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. L 1 .
Abstract. It is shown that the expansion in powers of N characteristic of

. . . 1 .
Gross-Neveu type models is of quasiclassical nature, N taking part of the

Planck constant. The limity classical mechanics has curved phase space that
does not admit introduction of naturally canonically conjugated coordinates.

1. Introduction

During the recent the years a number of papers appeared which were based on the
following scheme.

1. One considers a field theoretical model A with the Hamiltonian H(g,y,...)
=H(p,p,...)+H,, (¢, w,...) wherein H, and H, , are operators which may be
expressed through quadratic combinations of the fields. For instance

2
H0=j<n2+z<?q)> +m2(p2>d3x
0Xy,

H;\ =g [ o*(x)p*(x)d’x .

2. One considers a Hilbert space #,, which is the product (the graded product
in the Fermi case) of N specimens of the state space #, of the model 4. In the
space #,, one considers fields @, vy, ... which are the copies of the fields ¢, 1, ...
of the model A. For different k’s these fields commute for the Bose case and
anticommute for the Fermi case. To each operator C(p,w,...) in the space 3,
which is quadratic in the fields ¢, yp, ... one puts into correspondence the operator

1 N
CN=—NZC(cpk,1pk,...). (1.2)
1

(1.1)

To each operator in the space #, which may be expressed as a function of
quadratic operators F=F(C%,..., C%) one puts into correspondence the operator
Fyin #, which is the same function of the operators Cy:Fy=F(C},...,Cy).

* Talk given at the Rochester conference, Tbilisi, 1976
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In particular, one defines the Hamiltonian H as the operator that corresponds
in the above sense to the Hamiltonian H of the model 4. We denote as 4, the
model which has thus arise.

For example with the operator (1.1) the operator Hy=H, y+H;, y 18
associated where
1 N 3 a 2
Hyy=—= [ Y (mt+ ) P +m?l|dx,
TN S s=1 \0x;
2 (1.3)

g N
Him,N= W j (kgl (p,f(x)) d3x .

3. One investigates the asymptotical behaviour of the model 4, as N oo,
namely that of the spectrum of the Hamiltonian H, of the effective potential etc.
Such scheme was, in all appearance, first considered by Gross and Neveu in [1].

The Hamiltonian H studied in [1] differs from (1.3) by a factor: Hy=NH,.
The corresponding evolution operator is the same in the both cases:

~ 1 1
exp(tH y=exp(tNH,)=exp (; HN> where x= N

In the present paper it is established that the limiting theory 4, = Al,im Ayisa
classical field theory. “
The parameter x = N plays for this limiting transition the same role as the

Planck constant h does in the usual quasiclassics. The phase space of the limiting
theory is not flat. In particular no natural canonically conjugate variables exists in
this space. Therefore the results obtained earlier within the Gross-Neveu-type
models may be referred to as a quasiclassical approximation for the original model
A although with a peculiar classical limit and peculiar quantization. The
finitedimensional counterpart of these constructions was studied in detail in [3]
and [2].

To avoid possible misunderstanding it is worth emphasizing that the quantity

1 . . S .
x= N has nothing to do with the Planck constant & which is involved into the

commutation relations. The value of h is kept constant while the limiting
transition ¥—0 is being carried out. Therefore the limiting classical mechanics
retains h as a parameter. It is classical in the sense that the observables are
functions on the phase space and the dynamics is given by the Poisson brackets. At
the end of Section 5 we discuss the further limiting transition, when h—0, too, and
compare the obtained results with the ordinary quasiclassics.

2. Manifolds F, and B, and Their Infinite-Dimensional Analogs
1. Definition of the Manifolds F, and B,

Internal Description. Let # be the Fock space of states for the Bose or Fermi
system with n degrees of freedom. We normalize the commutation relations as
follows

La(p), a*(@)]. =ho, , . (2.1)

where h is the Planck constant.
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Denote as G the group of homogeneous linear canonical transformations. The
group G may be conveniently represented as a group of 2n x 2n matrices of the

. oY . . .
special form g= v o) where the bar denotes the complex conjugation. Remind

that the matrix ¢ of this form is a matrix for a canonical transformation iff

o [ DF &YW —1 for Bose case
7 = (8'1’* @’ )’ - {-I—l for Fermi case , @2
* is a sign for hermithean conjugation, ' is a sign for matrix transposition.
Denote as U, g= (;g g) €@, the unitary transformation in s which
perform the canonical transformation by means of the matrix ¢:
U,ap)U, ' =) (o(p, 9)alg)+w(p,9)a*(q)) , 23)

o=llpp, ), w=lypp gl .

Let ¥, the vacuum vector: a(p)¥, =0 for all p. The family of vectors of the form
U,¥, spans a manifold embedded into #” which we denote as F, for the Fermi
case and as B, for the Bose case.

Let the matrix @ =l ¢(p, g)ll be inversible (for the Bose case this assumption is
always fulfilled). In this case it follows from (2.3) that

U ', =cp)¥;,

s (y)l : (2.4)

Y.=exp {— ﬂd*Z&*} Y,

where Z=0 "' =IZ(p,a)l, a*za* =Y a*(p)z(p, q)a*(q) and c(y) is a normalizing
factor. The matrices @, ¥ obey the relation @¥'+¢¥d’'=0. Hence it follows that
the matrix z is skewsymmetrical in the Fermi and symmetrical in the Bose case. In
the Bose case it follows, besides, from (2.2) that ¢P* — P¥P* =1, whence

<1 (2.5)

(i.e. all the eigenvalues of the matrix zz are less that 1).

