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Abstract. In this paper we consider the following problem: Given a *-algebra
si of unbounded operators, under what conditions is every strongly positive
linear functional / on si a trace functional, i.e. of the form /(α) = Trία, aesi,
where t is an appropriate positive nuclear operator. Further, the linear
functionals / on si which can be represented as f(a) = Ύrta (/ and t not
necessarily positive) are characterized by their continuity in a certain topology.
Some applications (canonical commutation relations on the Schwartz space,
integrable representations of enveloping algebras) are discussed.

Introduction

In the algebraical frame of quantum theory the observables are symmetric
elements of a *-algebra of (in general unbounded) operators in a Hubert space. The
states are usually considered as positive linear functionals on this algebra. Many
important examples of states in quantum physics (for instance, the Gibbs states for
free Bose gas) are trace functionals, i.e. they are of the form /(α) = Trία with a
certain density matrix t. In this paper we are dealing with trace representation of
strongly positive linear functionals and more generally of arbitrary linear func-
tionals. To be more precise, we will study the following problems.

Problem 1. Under what conditions is every strongly positive linear functional /
on an Op*-algebra si a trace functional f(a) = Trta, aesi, t an appropriate
positive nuclear operator.

Problem 2. Characterize the (not necessarily positive) linear functionals on si
which can be represented as f(a) = Trta. Here the nuclear operator t is in general
not positive.

Problem 1 has already been studied by several authors [16, 21, 4, 18]. For
Problem 1 Sherman [16] proved this to be the case for each countably generated
closed Op*-algebra which contains the restriction of the inverse of a completely
continuous operator. Woronowicz [21] has shown that the algebra
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being the Schwartz space, and the Op*-algebra generated by the
position and momentum operators also have this property. Lassner and
Timmermann [4, 18] obtained results on the continuity of trace functionals. It is
not difficult to see that every strongly positive linear functional on a *-algebra si
with Frechet graph topology έ^ on 3) can be extended to a strongly positive
linear functional on U{β). This suggests the problem to characterize the closed
domains 3) having the property that all strongly positive linear functionals on
U{β~) are trace functionals with positive operator t. For Frechet domains we give a
complete characterization of these domains. Before discussing our results let us
note that in the case of an infinite dimensional Hubert space Q) — ^ there are
always positive linear functionals on B(3tf) which are not trace functionals [15]. A
simple example of such a functional can be obtained by extending a character
0s(x): = x(s), se[0,1], on the commutative C*-algebra C(0,1) to £(L2(0,1)).

In this paper Problem 1 is studied in Sects. 2 and 3, while Problem 2 is treated in
Sects. 4 and 5. We will prove that all strongly positive linear functionals on a self-
adjoint Op*-algebra si on 3) are trace functionals with positive densities t if si
contains the restriction to 3) of the inverse of a completely continuous operator
(Sect. 2). This extends the corresponding results of Sherman, Woronowicz, Lassner
and Timmermann. For domains 3) with Frechet graph topology / + it is shown in
Sect. 3 that all strongly positive linear functionals on U(β) (or equivalently, on
each Op*-algebra si on 3) with / ^ = / + ) are trace functionals if and only if ^ [ 7 + ]
is a Montel space. Note that the Montel property of / + is weaker than the
existence of an operator in ϋ(<3) which is the inverse of a completely continuous
operator. If the Frechet space ^ [ / + ] has an unconditional basis, ^ [ / + ] is a
Montel space iff the domain does not contain an infinite dimensional Hubert space
as a subspace. These domains are called domains of class I in [5]. Section 4 is
devoted to a topological characterization of the trace functionals. We prove that
an arbitrary (not necessarily positive) linear functional / on a closed Op*-algebra
with metrizable graph topology has a trace representation f(a) = Ύτta if and only if
it is continuous with respect to a certain topology τc

2. In Sect. 5 we give some
applications of this theorem. For example, it is shown that each linear functional /
on the Op*-algebra generated by the position and momentum operators qp pp

j = l,...,n, on the Schwartz space £f(Rn) is a trace functional f(a) = Tvta.
The definitions and notations used in the following are collected in Sect. 1.

