfilling some complementary conditions which we will describe now.

3.3. Metric on C4. Consider a hermitian metric <, > on C 4 which is antilinear in the
first argument and has the following properties:

a) <z, z> > 0 for all ze C4\{0}, that is, < , > is non-degenerate and positive.
b) (zJ{z)) = 0 for all zeC4.
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The metric is completely described by its matrix Q in the standard basis of C4. An
easy calculation (performed in a more general situation below in Sect. 4) shows
that condition b) is equivalent to the following symmetry property of Q:

0

Q =

τ
0
b

-c*

c*

Q
0

— c

b
0

Q

where ρ, τeR; b) ceC. Condition a) is then equivalent to the inequalities

ρ>0, τ>0; ρτ-( |5 | 2 + |

(5)

(6)

3.4. Vector Bundle L. Denote by L the vector bundle on S4 whose fibre Lx over a
point x is the orthogonal complement MX=PX of Mx in C 4 relative to <, >.

The metric <,) induces a hermitian metric on L.

3.5. Connection on L. The bundle L is a subbundle of the trivial bundle S4 x C4.
The latter is endowed with a trivial connection F° relative to which all vectors in
C4, considered as constant sections of S4 x C4, are horizontal. Setting

d

dx.

Uiw

we have
δ

dx
7£-V>iM\

Denote by V the connection on L which is the orthogonal projection on L of V °:

for all local sections ψ of L.
We will now calculate the connection matrices of Fin certain bases of sections

of L, and we will see that they coincide with the usual 1-instanton matrices.
First note that (L, V) does not change if we consider any α<, > instead of <, >,

with α > 0. So we may and will assume that τ = 1 in (5) and (6).

3.6. Bases of Sections of L. A basis of sections of M over R4 written in the basis of
standard constant sections of S4 x C4 consists of rows of the matrix

\X*E\ =
1,0

0,1

ρ 0

0 Q
, so that Q =

D R

(7)

b c

-c* b*

. A basis of sections of L is given by the rows of any

In fact, one easily checks that these rows fulfill the Eq. (1). Set D =

matrix \Z\, Z\\ of rank 2 where ZVZ2 are two 2 x 2-matrices depending on x and
fulfilling the orthogonality condition

\XE\
E D +

D R
(8)
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that is

(X + D)Z1+{XD++R)Z2=O. (9)

Setting here X + D = Yand S = R-DD + , one obtains

XD+ +R = {Y-D)D+ +R=YD+ + S,

and (8) and (9) may be conveniently written as

+ + Y~ίS)Z2 = 0. (10)

Each solution (Z l 5 Z 2 ) of (10) with rk \Z\, Z 2 | = 2 will represent a basis of sections
of L. Here are the two simplest solutions:

Zi=D+ + Y~1S9 Z2=-E, (11)

Z x = - £ , Z 2 = (Z)+ + 7 " 1 S ) " 1 . (12)

The basis (12) is regular everywhere on JR4, and the basis (11) is regular everywhere
except at points X = — D.

3.7. Gram's Matrix of Sections ofL. This is the "scalar product" of \Z\, Z\\ and α

2

relative to Q, that is,

G = (Z++Z + D)Zί +{Z + D+ +Z + R)Z2 . (13)

3.8. Connection Matrices. In a chosen basis we have

where the Aμ are connection matrices. Setting

μ μ (14)

and comparing (13) and (14), we obtain:

A^iG + T'H. (15)

Now calculate G, iί, and Aμ in the basis (11):

(16)

The matrices S and YY+ are scalar here:

l)' s=«-l | ' i 2-

where

d = (Im c, - Re c, Im b,
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and \x + d\2 is the square of the length of x + d. It follows that (11) represents an
orthogonal basis, and both of its sections have the length

Similarly one finds

H = δ μ Z 1

+ (Z 1 -D + ) = Sδμ(Y+)- 1 y - 1 S (17)

and then, substituting (16) and (17) into (15),

Comparing this with the standard f Hooft's formulae [6,9], one sees that this is a
self-dual 1-instanton Yang-Mills field for the gauge group U(2). The point x= — d
is the instanton center and the parameter s defines its scale.