The groups G act on the manifolds F, and B, in a transitive way, the stability
subgroup G, for the vector ¥, being the group of canonical transformations,
which does not mix the creation and annihilation operators. Therefore the groups
G and G, coincide, respectively with the groups of motion and the stability
subgroups of the complex symmetrical spaces which were denoted in [3] as M/
and QI MM and QI correspond to the Fermi and Bose cases, respectively :
MM =F Q=B The manifold F, is compact due to the compactness of the
group G in the Fermi case. Contrariwise, the manifold B, is not compact, as it is
seen from (2.5). It is sometimes called Siegel circle. The matrix elements z(p, q) of
the matrix z involved in Equation (2.4) are complex coordinates on B, for the Bose
case, and for the Fermi case, on the set F, which is obtained from F, by removing
the submanifold of a lesser dimension.

Consider the automorphism in the group G, given as

(o YY)
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It follows from the definition of the vector ¥; that

U,.¥:=clg,2)¥5, (2.7)
where c(g, z) is a normalizing factor,
gz=(Pz+ V) (Pz+d)" L. (2.8)

2. External Description of the Manifolds F, and B,

Note that the vector ¥; belong to the even subspace #” of the Fock space. It will
be shown in Section 4 that they form the so called generalized overcomplete
family.

Let R be an arbitrary operator in #". Following the general theory of
overcomplete familier we put the covariant symbol

_ (Ry. ¥,

R — z z

(z,2) AR

into correspondence with R. Consider for R the operators
Alp,q)=a*(p)a*(q),  A*(p,q)=dlq)al(p) .
B(p, q)=a*(p)a(q) -

Some simple computation shows that their covariant symbols are resp. equal to
Alp,q), A(p,q), B(p, q), where A(p,q), B(p,q) are the elements of the matrices

A=—hz(1—7zz)~*

(2.9)

2.10
B=hz(1-zz)"'zZ. 10)
Note that the matrices A, B obey the relations
R -k .
B—Z| —Ad=|~- =
( 2) AA (2) , BA=AB,
(2.11)
B=B*, A'=—¢A,
where ¢ is the same as in (2.2). In the Bose case, besides, the inequality
B=0 (2.12)

holds.

The inverse statement is also true: if matrices A, B satisfy Equations (2.11) and
A~ 1 exists then there exists such a matrix z, z+¢z'=0 in terms of which the matrices
A, B may be expressed as (2.10). To show this we put z= — 4~ 'B. It follows from
the second, the third and the fourth equations in (2.11) that z+e&z'=0. By
combining the first and the third equation of (2.10) we find that 0=BB* — B*h
—AA=AZzA— AA—zAh, hence A= —hz(1—Z2z)"', B= —AZ=hz(1—Zzz)"'Z.

In the Bose case (2.5) follows from (2.12), besides.

Denote as ¢ the Lie algebra of the group G. The elements of ¢ have the form

[ Cc 4
1(_/_1 —C)’ (2.13)
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where A4 is a complex and C is a Hermithean matrix, 4 +eA’=0. By substituting
h . . _

here C=B— 5 and expressing A4, B in terms of z,Z by means of (2.10) we get the

embedding of the manifolds F, and B, into 4. With this embedding the image of F,

and B, depends on h and we shall designate it by F,(h) and B,(h), resp. Let

ix=1ix(z,z)e F,(h) or ixe B,(h). By obvious transformations one establishes that

323y =xlgz.77) . (2.14)

where g= (; g) €G, and gz is defined by Equation (2.8).

Therefore the manifolds F ,(h) and B,(h) are orbits of the adjoint representation.
Relations (2.10) may be rewritten as

(x(z,2))* = @2 I, (2.15)

where I is the unit matrix.

Note, that in the Fermi case the matrix x is Hermitean. Therefore it follows
from (2.15) that at h=0 the manifold F (h) degenerates down to a point, while this
is not true in the Bose case; one can easily see that the manifold B,(0) lies on the
boundary of the Siegel circle. [ The unitary matrices z, zz =1, correspond to B,(0).]
We shall see below that this difference is due to the fact that in the Bose case the
quantum dynamics turns into classical one when h—0 whereas in the Fermi case
the h—0 limit does not exist in the usual sense. (The formal limiting transition h—0
leads in the Fermi case to the Grassmanian classical mechanics. See [6] for
details.)

3. Infinite-Dimensional Analogs of the Spaces F, and B,

For infinite number of degrees of freedom we denote the manifolds analogous to
F,and B, as F and B, resp. They are defined literally in the same way as F, and B,.
One must near in mind, however, that canonical transformation g must be proper.
This leads to the fact that the matrix z, apart from the properties described above,
must be the matrix of a Hilbert-Schmidt operator

sSpzz¥< oo . (2.16)

Apart from the manifolds F and B it is also useful, in the case of infinite
number of degrees of freedom to consider wider manifolds F and B which are
parametrized by the matrizes of bounded operators. The manifolds F and B
consist of the limiting points for the manifolds F and B respectively in the sense of
strong operator topology. For the manifolds F, B, F, B the description by means of
the matrices 4, B matrices A, B which obey relations (2.11), (2.16) is also valid. In
the case of the manifolds F, B the matrices 4, B are those of Hilbert-Schmidt
operators, while for F, B they are matrices of bounded operators.