1. Preliminaries

Let 3) be a dense linear subspace of a Hubert space j f and si a vector space of
linear operators on 3. We call si ^-invariant if for each aes4 the adjoint operator
a* is also defined on 3) and the restriction a+ : = α* \<3 is in si. For *-invariant
vector spaces si the following notations are useful:

srf+ = {aesi :(aφ, φy ^ 0 for all φe&}

and a^biϊϊa — besi + . si is said to be dosed on ^ if ^ = 3(si) and self-adjoint on
^ if ^ ^ ^ ^ ( j / ) [20,9]. By a strongly positive linear functional f on J / we mean a
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linear functional / on stf with /(α)^0 for all aestf + . Notice that for unbounded
operator algebras this requirement is considerably stronger than the condition
f(a+a)^QMaes$ which usually defines the positive linear functionals on stf (see in
this connection [12]).

Suppose now jtf is a ^-invariant vector space of operators on 3 containing the
identity I = I@. (It is not assumed that the operators aestf leave 3 invariant.) We
define

the closures of ta and t*a are of trace class for all α e ^ } ,

Further let us write <Z1(3) + instead of &ί(L+(3))+

It is clear from the definition that te χS(j/) (or te S ^ J ^ ) ) implies ί*G X S ( J / ) (or
Because J e ^ , all operators ί e ^ ^ ) are of trace class on J*f. For

we define f/(x) = Trίx and/ f(x) = Tr(x+)*ί, xestf (cf. [4], p. 298). Since
a*t is of trace class for each te ι&{s$) and aed and tJfQ3%(jtf) (see the lemma
below), the definition of ft(x) make sense. Some basic properties of these notions
are collected in Lemma 1. For simplicity we suppose that Jf is a separable Hubert
space.

Lemma 1. (1) For each te^ijtf) the operator a*t is of trace class and tJίfQ 3^
(2) If si is self-adjoint, then 1 S ( J / ) = ®1(J2/) and 1<Z(s

(3) Ifte&^l then tf(x) = Ύrtx = Ύrxt=ft{x) for all
(4) For each te&1(stf)+ ft(x) = Ύτxt ( = Trίx) is a strongly positive linear

functional on s$.
(5) Suppose s$ is an Op*-algebra. Then every ίG®1(j/) can be written as t

= t1 — t2 + i(t3 - ί4) whereby tjeS1(^) + J = 1,..., 4.

We shall sketch the proof of the lemma.

Let ίG!®(j/) and α e j / . Since ί*G1®(j^), Fα is an operator of trace class.
Because of (ί*α)*2fl*£5 ^*ί is of trace class. t^Q3)J^) is an immediate
consequence of the boundedness of ta. This proves (1). (2) is obvious because

The proof of (3) and (4) is similar to the bounded case. Here we carry out the

proof of (4). Suppose te<51(s/)+ and α e j / + . We have Trία= Σ<Jaφn,φn} for
n

each orthonormal basis {φn}neN of Jf. We choose an orthonormal basis consisting

of eigenvectors φ'm to the non-zero eigenvalues λm of t and of elements φ^eLin

(φ'^meN)1. Since the vectors φ;

m = λ~ιtφ'm are contained in Uf and t^QΘ for

te S^jtf), it follows Trία= £ <>φ m , φw> + Σ (Jάφ'i φ'ί> = Σλm<aΦ'm> Φ'm> ^ ° b e "
m /c m

cause the eigenvalues λm are positive. Thus (4) is proved.