Finally, note that Eq. (9) reveals a simple geometric meaning of the instanton
center: this is the unique point at which the fibre of L is orthogonal to the fibre L^,

1 0 0 0
that is, coincides with the space Mm generated by the rows of

(7).
0 1 0 0

, in view of

§ 4. A Geometric Construction of n-Instantons for SU(2w)

4.1. This section presents a generalization of the previous construction to the case
of arbitrary n ^ l . In addition to the previous data, choose an n-dimensional
complex space /. All vector bundles to be constructed will be subbundles of the
trivial bundle S 4 x (i^CΛ. In the case n = 1 our construction will reduce to that of
Sect. 3. \ c I

4.2. Vector Bundle M. This is the subbundle of S4 x ίlζ&CΛ with fibre I®PX over a
point xeS4. The rank of M is In. \ c )

4.3. Metric on 7®C 4 . Let ε 1=(l,0,0,0), ...,ε4 = (0,0,0,1) be the standard basis of
C4. Set Iμ = I®εμ, so that / ® C 4 is the direct sum Ix © ... I4. For a point ze C 4 and
a vector eel we set

4

eμ = e®εμelμ, ez= £ βμzμ, Iz = {ez\eel}.

It is clear that Iz is an n-dimensional subspace of J(x)C4 if z#=0.
Choose a hermitian metric <,) on 7®C 4 which is antilinear in the first

argument and fulfills the following conditions.

a) <,>^0; (ez,ez)>0 for all eel, zeC*, ez + 0.

It is essential, in contrast with the case n = l , that the metric is permitted to be
degenerate. The corresponding instantons will be reducible to a subgroup
SU(r)cSU(2n).

b) <ez,jf/(z)>=0 for all ejel, zeC4.
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4.4. Vector Bundle N. We denote by N the vector bundle over S4' whose fibre over a
point xeS4 is the orthogonal complement Mx of Mx relative to the metric <, >. To
show that N is well-defined, some verifications are needed.

First of all, if zePx, zφO, xΦ oo, eel, we have in view of (/):

(19)

This shows that Mx = Iz + Ij{z); this is also true for x = oo, M 0 0 = J 1 + / 2 .
Now it follows from Condition 4.3a) that the restrictions of <, > to Iz and Ij{z)

are positive definite, and it follows from Condition 4.3b) that Iz and Ij{z) are
orthogonal. Hence the metric on all MJs is nondegenerate, so that άim'Nx = An
— dim Mx = 2n and N is actually a vector bundle.

Notice by the way, that the rank of the metric lies between 2n and An.

4.5. Vector Bundle L. Denote the rank of <,> by 2n + r, 0 ^ r ^ 2 π . Let K be the
null-space of this metric in 7®C 4 , of dimension 2n — r. Obviously KcNx for all
xGiS4. We denote by L the vector bundle of rank r whose fibre over xeS4 is NJK.
The induced metric on the fibres of L is nondegenerate.

4.6. The Connection on N. As before we denote by V° the trivial connection on
5 4 x ( / ® C 4 ) . All vectors in / ® C 4 define P°-horizontal sections of this trivial
bundle. We also denote by Fthe projected connection on N. A little care is needed
in defining the projection, as Nx contains the null-space of the metric. However,
MxnK = {0} for all x, hence pr M is well-defined, and we may set
prN(xp) = ψ — pΐM(ψ) for any section ψ of N. The induced metric on N is V-
horizontal. In fact, if φ, ψ are local sections of N, we have

= <(id - prM)F°(δ>, ψ) + (φ, (id- pr M )P°(5»

4.7. Proposition. The connection V on N is self-dual.

Proof. We will use Corollary 2.4 and will show that

on π*{N), where, as before, V=π*{V){-~\, F- = π * ( P ) ( ^ - | ; a,b = ί, ...,4.
\dzj _ \dz*J

Take a section φ of π*{N) and a vector eel. Since

ezeIzClz + Ij(z) = (π*N)z

and the metric on N is horizontal, we have

Therefore, the section V^φ of (C4\{0}) x (/®C4) is orthogonal to the sections of the
subbundle with fibre Iz over a point zeC4\{0} and so is a section of the subbundle
/ j ( z ) + π*(ΛΓ). This means that

V®φ = Fflφ + a section of / J ( z ).
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Now the subbundle Ij{z) is Pb°-invariant. Hence

p p = p

Interchanging a and b here and substracting the results, we obtain, using

=a s e c t i o n of / j ( z ) .