I hope to demonstrate in the future publications that the manifolds F, B are
useful for studying improper canonical transformations and the renormalizations
associated with them.
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3. Classical Mechanics on the Manifolds F,, B,, F, B

1. General Properties of the Kdihler Manifolds

The manifolds F, and B, belong to the so called Kéhler manifolds. Remind that a
manifold M is called Kdhler manifold if it possesses a complex structure, is
Riemannian, and the Riemann metrics has the following special form in the local
coordinates

ds*=Y’

where f = f(z,7) is a local function called the K#hler potential.
The metrics (3.1) is invariant under a transformation ¢ of manifold M if the
potential satisfies the condition

flgz,92)=f(z,2) +alg, 2) +alg, 2) , (3.2)

where a(g, z) is an analytic function of z* (ie. it does not depend on z*).
There always exists the Poisson bracket on the Kihler manifold. It is given as

[ f1=i% (@ &% _ o @) , (3.3)

0z* 0z8  0z* 07

o f
0z°0z"

dz2dzb (3.1)

where 4* is the matrix inverse to the matrix

of

The Laplace-Beltrami operator on the Kdhler manifold has the form

2

d. a
A=Y ) (3.4)

where I, is the same matrix as in (3.3).

2. Metrics and Poisson Bracket on F, and B,

Let ze F, or ze B,. Consider the function
F(z,z)=det(1—zZ) . (3.9)
It follows from (2.8) that

Flgz,7Z)=F(z,2)o(g, 2)ug, 2) , (3.6)

where a(g, z)=det(® + Pz) .

Consequently f(z,Z)=%¢InF(z,Z) is the Kihler potential of an invariant
metrics with any e=const. We fix ¢ the same as in (2.2).

The general expression (3.1) may be written in the form

0? -
dSZ = Wf(z + tdZ, Z4+ td—Z.)L:f:o . (37)
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Hence

e 0°

2 =
ds*=—3 et

spz [(z+tdz)(z+7dZ)]", -«

= —;- Y spdz(zz)fdz(zzZ) .
k,l
Finally one has
ds? = — %sp(dz(l —Z2) Y31 —z2)7 1) (3.8)

Introduce the scalar product (x,y)=sp(xy*) in the linear space of the nxn
matrices. In terms of this scalar product Equation (3.8) may be rewritten in the
form

ds* =(dz, Adz), Adz=3%cdzc, C=(1—zz)"'. (3.9)

To find the Laplace-Beltrami operator and the Poisson bracket one should inverse
the operator A in the space of matrices. It is evident that A~ '¢=2¢~1¢¢7 1 Both
the operators A4 and A~ ! leave the subspaces of symmetrical and skew symmetri-
cal matrices invariant. Therefore, in accord with the general formulae (3.3) and
(3.4) the Laplace-Beltrami operators and the Poisson bracket on the manifolds F,
and B, have the form

A= —2esp [(j (l—zz)——(l—zz)} (3.10)

INAR z~sp[(a_fl><1 22 52.3) 1 =29

- bgfz(l —Zzz) (§f1) (1 —zi)} ; (3.11)
where the operators — 3 in the Fermi and Bose cases are, respectively
0 0
o 1 0 0z, 0zy,
i IR ,
: SR

0zZ4p 0z,

g 1.9 1 0
0 0z, 20z, 20zy,

= are complex conjugate.
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[Here we abandon for a time being the notation z(p, g) and come back to the more
customary way of writing z;;.]

The operators in (3.10) are meant not to act on the functions

) @,
embraced in the square bracket. [Equation (3.10) may be found in [7].)
Let e,, be the matrix whose elements are (e,),, = 7(3,,0,,—£,,0;,). Note that

both in the Fermi and Bose cases (e,,) ., =(€,,),s a—zzpq=(eﬂv)pq. Besides, if 4 is an

arbitrary matrix subject to the condition A+eA’=0 then sp(e,, 4)=A4,,=¢4,,.
Therefore the dynamical equations with the Poisson bracket (3.11) and the
Hamiltonian function H may be written in the matrix form

dz 2 O0H _

E = Y(I*Zf)‘a?(l—ZZ)

z 2 oH (12
EE = — ?(I_ZZ)E(]'—ZZ) .

3. General Information About the Algebra of Poisson Brackets
Induced by an Arbitrary Lie Algebra

Let % be the Lie algebra of an arbitrary Lie group G, ¢; be a basis in ¢ and cf; be
the corresponding structural constants. Let 4’ be the space of linear forms on &, ¢’
be the basis in %' which is byorthogonal for e, ie. if a=) de,e%, and
x=) x;''e¥ than

{a,xy=Y da'x; . (3.13)
Let us define the bracket
af; of.
L f21,= C}i(j axli 6_xzj (3.14)

for any two smooth functions f;, f, on %'. The known properties of the structural
constants ci.‘j result in the properties of the bracket (3.14) which allow to call it the
Poisson bracket. These are the antisymmetricity and the Jacobi identity [11]:

[fpfz]z “[fz’fd s
[fl,'[fz’fﬂ] +[f37 [fpfz]] +[f2’ [fs’fd] =0.

The bracket (3.14) is more convenient to be rewritten without the use of
coordinates. To this end define grad f(x)e ¥ by the relation

d
51‘ (x+1g)l,=o=<grad f(x),y> . (3.15)

The scalar product in the right-hand side is defined by Equation (3.13). One can
easily see that Equation (3.14) may be written as

Lf1, /21, =<[grad f}, grad /], x) , (3.16)
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where the scalar product in the right-hand side is the same as in (3.13),
fgrad f}, grad f,] is the commutator in .

In the space ¥’ the representation of the algebra ¢ acts which is given by the
matrices

fad' L=V, y=Yyeed. (3.17)

This representation is called codjoint. With it the coadjoint representation A'd(g)
of the group G is associated. Let P(x) be an invariant of the coadjoint repre-
sentation of G:P(A'd(g)x)=P(x). The corresponding infinitesimal condition has
due to (3.17) the form

% gxil k%, =0. (3.18)
By comparing it with (3.14) one finds that

[P, f1p=0 (3.19)
for any f.