Next we show (5). By the *-invariance of S^stf) we may assume that t is

hermitian. As already used in (4) we have Tr ία= Σ^m<βφm>Φm) Denote by λ^
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(λm) the positive (negative) eigenvalues of t and by φ^ (φm) the corresponding
eigenvectors. Putting

we have t = t+-t_. Because teQx(si) the series £ \(Jaφn, φn)\=Σ\λm(aφ'm, φ'm}\9

n m

hence also ΣA*|<αφ*,φ*>|, are convergent for all as si. Putting a = xx + , XEJ$,
m

(si was assumed to be an O/?*-algebra!) we see that Σ > C < x x + Φm>Φm>
m

= Σ l l χ + Vΰ-Φm\\2= YJ\\X+ VκΦn\\2<ao> This nieans that x+ ]/ϊ~ is an oper-
m n

ator of the Hilbert-Schmidt class for each xssi. Hence ]/ϊ^xQ(x + |/ί7)* and

j / ί + (because Is si) are also of the Hilbert-Schmidt class. Thus, t + x= ytΛ

is of trace class for all xssi, i.e. t+e(Bί(j^) + .
Similarly, t_sS1(si)+ which finishes the proof of (5).

Remark. For each operator ts1S(si) the functionals f/(x) = Trίx and
ft(x) = Tr(x + )*t are well-defined linear functionals on si. But without the ad-
ditional assumptions tj^Q3, t*£?QΘ, the assertions of Lemma 1, (3) and (4), are
no longer true even if si is a closed Op*-algebra. We include a simple counter-
example.

Consider the differential operator x = — —y on the invariant domain Q)x of all

infinitely differentiable functions with support strictly inside the interval [0,1] in

the Hubert space J ^ = L2(0,1). Let &(x) be the Op *-algebra on 3)1 consisting of all

polynomials p(x) in x. The extension p(x)->p(x) 1 2 of ^(x) to D: = (°| 0(p(x)) is

a closed Op *-algebra si on ^ . For the function ψ(s): = exp I — = + i—.- \ss C°°(0,1)

we have x*ψ = ίψ. Hence, \ps2^(si). Clearly, ψφ2. Now take the one dimensional
operator Pψξ = (ξ,ψ}ψ on Jf7. Since Pψaφ = (aφ,ψ}ψ = (φ,a*xp)ψ for αe^/,

,̂ it is clear that Pψa is nuclear for all as si. Thus, P ^ e ^ ^ + We see that
a = (ψ,a*ψ} and Tr(α + )*P ψ = <(α+)*φ,φ> for all as si. Putting a = x we get

Ψ

ψX= -ί\\ψ\\2 and Trx*P φ = 1\\ψ||2; hence T r P φ x φ T r x * P r Therefore neither
1 α nor Tv(a+)*Pψ are hermitian linear functionals on si. In particular, they

are not strongly positive because x e ^ + .

Finally, we collect some definitions about unbounded operator algebras (cf.
[3]). U(2)) is the set of all linear operators a which are together with the adjoint
operator α* defined on 2 and leave 3) invariant. U(Θ) is a *-algebra with the
multiplication (ab)φ: = a(bφ\ φeΘ, and the involution a-^a+ : = a* \Q).

An Op*-algebra si on Q) is a *-subalgebra of U(Q)) which contains the identity
1 = 1®. The locally convex topology t^ on Q) defined by the seminorms
| |φ | | f l : = | |αφ||, as si, is called the graph topology of si on Q). For brevity we write
/ + instead of/L + w An Op*-algebra j / is closed if and only if the space 3)\έ J\ is
complete. The domain Θ is said to be closed if U(Q)) is closed on 3.
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By ^(jf7) we always denote the * -invariant vector space of all bounded
operators a on Jf7 whose range is contained in a finite dimensional subspace of Jf.

is the ̂ -invariant subspace of all ae^(J^) with range aQQ).

2. O/?*-Algebras with a Compact Embedding

Let stf be an Op*-algebra on Θ and 2F a ̂ -invariant linear subspace of J^Jf) with
J^ 2 @*{β\ By J / ^ we denote the linear span of stf and 3F regarded as operators on
the dense domain Θ. Clearly, s$^ is ^-invariant.

Lemma 1. Let j be a strongly positive linear functional on s$^, i.e. /(α)^0 for all

+. Suppose the Hίlbert space #? is separable.
Then there exists an unique operator te1

(S(s$)+ such that /(α) = Trία for all
\ Furthermore, we have Tra*ta^f(a + a) for all

Proof Since all operators ae^(^) are bounded and lestf, S$^h is cofinal in the
ordered vector space s$^{^)h- By the classical Krein-Rutman theorem the
functional / can be extended to a strongly positive linear functional on s$V(^)h

 a n <^
by linearity on s$Vpπ ^ ^ s m e a n s t n a t w e m a y assume without loss of generality
that #" = JφT).