As Ij{z) is orthogonal to {π*N)z (see 4.4) we finally obtain [PΩ, PJφ = 0, as desired. A
similar argument shows that [Fa, P^]=0.

4.8. The Connection on L. Recall that L = N/K, where K is the constant subbundle
of N with fibre K, the metric's null-space. Obviously, V®(K)cK. In addition,
prM(X) = 0 so that V° coincides with Pon K. Therefore, V induces a connection VL

on the quotient bundle L which is also self-dual. All of this means simply that the
instanton for SU (2ή) represented by (JV, V) reduces to an instanton for SU (r),
represented by (L, VL\ where r = In — dim K = rk <, > — In.

4.9. Topological Charge. Since our bundles M and N are explicitly imbedded into a
trivial bundle, easy topological considerations allow us to calculate their
Pontryagin indices. We omit this calculation, which shows that this index is n for
N and L as soon as r ^ 2 . So we have in fact constructed n-instantons. Another
argument may be based on the results of the following section, from which one can
deduce that N can be continuously deformed into the direct sum of n 1-instantons
for SU(2). Since the topological charge is additive and deformation-stable, one
again sees that it is equal to n.

§ 5. Computation of Connection Coefficients

5.1. In this section we fix the space /(x)C4 with hermitian metric fulfilling the
conditions of 4.3 and derive explicitly the parameters of this metric and the Yang-
Mills potentials Aμ in a convenient gauge.

5.2. A Standard Basis in I. Recall that / ® C 4 = / 1 © ... ©J 4 , where Jμ = J(x)εμ. The
Condition 4.3a for z = εx and ε3 shows that the induced metrics on It and J 3 are
positive definite. Identifying / with Iμ via eκ>β(χ)εμ, we can consider them on /. A
classical theorem on simultaneous reduction of two hermitian forms on a space
shows that there exists a basis (ev ..., en) in / relative to which the first form is given
by the identity matrix and the second one by the matrix diag(ρ1 ; ...,ρw), where
0<Qx UQ2= ••• =Qn- The numbers ρ. do not depend on the choice of basis. The
basis itself can be changed into (e l 5 . . . , en)U where U is an arbitrary unitary matrix
with Udiagiρ^U'1 = diag(ρ ). We fix once and for all such a basis (e ) and set
eiμ = ei®ε

μ

eIμ> i = 15 5 w μ = 1,...,4. The vectors (eiμ) constitute a basis of/(χ)C4

which we order as follows: (elv ...,enl ... ; β 1 4 , ...,β/ l4).

5.3. Proposition. The Gram matrix of (eiμ) for the metric <, > is of the form

Q4n=^2n D

Ό

2n > (20)
D2n K2n
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where

(21)

73, C being complex (n x n)-matrices. Conversely, take any matrix QAn of the form
(20) and (21) and suppose that Q^O. Then the metric < , > defined by Q4n in the
basis (eiμ) of 7(x)C4 fulfills all the conditions a) and b) of n 4.3 with the possible
exception of the conditions <βz, ez) > 0 for all ez Φ 0. This last requirement cuts out a
certain boundary subset of (20) and (21).

Proof. We need only check that the symmetry properties (20) and (21) are
equivalent to the condition <ez,j)'(z)> = 0. In the above notation we must have for
e — et, f = ek; ί,K = 1,. . . ,n:

The vanishing of the z\z\, z\2, and z | 2 coefficients means that

Hence, the metrics on / induced from j \ and 72 coincide, and / 1 is orthogonal to
I2. Since in our basis the matrix of < , ) on / 1 is the identity, this shows that the
upper left (2n x 2n)-block in QAn is E2n.

Similarly, the vanishing of the z | z | , z*2, and z | 2 coefficients means that

Hence, the metrics on / induced from J 3 and 74 coincide, and 73 is orthogonal to
/ 4 . This shows that the lower right [In x 2rc)-block in QAn is R2n.

Finally, the vanishing of the z\z\ and z\z\ coefficients means that

<>α> eκ4> + <ei3> eκ2> = 0 <eiv eκ3} = {eiA, eκ2) .