Consequently, P is invariant under any dynamics induced by the Poisson
bracket (3.14). The surfaces P(x)=const are invariant with any dynamics. One can
show that the equation of any closed, typical orbit of the coadjoint representation
may be written in the form P(x) =const, where P(x) are smooth functions invariant
under the coadjoint representation.

The above facts acquire a new colouring in the case when in the Lie algebra
there exists a nondegenerate invariant scalar product. Denote this product as (a, b).
With its aid we identify ¢ with ¢ in the following way. With each xe% we
associate Xe% which is uniquely determined by the equation {x, a) =(X, a) for any
ac9y.

This identification enables us to build the Poisson bracket algebra of the
functions on the algebra ¥ itself

[fi. folp=(lgrad f;,grad f,1,x), xe9, (3.20)
where grad f is defined analogously to (3.15):

d
g St )l=o=(grad f,y). (3.21)

The condition of invariance of the scalar product has the form
(Le,al,b)+(a,[c,b])=0

with its aid we transform (3.20) as
Lf1 f2]p=—(grad f;, [grad f;,x]) . (3.22)

Put f,(x)=H(x), f,(x)=x" Note that (gradx’,a)=d’ due to (3.21). Therefore
[x', H]p,=[grad H,x]" By multiplying the both sides of these equations by e, and
summing, we conclude that the equation of the Hamiltonian dynamics in the case
under consideration reduces to the form

d
% = [H,x],=[gradH,x] . (3.23)
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Equation (3.23) has the specific Lax form. The role of the L, 4 pair is played by the
elements x and grad H of the algebra %.

Many important equations of the mathematical physics are reduced to the
form (3.23). To this class obviously belong the Euler equations for the motion of a
solid body with a fastened point (here ¥ is the algebra of real skew-symmetrical
matrices of the third order). Elsewhere we shall show that the famous Korteweg-
de-Vries equation also reduces to the (3.23) form, ¢ being an infinite-dimensional
analog of the real simplectic algebra.

In the next subsection we show that the dynamical equations the manifolds we
are interested in reduce to the form (3.23).

4. Poisson Brackets on the Manifolds F, and B,. Another Description

C 4 . . .
Let x=i< 5 C) €%, where ¥ is the Lie algebra of the group of Fermi or

Bose linear canonical transformations. (C is Hermitean matrix for both the cases,
while A is skew-symmetrical in the Fermi case and symmetrical in the Bose one.)
There exists the invariant scalar product in %:

(6, y)=3sp(xy) . (3.24)
Let H=H(A, 4, C,C) be some function on %.
Due to (3.24) one has
o0H o0H
oc oA
dH=-2i
gra 2i ol ) 6_H , (3.25)
0A oC
where
(o it (o5
oc) PV acqp \oa) PV Galgp)
Thus the equations of dynamics have in the present case the form
oH OH
d{ C A oc o4 c A4
il 2= - ~ 3.26
’dz(—A —C) 2 oH oH|’ (—A —C) (3.26)
0A oC

Now we show that the manifolds F,(h), B,(h) are invariant under the dynamics
(3.26). (Function H is assumed to be real.) Let the matrices A(t), C(t) satisfy
Equation (3.26). Consider the matrices

2

- h
K(0)=C*~Ad s, Lj)=AC ~CA ,

(3.27)
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where ¢ is the same as in (2.2). We shall show that if K(0)=L(0)=0 then
K(t)=L(t)=0. With the help of (3.26) we get

' _0H
sz_[ 6H}+8_I5L_L

24t | ec| o4 oA
i dL O0H 0H OH - 0H

Therefore elements of the matrices K(t), L(t) satisfy a linear homogeneous set of
differential equations. The statement we need follows from the theorem on the
existence and uniqueness for such sets.

Now we show that the dynamics (3.26) coincides with the dynamics (3.12) on
the manifolds F,(h), B,(h). Multiply the first equation in (3.12) by z(1 —zZ) " ! on the
right and by (1—2z2)~! on the left, while the second one by (1—2zz)"!z and
(1—2zz)~ 1, respectively. After subtracting them one from another we get

d . _ ., 1d
lde 2(0H_ 0H
=EE:?<§Z—ZE) (3:28)

Multiply Equation (3.28) by z on the right and the first equation in (3.12) by
(1—2zz)~! on the left. By adding the relations thus obtained we are led to

d_ LdA 2(H oH
Note now that
oH =3 aﬂﬂ.{.i}la/—l +@_HOC +6_Haé (33())
oz, P\o4 oz, T 34 oz, " oC @z, * oC 0z,,) '
0
Note farther that 62—Z =e,,, where (e,,),,=3(5,,0,,—¢€,0,,). Hence
ny
0A
a2, = —hle,(1—22) "' +2(1 —Z2) " 'Ze,(1—Z2z)7")
= —[e,(h+B)+Be,(l+h 'B)],
04 - -
., =—hz(1—2z)" 'e,z(1—22) "' = —h"'4e, A,
B e (=22 E 4 21— 22) e, (122
oz, =hle,(1-22)" Z+2z(1—2z)" "Zze, (1 —Zz)" 'Z]
=—e,A—h"'Be, A,
6§ _h[—l Z\— 1 (1 —)~1 z(1 =\ 1
5= Z(1—22)" e, 2(1—22)" 'z+Z(1—z22)" ‘e, ]

= —h~de, B Ae,, .
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Note, that sp(Xe,,)=X,, for any matrix X with appropriate symmetry condition.
Hence

0H OH -

o0H
h 'B)—— A=
azuv [( +B) +(1+h" B) B+h AaAA
o0H 8H O0H aH
+A5§+h B — A+h~ 0BA
or, what is the same
o0H _1s OH = 0H -
—a;——[(l—l—h B)—(h+B)+h AﬁA
(1+h 'B)+(1+h" 1B) A]. (3.31)

By going over to the complex conjugated quantities we find analogous expression
O0H

for =
Now we use the identities which follow from (2.10):

zA=Az=—B, Z1+h 'By=(14+h"'Bz=—h"'4.