Let Pφ ψ be the one dimensional operator on Θ defined by Pφψξ = <ξ, ψ} φ for
φ,ψeJf. then P^e^(je)Q^^ for all φ,ιpe3tf. Let B{φlψ):=f{PφJ for
φ.ψeJ^. Since 0^Pφ φ^ ||φ(|2/, the strong positivity of / implies
0SB{φ,φ)=f(Pφφ)S\\φ\\2f(I) The usual polarization decomposition of B(φ,ψ)
gives us \B(φ,ψ)\SC\\φ\\ \\ψ\\Vφ,ψeJF. Hence B(φ,ψ) is a bounded quadratic
form on Jf. Thus there is a bounded operator teB(j^) such that (tφ9ψ}
= B(φ,ψ)\/φ,ψeJήf. Because B(φ,φ)^θyφeJ4f, t is a positive (hence self-adjoint)
operator.

Our next step is to prove that te1S(j^) + . Suppose that αej/. By the
separability of J>f we can choose an orthonormal basis {φn}neN for Jf of vectors

fc

φne@. Let us consider the operator bk:= £ PaφniaφnetF{Θ). Then

for allψeSf which means that bk^aa +. Using the strong positivity of / we get

k fc

and

Σ Σ A 2 + ) . (1)

Hence |/ία is a Hilbert-Schmidt class operator for all aejtf. In particular, ]/7 is of
Hilbert-Schmidt type because Je J^. Consequently, ία= ]/ί j/ϊα is of trace class
which proves ίe !
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Now we verify that f(a) = Trta for αeJ^. By f(PφJ = (tφ,ψ}=ΎΐtPφ}ψ this is
true for the one dimensional operator Pφiψ. Since each operator ae^(^if) is a
linear combination of one dimensional projections we get f(a) = Ύΐta for all
aeάF(jή?). Obviously, the bounded operator t is uniquely determined by the
requirement (tφ,ψ}=f(Pφ ψ) for all vectors φ,ψ of the dense domain Q). Because

X (1) gives us Tr α*fα = £ <a*taφn, φn) Sf(aa+l Now the proof of the
7 = 1

lemma is complete.

Remarks. 1. Lemma 1 (in a different form) is due to Uhlmann [19].
2. Let srf = U{Θ) and &r = &r(3>). Then si'^ = L+{@). If/is a strongly positive

linear functional on U(Q)), then according to Lemma 1 there is an unique trace
functional g(a) = Tΐta, te 1Q(si) + , on U(β~) such that/and g coincide for all finite
dimensional operators ae3F{β\ We call g the trace part of/

The main result in this section is

Theorem 2. Let si'be a self-adjoint Op*-algebra on 3) and f a strongly positive linear
functional on si. Suppose, there is an operator cesd such that the embedding map
ic :^(c)->J^ is completely continuous.

Then f is a trace functional on si with positive density matrix ί, i.e. f(a) = Ύrta
with te<5ί{si)+ for all aesi.

First we note a simple lemma the proof of which is easy and will be omitted.

Lemma 3. Let c be a closable densely defined linear operator in the Hίlbert space Jf\
Then the embedding map ic :@(c)-+J^ is completely continuous if and only if

1 is completely continuous in JΊf.

Here @)(c) denotes the domain of the closure c of the operator c endowed with
the scalar product (φ,ψ}c = (cφ,cψ} + (φ, ψ}. In the proof of Theorem 2 we
extend an argument due to Woronowicz [21].

Proof of Theorem 2. First let us note that the Hubert space J>f is separable because
the dense domain Θ{c) is the range of the completely continuous operator ic. Since
sέ\ is cofinal in ^/^ (^ ) h, the functional / can be extended to a strongly positive
linear functional on si^^y We will denote this extension by the same symbol/ In
virtue of Lemma 1 there is a trace class operator te1

(5(si)+ such that f(a) = Ύrta
for all ae^{J^). Since ίe1β(«s/)+ we know that ttf Q2J^si). Because si was
assumed to be self-adjoint, we have ίj»f QQ) and hence te(21{si)+ (see Lemma 1.1).