Since < , > is hermitian, the coefficients of z | z | and z\z% then vanish automati-
cally, and the blocks D,D+ are of the form (21). This finishes,the proof.

Note, incidentally, that the change of basis (el9...,en)U results in the change

B^U'^U, C\->U~lCU

in agreement with 0.2.
In what follows, we will represent the sections of all our subbundle of

S 4 x (7(χ)C4) in the basis (eifι) of constant sections of this bundle.

5.4. Basis of Sections of M. Set

Y* =

Formulae (1), (7), and 4.2 show that the rows of the matrix \X2*n,E2n\ represent a
basis of sections of M.

From this point on we shall omit the subscripts showing the dimension of a
matrix. In particular, we will write T£,X,X* etc. instead of R2n9X2n,X^n.
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5.5. Gram's Matrix for the Basis of Sections of M. It is

\XE\

Setting S = R — DD + , as in 3.6, we can rewrite it as

E D +

D R

(22)

Since the rank of |X*£| is 2n at any point of R4 and the metric is nondegenerate on
all fibres of M, the matrix (22) is positive definite everywhere.

5.6. Basis of Sections of N. As in 3.6. we represent a basis of N by the rows of a
matrix \Z\,Z1^ where Z f are (2n x 2n)-matrices depending on x. The condition of
orthogonality to M looks formally the same as (9) and (10):

+ Y~ίS)Z2 - 0 , (23)

where Y=X + D. We will choose a basis of type (11):

Z1=D+ + Y~ιS, Z2=-E. (24)

As in Sect. 3, this is singular at the points xeR4 where det(X -f D) = 0. But, unlike in
the case n = 1, this set in general is not a point or even a finite set of points. In fact,
it is a closed bounded subset of R* which even for n = 2 may have dimension 3. We
will call this set the central Zone of our instanton. Note that it can be defined in
invariant geometric terms as in the case n — 1: it consists of those points xeR4 for
which dim(NxnN^)>0. It seems that the lagrangian density of the instanton is
mainly concentrated around its central Zone. See further comments in Sect. 7.

This important distinction between the case n = 1 and n > 1 is also consequence
of the fact that YY+ and S are not scalar matrices anymore, except for certain
degenerate cases.

5.7. Gram's Matrix for the Basis (24). The same calculation as in 3.7 and 3.8 shows
that it is equal to

S ( Y Y + ) ~ ι S + S = S((YY + ) - ι S + E). (25)

The matrix (YY + )~ ιS + E tends to E as |x|-»oo. Hence (25) is almost everywhere of
rank rkS = r in the notation of 4.5.

5.8. Null-Space. Since KcNx for all xeR4, we represent elements of K in a basis of
sections of N. Then K, or rather sections of K, can be identified with the space of
vectors annihilated by S in the basis (24). In fact, (25) shows that these vectors are
orthogonal to all of N, and so also to N@M = S4 x (/®C4). On the other hand, the
dimension of the kernel of S is equal to 2n — r, that is, to the dimension of K.

5.9. Connection Matrices. We noted in 4.6 that to calculate the connection matrices
for Fin the basis \Z\, Z\\, we should first project dμ\Z\, Z\\ onto M. To calculate this
projection in the basis of 5.4, first of all we set
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Calculating the scalar product of both parts with the basis of sections of M, we
find, using (22):

1. (26)

Furthermore,

prNdμ\Z[, Z\\ =dμ\Z[, Z'2\ - prMdμ\Z\, Z'2\

(27)

The rows of the last matrix represent the corresponding projections in the initial
basis (eiμ) of constant sections of S4 x (J(χ)C4). On the other hand, the connection
matrices Aμ are determined from the relations

μ

f

1 , Z t

2 | = 4 | Z t

1 , Z ί

2 | . (28)

Comparing the last blocks of (27) and (28) we obtain

Finally, using (26) and (24):

This is the formula given in 0.3.

6. Why All Instantons Have Been Constructed

6.1. In this section we will show briefly that all SU-instantons were constructed in
Sects. 4 and 5, and that gauge equivalence was properly described in 0.6. In order
to do this we will rely heavily on the corresponding results announced in [3] and
[5], with outlines of proofs given in [4]. So we will explain only how the
presentation given here can be reduced to that given in [3].