The substitution of (3.31) into (3.28) after some obvious transformations results in

1oc 2<6HE+QEC_ gl_q_caH)

hot  il\ed | oC 04 " aC
(3.32)
104 2( 6H OH OH 0H -
o =i AsE T aeAtTCor+ 20
hor i oC 04 o4

Equations (3.32) coincide with (3.26) if H in (3.26) is replaced by hH.

Thus the dynamics (3.26) in ¢ with the Hamiltonian function H(A4, 4, B, B)
induces on the manifolds F,(h), B,(h) the dynamics (3.12) with the Hamiltonian
function

H(z,%)= %H(A(z, %), A(z, %), B(z, 2), B(z,2)) .

All the results of this section are extended without changes to the infinite
dimensional manifolds F and B.

4. Quantization of Classical Mechanics on the Manifolds F,, B,, F, B
1. Spaces #.(M,)

Let M, be either F, or B,, M, C M, be the subset in which elements z(p, q) of the
matrix z serve as a coordinate system. (Remind that in the Fermi case M,\M,, is a
submanifold of the dimension lesser than M,, while in the Bose case M,=M,)

n



Models of Gross-Neveu Type 143

Denote as %,(M,) the Hilbert space of analytical functions on M, with the scalar
product

(o f)=c0) | 1)@ det(1—22) #dp,(2,7) , (4.1)
where ¢ has the same sense as in (2.2),
1 dz. .dz,.
ijreij
det(1—zz)"~¢ [ 2n

dp(z,)= (4.2)

is the invariant measure on M, and the factor c,(x) is fixed by the condition
(fo fo)=1, where fo(z)=1. Due to [3,7] one has in the Bose case

G

Cu() (4.3)
F<—1~ —2>F(l —4) F(l —Zn)
% % %
and in the Fermi case
1 1 1
Cpy (M) = N i 1 4.4)
r@+gr@+gmr@+h_q
X x® Vi
In the Bose case the integral in (4.1) converges at % =2(n+1) while at » > m

it is understood as the analytical continuation. The integral (4.1) understood in
this way defines a nonnegative scalar product if » belongs to the set formed by a
segment (into which the domain of convergence is included) and the separate
points located to the right of it [3], [13]:

1 1
O<%§n—_I, %=£, k=0,1,2,...,n—1. (45)

In the Fermi case integral (4.1) is of interest for the theory of quantization at

1
x=1. k=012 (4.6)

The values (4.5) and (4.6) of % we call admissible and will deal only with them in
what follows. Consider the vectors

& (z)=det (1— 25)56; (4.7)

in the space Z,(M,). It was shown in [3] that for any fe % (M,) the following
equality holds

(@)= f(z). (4.8)
Equality (4.8) indicates that the vectors @; for » <

T 2n+1)
for all admissible »’s in the Fermi case form the over-complete family of states in

in the Bose case and
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Klauder’s sense [4]. In the case when the scalar product (f}, f,) is not given by an
integral over a measure, it is natural to call the set of vectors which possess the
property (4.8) the generalized overcomplete family of states. The families of the sort
were met earlier in [8]. 1

Thus the vectors (4.7) in the Bose case for x=—, k=0,1,...,n—1 form the
generalized overcomplete family of states. k

The parameter x is related to the parameter 4 used in [2,3] as h=2(n+¢&)x. x is
more convenient as far as extension of the results of [2,3] to infinite dimensional
manifolds is concerned.

2. Algebra of Covariant Symbols

Let A be an operator in the space 7 (M), whose domain includes the vectors &:.
The expectation value of 4 on .

(AP, @,)
(0;, 2.)

is called the covariant symbol of the operator A [5]. A(,Z) admits the apparent
analytical continuation A(z,v) as holomorphic function on the product M, x M -

It is shown in [2, 3] that the operator A is uniquely restored once its covariant
symbol is given, i.e.

Alz,3)= (4.9)

det(1 —zv)|2x _

—— 4 . 4.1
dei(io w)} i (0,7) (4.10)

If fl=2111212, the corresponding covariant symbols are connected by the relation

A(z,5)=(A, *A,)(z,)

(Af)(2)=c,00) | Az )0}

det[(1—zp)(1 —zv)])E dy(0.5) (4.11)

=c,(#) | A,(z,0)4,(v,2) (det [(1—z2)(1 —vD)]

In the Bose case for x> Equations (4.10) and (4.11) should be referred to

1
2n+1)
as analytical continuations in x. Denote as .o, the set of covariant symbols of such
operators in % (M,) whose powers are defined on the vectors @.. It is evident that
=/, forms an associative algebra with the multiplication law (4.11). The multipli-
cation (4.11) was shown in [2, 3] to have the property

lim A=A, = 4,4,
1 1 (4.12)
lim (A5 A, = Ayed)= - [4,.4,],

where 4,4, is the ordinary product of functions and [A4,,4,] is the Poisson
bracket (3.11). Thus the family of the associative algebras .oZ, forms, in the sense of
[2] the special quantization of the classical mechanics on M, described in Section 3.
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3. Infinite Number of Degrees of Freedom

Let M stand for any of the two infinite-dimensional manifolds F or B. Denote as E
the set of quantum number of the particles forming the system under con-
sideration. Denote the measure on E as dp, pe E and the Hilbert space of square
integrable functions on E with the measure dp as L*(E). The matrices z in terms of
which the original description of the manifold M was given are naturally thought
of as the matrices of operators in L*(E), z(p, q)=<{plzlq),

(zf)p)= | z(p,9)f(g)dgq .