By assumption and Lemma 3 the operator (c^c + I)'1 is completely con-
tinuous. Denote by {λn}neN the eigenvalues of this operator (taken with multip-
licity) and by {φn}neN an orthonormal system of the corresponding eigenvectors.
Without loss of generality we may assume that λn^λn+1 for all neN. {φn}neN is an
orthonormal basis because (c^c + I)"1 is invertible. Thus we have (c*c+I)~1φ
= Σλn(φ,φnyφn for each φeJt? [10]. Putting φ = (c+c + I)ψ, ψe9, we get
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We wish to show that f(x) — Ύτtx for all xesi. It is enough to prove this for
hermitian elements x = x+estf. Let us regard the finite dimensional operator yk

defined by

k

yuψ= Σ λn((c+c+i)χψ,φnyφn.

Since we could replace c + c + I by c + c + y+y + I (which has also compact inverse)
and si is the linear hull of the elements of the form c + c + y+y + I, yes4, it suffices
to consider x = c+c + L Then yk is a bounded hermitian operator, i.e. yke
For \peΘ we get

S( sup λ
\

oo

A), + 1 | ! ( c +

Hence +(x-y / ( )^[x(c + c + /)2x + / ] . By the strong positivity of/ on
follows that

I/W -/Wl ^ K + x f(x(c + c + I)2x + I). (2)

Since te <51(s/) + , Ύΐta is a strongly positive linear functional on si'^{π) by Lemma
1.1, (4). Therefore by the same reason we have

| T r t x - T ϊ t y k \ ^ λ k + 1 Trt{x{c + c + ifx + / ) . (3)

(2) and (3) together give

\f(x) - Tvtx\ £ \f(x) -f(yk)\ + \f(yk) - Ίxtyk\ + |Tr tx - ΊHyk\

Here we applied Lemma 1 which gives f(yk) = Tr tyk. Since (c*c + / ) ~ ι is completely
continuous, lim/ίfc = 0. Consequently, f(x) = Trtx. This completes the proof of

/c-*oo

Theorem 2.

Remarks. 1. Sherman [14] has made the assumption that there is an operator in
si which is the restriction to 3) of the inverse of a completely continuous operator.
This condition is equivalent to our assumption of a completely continuous
embedding ic :@ι(c)-*2tf for an operator cestf (see Lemma 3).

2. Suppose in Lemma 1 that the Op*-algebra sd is self-adjoint. Then f(a)
= Ύrta is true for all operators α e ^ whose real and imaginary parts are in the
τ0-closure of 3Fh. Here τ 0 denotes the order topology of the real ordered vector
space sipw This statement follows immediately from Lemma 1 and the fact that all
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strongly positive linear functional (in particular,/(x) and TrOc) are τ0-continuous
on si &.

In the preceding proof of Theorem 2 it was shown that (under the assumptions
of the theorem) ^{^\ is τo-dense in si^^)h.

3. There are some analogies with the classical moment problem. Each positive
linear form on C0(X), X a locally compact Hausdorff space, is given by a positive
Borel measure. Every strongly positive linear functional on J ^ J f ) is given by a
trace class operator. In the classical problem of moments each positive linear
functional on an adapted vector subspace si of C(X) can be represented by a
positive measure [22]. An equivalent definition of an adapted vector space si is
that C0{X) is dense in C0(X) + si with respect to the order topology τ 0. Calling an
Op*-algebra si adapted if 3F(ffl) is τo-dense on si ^^^ then similarly each
strongly positive linear form on an adapted Op*-algebra is a trace functional.

4. If we replace S1(si)+ by 1

(Z(si) + in Theorem 2, then the assertion of this
theorem is valid without the assumption of selfadjointness of si. This can be
shown by using some results about operator idaels in Op*-algebras.