6.2. In [3] the following variant of the construction of rc-instantons for SU(r) was
introduced. Consider a diagram of linear spaces Jci7(x)C4, where dim^/^π,
άim€H = 2n + r, and H is endowed with a positive hermitian metric with the
properties corresponding to those of 4.3. Let a point xeS4 correspond to the
orthogonal complement in H of the sum of the images (idH(g)l)I where I runs
through all linear functions on C4 which vanish on Px. This gives a hermitian
vector bundle L on S4 imbedded into S4 x H, of rank r. The instanton connection
on it is the projection of the trivial connection onto L. Since the sum of the images
(idH ®Z)J in H is of dimension ^4w, each ft-instanton constructed in this way can
be reduced to an SU(2n)-instanton. So we can assume άimH = 2n + r^4n.

To make the transition to our present description, we let the diagram
ICH(g)C4 correspond to the pair {/®(C4)*, hermitian metric induced by
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/(χ)(C4)*—•#}. Here (C4)* is the dual space of our earlier C4, but as we do not need
the latter anymore, we write C 4 instead of (C4)*. Under this identification, Px

corresponds to forms which vanish on Px. So the two pictures are essentially the
same.

Now in [4] it was shown that this construction gives all instantons in an
essentially unique way, that is, gauge equivalent instantons correspond to
isomorphic diagrams. But in Sect. 5 we characterized each diagram by the set of its
invariants (R, B, C) up to unitary equivalence. This completes our discussion.

§7. Final Remarks

7.1. The Problem of Superposition. In the physical literature [9, 10] it was argued
that an w-instanton might be considered as a sort of nonlinear superposition of
ftl-instantons for SU(2). For example, in [9] it was suggested that if we take
n\-instantons for SU(2) in t'Hooft's gauge (v4μ's singular in the center) and then
sum up these ^ ' s , we will get an approximate value for the n-instanton Aμ. This
gives the right number of parameters: center scales and relative gauge orientations
of 1-instantons. A similar dimension count supported by a calculation for t'Hooft's
solutions was presented in [10] for an arbitrary simple gauge group.

Since we have a complete description of n-instantons, it would be important to
see this picture in our setting. It seems reasonable to conjecture that the centers of
the 1-instanton constituents of our n-instanton should be points in its central
Zone.

Since in general the latter is not 0-dimensional, one should probably look at its
singular points or points where τk\X-\-D\^2n — 2. Relative gauge orientations
might be connected with a sort of "matrix residue" oϊQC + D)'1 at these points. On
the other hand, it is conceivable that a non-negligeable part of the euclidean action
is also concentrated around other points of the central Zone. A. S. Schwartz has
informed us about his calculations in the 2-instanton case, which seem to support
this conjecture.

7.2. Bάcklund Transforms. The geometric picture of Sect. 4 can be used to introduce
a sort of Backlund transform or "non-linear spectral analysis" on n-instantons.
Namely, take a space /(χ)C4 with hermitian metric < , >. Then for each subspace
Γ Cl we have the induced metric on /'(χ)C4. If the Conditions 4.3a) and b) are
fulfilled for the initial metric, they are obviously fulfilled for the induced one. This
means that each n-instanton determines a family of m-instantons connected with
all m-dimensional subspaces of /. Note that in general these m-instantons will be of
rank 2m even if the initial instanton was of smaller rank, say two. We do not see
any simple way to relate these new instantons with the initial one using only the
vector bundle description or the connection coefficients, although in our con-
struction this transform looks perfectly natural.

The case m = l is especially interesting. Actually, in this case we have n
uniquely determined 1-instantons corresponding to the subspaces CetCl, at least if
Qi^rQj when ίφj . These n instantons constitute another plausible condidate for the
superposition conjecture.
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73. Open Problems. Besides the superposition conjecture, we would like to
mention two problems which should be accessible now.

a) To understand the geometry of the parameter space described in 0.2. In
particular, do the boundary components corresponding to a given r<2n form a
connected set? There is a striking similarity between this problem and some
geometric questions in the theory of Cartan symmetric spaces.

b) To derive conservation laws for self-dual or even complete Yang-Mills
equations.
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