There exists a natural involution in L*(E) which coinsides with the complex
conjugation: f*(p)= f(p). With its aid the operations of complex conjugation and
transposition in the space of operators are defined: (zf *)* =Zf, 2/ =Z*, where the
asterisk * stands for Hermitean conjugation when applied to operators. As applied
to matrix elements these operations look like usual

<plZ'lg> =<Lqlzlp>,  <plzlg> =<plzlq) .

On the manifold M the group G of the proper canonical transformations acts
transitively, although no invariant measure with respect to G exists. The basic
formulae (4.1), (4.10), and (4.11) are transferred onto M as follows. A function f(z)
on M we call analytical if all the functions ¢(v) are analytical, where v=PzP,
o(v)= f(PzP), P is the orthogonal projector onto a finite-dimensional subspace,
invariant under the involution. Set

(f. f)=supc,(x) [ |/(PzP)* det(1— PzPZP)” %dun(z, 7). (4.13)

Here P is the orthogonal projector onto a finite-dimensional subspace L C L(E),
invariant under the involution, the term sup. refers to all such subspaces, n=dim L
and c,(»), du,(z,Z) are the same as in Equations (4.2)—(4.4) (z,, are matrix elements
of the operator PzP in an orthonormal basis in L). Denote the set of analytical
functions, such that (f, f)<oo as Z(M). It is easy to show that % (M) is the
Hilbert space with the scalar product (4.13).

Let L, CL,C...CI*E) be a sequence of subspaces which are invariant under
the involution and UL, be dense in I*(E). The scalar product in Z (M) may be
given as

(oS =lim ¢,(0) | fi(z)fa(z,) det(l—2,Z,) **dp,(z,2) (4.14)

h— 00

where z,=P,zP,, P, is the orthogonal projector onto L,.
1 .
In the Bose case forn+1> " the integrals in (4.13) and (4.14) are referred to as

analytical continuation. Thus, both in the Bose and the Fermi cases the spaces
Z (M), dimM = oo exist only for the values of » indicated in Equation (4.6).

Let ¢.(v)e Z (M) be of the form (4.7). It may be easily shown that the functions
of the form

f@)=) ¢®;(2), (4.15)
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where the sum contains finite number of terms, make up a dense set in % (M) and

that Equation (4.8) remains valid in %, (M). (See the proof of analogous statement
in [8].) Equations (4.10) and (4.11) are modified analogously:

AN6)= fim o [ 4G50 (= oos

(A4,xA,)(z,2) (4.16)

det[(1-2z,5,)(1-0v,z,)]
det[(1—2z,z,)(1—0v,5,)]

— lim 6,00  4,(2,5,)4,(0,,7,) ( ) A7)

Equations (4.12) remain valid.
Further details concerning the problems touched here may be found in [9].

5. Duplicated Spaces—Statistical Quasiclassics
1. General Definition

Consider a fermion or boson system A, whose space of states is #, and creation
annihilation operators are a*(p) and a(p), resp., where peE, E is a complete set of
quantum numbers. We shall refer to system 4 as a standard. Denote as 4, with N
being integer, a system that consists of N subsystems, each being a duplicate of the
system A. Denote the space of states of the system A as #, _and the creation and
annihilation operators in #, as b(p) and b,(p), resp., where p’s are the same
quantum numbers as in the system 4, k=1,2,..., N. The commutation relations
between bif(p), b,(p) are of Fermi or Bose type depending on what type of system
the system A is:

[Bulp) B ()] =y 6, (5.1)

We shall refer to the system A as the duplicated system A and to the space #,  as
the duplicated space #,.

Throughout the present section we do not consider separately the case of finite
number of degrees of freedom. In what follows the letter M stands for any of the
four manifolds F,, B,, F or B. In the case of infinite number of degrees of freedom
the quantum numbers are as usually thought of as points of some set E with a
measure, J,, in (5.1) standing for the Dirac é-function with this measure, b(p),
b¥(p) are, generally, operator distributions and not operators.

2. Subspaces ffAN
Set

1
‘Ilzze -2. WO 5 (52)
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where ¥ is the vacuum vector in J#, , z is the operator in LZ(I;?) (E is the set of
quantum number), b}zb¥ = | b¥(p)z(p, 2(p, 9)b}(q)dpdq. Denote as A4, the subspace
generated by the vectors of the form

V=YV, . (5.3)

(The summation is over a finite range.)
Now we show that the space #_ is naturally isomorphic to the space 7 (M),

1 . . .
%= N described in Section 4.

Associate the analytical function f(z) on M
J@)=(¥.¥;) (5.4)
to each vector ¥ of the form (5.3). In accordance with [107] one has

1 _ 1.,
= 55 SkEbk + bicv’ bio) = - L bikbic I dbjdb,

(P ¥p)=e P

where ¢ is the same as in (2.2) and the integration over the anticommuting
variables is meant for the Fermi case. (We considered only the h=1 case in [10].
The general case is reduced to this in an obvious way.)