3. Op*-Algebras on Montel Domains

In the preceding section it was proved that all strongly positive linear functionals
on a self-adjoint Op *-algebra si are trace functionals if there is an operator in si
which is the inverse of a completely continuous operator. We shall see below that
(even for U(Θ)) this condition is not necessary. However, it is often applicable in
quantum physics. The most important physical application which was already
covered by the results of Woronowicz and Sherman is the Op *-algebra generated
by the Schrodinger representation on the Schwartz space £f(Rn) of the canonical
commutation relations for a finite number of degrees of freedom. Here the number
operator is the inverse of a compact operator. This example is a particular case of a
more general one which arises from the representation theory of Lie groups. Let U
be a strongly continuous unitary representation of a Lie group G. Suppose that the
operator U(f) is completely continuous for all functions feL^G). (Note that this is
fulfilled by definition if G is a CCR group in the sense of Kaplansky and U is
irreducible.) Then the associated representation dU of the enveloping algebra g(G)
of the corresponding Lie algebra satisfies the assumptions of Theorem 2. If A
denotes the Nelson Laplacian in S(G\ then dU(A — 1) has a compact inverse by a
theorem of Nelson and Stinespring ([7], Theorem 4.1). Clearly, dU{£{G)) is self-
adjoint on 0 = f] 9{dU{A - \)n).

neN

In the present section we turn to the characterization of the domains Θ with
the property that all strongly positive linear functionals on L+ (β) can be given by
density matrices. Our main results are contained in the following theorem.

Theorem 1. Let Θ be a dense domain in a Hubert space Jf. Suppose ^ [ / + ] is a
Frechet space. The following are equivalent:

(1) ^ [ / + ] is a Montel space.
(2) For each Op*~algebra si on Q) with / ^ = / + all strongly positive linear

functionals are trace functionals Ύvta with
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(3) Every strongly positive linear functional on U(β) is a trace functional Ύΐta
with teQί{2) + .

If Q}\j+] admits an unconditional basis, then each of these conditions is
equivalent to (4).

(4) Θ contains no infinite dimensional Hilbert space as a subspace, i.e. 3) is of
class I in the sense of [5].

For the sake of completeness we recall some notions used in the theorem. A
system {φn}neN of elements of a locally convex space £[τ] is called a basis of £, if

00

each element φeE can be represented in the form φ= ,£ fn(φ)φn with uniquely

determined coefficients fn(φ). The basis {φn} is said to be unconditional if the series
is unconditionally convergent for each φeE. A barreled locally convex space is
called Montel space ([2], p. 372) if each bounded set is relatively compact. Since
Frechet spaces are always barreled, in our case the Montel property of 3)\J+~] is
equivalent to the requirement that the bounded sets are relatively compact.

The proof of the theorem will be given in several steps.

Statement 2. Suppose stf is an Op*-algebra on a domain 3) and Θ\_έ'• J\ is a Frechet
Montel space. Then all strongly positive linear functionals on s$ are of the form Trία
with te(Z1(s/) + .

Further, we have J^ = / + . Hence the implication (1)—»(2) in Theorem! is true.

Proof. Sherman [16] has shown that all strongly positive linear functionals on a
closed Op*-algebra j / of countable dimension are trace functionals Trία with

) + if the following condition is fulfilled:

There is an operator in sέ which is the restriction to Q) of the inverse of a , ,
completely continuous operator on Jf\

By a closer examination of Sherman's proof one can see that the same assertion is
true if the weaker condition (+ +) is satisfied.

®XJ>sA *s a Montel space. (+ +)

Let us verify this. The assumption (+) was only used in Sect. 4 of Sherman's paper
at two points. Firstly, (+) was used to conclude that the underlying Hilbert space
Jf is separable ([16], p. 305). Since the Frechet Montel space 3>\tJ\ is separable
([2], p. 373) and the topology ύ^ is stronger than the Hilbert space norm topology
(because les$\ (+ +) also implies the separability of Jf. Secondly, ( + ) is applied
in proving Lemma 16 in [16]. (This is the essential point in applying ( + )). Here
( + ) is used in order to conclude that if a sequence {ψn}neN, ψn£@, converges
weakly in Jf to ψeΘ and the set {ψn} is /^-bounded, then {xpn} converges to ψ
in the topology έM. This is already true if each bounded set in ®\tj\ is relatively
compact. Hence the Montel property of ^ [ / J is sufficient for this argument and
for the whole proof of Sherman's result.

Our next aim is to show how we can drop the assumption that the Op*-algebra
j / is of countable dimension. Now suppose s$ is an Op*-algebra on Q) and Q)\J J\
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is a Frechet Montel space. Let / be a strongly positive linear functional on stf. By
the closed graph theorem we have / + = / ^ because Q)\έ J\ is a Frechet space. In
particular, it follows that for each b = b+ <aϋ(β) there is an operator aestf such
that (bφ,φ}S\\bφ\\ \\φ\\S\\aφ\\ \\φ\\S<{a + a + I)φ,φ} for all φe@. This means
that sίh is cofinal in U{β\. Hence / can be extended to a strongly positive linear
functional on U{β). We prove that there is an operator te(21(<stf)+ with f(a)
= Ύrta for all aestf (this is actually true for all aeϋ (!&)).

Suppose the topology of the Frechet space Q)\J J\ is defined by the countable
system of seminorms || ||αn, anestf, neN. Fix an orthonormal basis {φn}neN of
vectors φne@ which is possible by the separability of Jf3. Take an arbitrary xejrf.
By stf x we denote the *-algebra generated by an, Pφn φm, n9 meN, and x. Clearly, dx

is a closed Op*-algebra of countable dimension. Since ^ = / f i/χ, (+ + ) is fulfilled.
Therefore by our modified version of Sherman's result there is an operator
t = txe(Z1(jtfx)+ such that f(a) = Ύτta for all aesix. We claim that tx actually
depends only on / and stf but not on x. If xly x2eja/, then TτtXiPφnφm

= TΐΐX2Pφn>φγn because Pφntφmejtfxinj/X2. This means that
(tXίφn,φm) = (tX2φn,φm) for all n,meN. Since the operators tXί, tX2 are bounded,
this implies tXί = tX2. Hence tx doesn't depend on x and f(x) = Trtx for all xesrf.

(2)->(3) is obvious.

Statement 3. (3)->(l).

Proof. Assume the contrary, £$[/ + ] is not a Montel space. Then there exists a
bounded set Jί in ®[7 + ] which is not relatively compact in ^ [ / + ] . Hence Jί
contains a sequence {ψn}neN which has no cluster point in ^ [ / + ] . Since {ψn} is
bounded in the Hubert space norm (because the identity is in U(Θ)\ {ψn} has a
weakly convergent subsequence in 34?. For simplicity suppose that {xpn} is weakly
convergent to ψeJ^f. We want to verify that ψe@. Let aeϋ(3). Since {axpn} is
bounded in #C, there is a subsequence {aψnk} which is weakly convergent to φe 3t.
For ηe@(a*) we get (aψnk,η} = (ψnk,a*η}-+(φ,ηy = (ψ,a*η}. Hence
φe§(α**)Ξ^(α). This implies ψeS) since the Op*-algebra U{β) is closed.

The set Jf = {ψn,neN} endowed with the induced topology by ^ [ / + ] is a
Tychonoff space. Hence there exists the Stone-Czech compactification jS(JΓ) of Jf
([1], p. 153). The functions ha(φ) = {aφ,φ} for aeU{Q)) are continuous bounded
functions on the topological space Jf. Thus they can be extended uniquely to
continuous functions ha{ ) on j8(Jf). The set β{jf)\Jf is not empty because Jf is
not compact. Let seβ(Jf)|Jf\ We define a linear functional on ϋ{β) by setting
/(α): = ha(s). liaeϋ(β) +, then Λβ(φ) = <αφ, φ} ̂ 0 for all φe tf and hence ha(s) ^ 0 .
Consequently, / is a strongly positive linear functional, s is a cluster point of Jf
because Jf is dense in β{Jf). Since the functions ha(-) are continuous on β(Jf\
f(a) = ha(s) is a cluster point of the set {<αφn, \pn},neN} for each αeL + (^). By the
assumption / is a trace functional, i.e./(α) = Trta for a certain ί e S ^ ^ + Suppose