By calculating the Gaussian integral in the usual way we find that

N
2

(W, W) =det(1—z7) 2=d2) (5.5)

. . . 1 .
where @; is the same function as in (4.7), x= N Consequently the function

f)=) ¢, ®; (z) (5.6)

is the image of the element (5.3) under the mapping (5.4). With the use of (5.5) one
further concludes that if ¥ has the form (5.3) the following relation takes place

(Y. ¥)=> G D5 (2,) . (5.7)
On the other hand Equation (4.8) implies that the right-hand side of (5 7) coincide
with the scalar product of f with itself as an element of 7 (M), V—— —. Since the

vector (5.3) form a dense set in %AN, while the vectors (5.6) do thls in Z (M) it

follows that the mapping (5.4) may be extended up to isomorphism between %AN
and 7 (M).

3. Admissible Operators

Consider the operator distributions in the standard space #,

Ap,q)=a*(p)a*(q),  B(p,q)=a*(p)a(q) . (5.8)
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Associate the operator distributions AN(p, qQ), BN(p, q) in the space #, to them:

Ayp. )= — Y bi(p)bi(q)

(5.9)
éN(p7 Q) =

The space ffAN is easily seen to be invariant under BN(p, q), /iN(p, q), /:1;‘3(p, q).
Consequently it is also invariant under the ring of operators created by Ay(p, q),
fl;{‘,(p, q), BN(p, q). Call this algebra #,. The elements of the algebra %, will be
called admissible operators below.

_ Let I:IAbe an operator in the standard space #, which is a function of A(p, q),
A*(p,q), B(p. q),

A=Y [C, (o, x K (x)). K, (x,)d" (5.10)

where for brevity we put x;=(p;,q;), s;=1,2,3, K, (x)=A(p, q), K,(x)=A*p,q),
K3 =B(p,q) o

Due to noncommutativity of A, A* B a given operator is not uniquely
represented in the form (5.10). However, once some fixed form is adopted one may
associate with H a set of operators H in the spaces #, by means of the following
formula

Ay=Y [ Co o (xne K, y(x1). Ky y(x)d"x (5.11)
where I&LN=/1N, KZ,N=21;{‘,, K3,N=BN .

The operators H, are admissible. Consequently the space ffAN is invariant
under them.

4. Covariant Symbols of Admissible Operators

Associate with each admissible operator H its expectation value over the vector
V..
L ¥
Hy(z,2)= ———*, .
wz,2) . ) (5.12)

The function H (z, z) is the covariant symbol of the restriction of the operator H,
onto %ANI. It is obvious that the symbols of A4,(p,q), 4%(p,q), By(p,q) do not
depend-on N and are thus given by Equations (2.10).

It follows, further, from (5.11) and (4.12) that, within the wide range of
assumptions about H the relation

Hy(z,2)=H(z, 5)+%f1 Mz 2) (5.13)

holds, where H(z,2) has a limit at N— co.

! The family of states ¥; is overcomplete (not generalized overcomplete) in the sense of the classic

Klauder’s definition in the Fermi case if the number of degrees of freedom is finite and in the Bose case
if, besides, N is large enough. In all the other cases it is the generalized overcomplete family (see Section 4)
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5. Statistical Quasiclassics

The Heisenberg equations in the space %?AN are

hodAdy o - h dBy .
WF‘[HN’AN]’ WW_[HN:BN]* (5.14)

On passing from the operators to the symbols and with the use of (4.12) we find
that these equations are equivalent to the following

dB

A 1 1
h———-[H,A]P+—A7QN, 11E=[H,B]P+—A7RN, (5.15)

dt

where [, -], is the Poisson bracket (3.11). In the limit N—oo Equation (5715)
converge to the equations of the classical mechanics on the manifold M with the
Hamiltonian function h™!'H(z,z). One may consider, instead, the equivalent
equations in the Lie algebra of the group of the proper canonical transformations.
The consideration presented at the end of Section 3 shows that these equations
have the form (3.26). The Planck constant h drops out of the equations and
survives only in relations (2.11).

Thus, the limiting transition N — oo is an ordinary quansiclassical one. The role

. . . . .
of the Planck constant is played by the quantity » = N Since the basic quantities

(5.9) with whose aid the limiting transition is constructed resemble the analogous
quantities known in the statistical physics it is natural to refer to this quasiclassics
as statistical.

6. Connection Between the Statistical Quasiclassics and the Usual One

Set h=0. Equations (2.11) for the Bose case admit for h=0 the solution A(p, q)
=a*(p)a*(q), B(p,q)=a*(p)a(q). For the Fermi case Equations (2.11) have only
zero solution. Nevertheless let us in the Fermi case also set A(p, q)=a*(p)a*(q),
B(p, q)=a*(p)alg) and treat a(p), a*(p) not as ordinary functions but as anticom-
muting ones. With this convention the symmetry between the Bose and Fermi
cases is restored.

Let H,(a*,a)=H(A,A4,B,B), A(p,q)=a*(p)a*(q), A(p.;q)=a(palq), B(p,q)=

a*(p)a(q), B(p, q) = a(p)a*(q). Let, further, a(p, t), a*(p, t) be a solution of the classical
equations:

-

da(p)

0
=[H,a(p)l=i o H,
5 d(t) da*(p) . (5.16)
a*(p) T
a[ _[Hba (p)]'— lHl aa(p) .

The designations 0, @ relate to the Fermi case. They imply the right and left
derivatives, respectively. Let us show that the functions A(p, q|t)=a*(p, t)a*(q, 1),
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B(p, qlt)=a*(p, t)alg, t) satisfy the classical Equations (3.26). Indeed

d da* da*
& ap.0)=" )4 ap) 1
) ;
Kla(ﬂa@+“@<‘w@ﬂ
@ 0 oH 0
Z”WMWJ(A“Waw>6m m(@q%mﬂ

oH
B o * d /d ’
+—0B(p’, ) ( . 4q) aa(p))}a (g)dp'dgq

ol oH (- 0
o _oq _ B o
ia*(p) § [é‘A(p',Q)( @ )5a(q)>+6B(p’,q')( ' aa@>
oH 0
dp'dq
+6B(p’,q’)( P 5ag) a )ﬂ P
oH ,
= 2i j( = B(q.q)+ a]3(51,71))141(61,c1)

0H oH
FB(.q) o+ Al ) ,)@a
0A(g,9) 0B(q.q)

We thus get finally

d 0H 0H 0H 0H

—A=-— - =+ A 5.17

A= Z(a Bt g AtBo= +47 ) (5.17)
Analogously

d O0H 0H - _0H O0H

2 B=— 4. 5.18

dtB 2<aBB+ cAA BaB AaA) (5-18)

[In the process of transformations the properties of the functions A, B have been
taken into account which result from their special form: A(p, )= —¢A(q. p), B(p, q)
= —¢B(g,p).]

It is evident that Equations (5.17) and (5.18) are equivalent to (3.26).

6. Concluding Remarks
1. Continual Integral

Let us first consider flmte number of degrees of freedom. Let H(r) be a family of

operators in the space Z,. Their covariant symbols are H(z, Z|t). Denote as G(z) the
evolution operator

x dG . . A
7E=H(I)G, G(0)=1.
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Following the method suggested in [12] we find the expression for the covariant
symbol G(z,z|t) of the operator G(t) in terms of a continual integral. Set

Gy=U(t,, t,)U(tst3)... Ulty_ s ty),  la=—1t,
where U(t, s) is the operator in %, whose covariant symbol is
i N
U(z, Z|t, s) =exp (; f H(z,le)dt) :
t

The multiple use of Equation (4.11) results in the following expression for the
covariant symbol G,(z,z|t) of the operator G :

_ i _
Gylz,Z|t)= [ exp (; FN) [1do(z.Z,) ,
N—=1 tx+1
Fy= Z f H(z,,z, 4 |7)d7
0 i
e N1 _
+ 7 2 spln(l =22, ,) = In(1-2z3,)]
0

+§sp[1n(1—zoz)—ln(1—zf)] ,

where z,=2z, zZy=2, do(z,Z)=c,(x)dp(z,z). Let now z,=z(t,), where z(t) is a
. . k )
differentiable curve, t, = N t. Set z(t, . ,)=2z(t,) + 4,. Up to the first power of 4, we

have

sp[Iin(l—z,z, . ) —In(l =z, Z, 4 1)]
1 -
=Y —spl(zZ) — @G+ 4)))
=—splz4,(1-z2)"'].

- 1 . .
Put 4, =(t)At, 4, =zt )A4, At, = N t, and perform the formal limiting transition

N—- oo for the exponent in Equation (6.1). This results in the following final
expression for G(z,z|t):

G(z,z|t)= | exp <i F) [T do(z(z), 2(x))

: (6.2)
F= j L(z(7), Z(7), 2(z), (1) |7)dt

+ f_sp [In(1 —E(O)z)——ln(l —zZ)],
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where
L(z,%,%,z|t) = H(z(7), Z(t + 0)|7)

+ S sp (@) (1 —2(2)ED) 1T 6.3)
zZ(Q)=z, zZ(t)=z.

The argument of z(t +0) in (6.3) implies that the extra limiting transition is meant
in the continual integral (6.2), namely : one should first calculate G*(z, z|t), where
G*(z,Z]t) is given by the formulae to be obtained from (6.2) and (6.3) by the
substitution of H(z(t), z(t)|t) for H(z(t), zZ(t+«)|t), « >0. After that one should make
o tend to zero, G(z,z|t) = ;1_{% G*(z,Z|t). We shall show elsewhere that this procedure

implies a certain regularization of the continual integral (6.2).

2. Dimension of the Space J’?AN in the Fermi Case

The Hamiltonian of the model A4y is originally defined in the space 2,  which is
wider than #, . The question arises on whether we loose any significant
information when passing from #, to #, . The answer to this question is to
some extent given by comparison of the dimensions of these spaces for the Fermi
case with finite number of degrees of freedom. Let the model 4 have n+ 1 degrees
of freedom. In such a case

dim#, =21, dima#, =MD

Due to the general relation established in [2] dimffAN= CC’E(;)). Therefore
.~ I'(N+n+1)...['(N+2n)-I'(DI'(3)...I'(2n—1)
dim #, = I(N+1)..[(N+2n—D)I(n+ DI (n+2)...'2n) 64)
Note, that
I'(N+n+1)
I(N+2n—-1)

Analogous transformations of the other ration in (6.4) along with permutations of
the multipliers reduces (6.4) to the form

(n+ky(n+k+1)...2n+k—1)

N
imA#, = = 6.5
dim # I;IT" T k(k+2)...(k+t2n—2) (6:5)
Further on
_(n425)..Qn425—1) _,, @n425—1)(s— 1))
=T ns(s+ 1) (s+n—1) T (n+2s—1D(s+n—1)1,

_ (n+2s+1)...2n+25)-(25+2)(25+4)... (25 +2n)
BT (254 1)...(2s+2n—1)-(2s+2)(25+4)...(2s+2n)
_2n(2s)!(s+n)!

T sl@s+n)!
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Application of the Stirling formula enables us to find the asymptotic value of T,,
when n—o0: T, ~2" 2~ s* V2 (s— 1)1, T, ., ~2"(n+1)"" Hence

Indim#, =nN1In2—cIn2n+0(1) . (6.6)

Thus within the leading logarithmic term one concludes that dimNJKAN=dimJ?AN.
This enables one to hope that the passing from the space #, to /#,  in the case of
a large number of degrees of freedom does not yield any significant loss of
information.
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