g

^ and ε>0. Since ψn-^ψ, we have |<tpw9̂ 7> <&*/>,,>--<V>>*/> <ξ,tp>l< 2 f o r

g

n ̂  no(ε). On the other hand, there is a k ̂  no(ε) such that |/(Pξ>^) - iPξtηΨk9 ψk}\ < ~

because f(Pξ>η) is a cluster point of {(Pξtηψn,ψny,neN}. Combining these in-
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equalities we get \f(Pξ^ — {ψ,η} (ξ,ψ}\<ε. Since ε > 0 is arbitrary, we obtain
(ψ,η} {ξ,ψy=f(Pξη) = {tξ,η}. This means that the bounded quadratic forms
(tξ,η} and (ψ,η} (ζ,ψ} coincide on Q) x Q). Hence t = Pψ because 2 is dense in
Jf. Now we claim that ψeΘ is a cluster point of Jf = {ψn, neN} in ^ [ / + ] . Take

£

aeϋ{&) and ε>0. Then ψn-^ψ implies that \{a + aψ,ψ}~(a + aψ,ψn}\< - for all

ε) with a suitable number n1(ε). Further choose an integer fe^n1(ε) such that

\f(a + a)-(a + aψk,ψky\<~. Since f(a + a) = TτPψa
 + a= \\aψ\\2 and \\a(ψk-ψ)\\2

= \\aψk\\2 - (a+aψk,ψ} - (a+aψ:ψk} + \\aψ\\2, this implies | |α(tp ί c -φ)| | 2 <ε.
Consequently, ψ is a cluster point of JΓ in ^ [ / + ] which is a contradiction. This
completes the proof.

Lassner and Timmermann [5] proposed a classification of domains of
unbounded operator algebras. They called a domain 9) of class I if 9) contains no
infinite dimensional Hubert space as a subspace. These domains are closely
connected with the Montel property of ^ [ / + ] as we shall see by the following
lemma.

Lemma 4. Consider the following properties of a dense linear subspace Q) in the
Hubert space jf:

(a) ^ [ / + ] is a Montel space.
(b) 3) contains no infinite dimensional linear subspace Q)γ such that the topology

/ + on Q}χ is normable.
(c) Q) is of class I.
Then we have (a)-»(c) and (b)-»(c). // Q) is closed (i.e. U{β) is closed), then

(c)->(b). // ^ [ / + ] is a Frechet space with an unconditional basis, then (b)->(a) and
hence (a), (b), (c) are equivalent.

Proof, (a)-) (c) and (b)->(c): Assume that Q) is not of class I, i.e. Q) contains an
infinite dimensional Hubert space Jf\ (endowed with the scalar product induced
by JΉ) as a subspace. Let S1 be the unit ball of Jf r By the closed graph theorem
all operators aeϋ(β) are bounded on #?v Therefore the restriction of/+ to Jf̂
coincides with the usual norm topology of the Hubert space Jf̂ . This contradicts
(b). Thus (b)-»(c) is proved. Further, Sx is a bounded set which is not relatively
compact in ^ [ / + ] . This is a contradiction to the Montel property of 3>\J+ ~\.
Hence we have (a)->(c).

Suppose now that the domain Θ is closed. We show (c)-»(b). Assume the
contrary of (b). Let Q)X\J + ~\ be an infinite dimensional topological linear subspace
of ^ [ / + ] such that the topology / + on 3}χ can be defined by a norm || ||r. Since
/||.|(,g/ + , there is an operator a^U{β) with | |φ|Γ^||α0ΦII ^ o r a ^ Φ G ^ i
Conversely, /+£/| | . | |> implies that \\aoφ\\ ̂ C\\φ\\' on 3>v Hence the norm
| | φ | | α o : = | | α o φ | | defines the topology/+ o n ^ ^ Let(jf1? || ||αo) be the completion of
(^i'll 'Lo) Since ^ [ / + ] is a complete space, ^ can be identified with the
topological closure of 2X in ^ [ / + ] . Thus ^λQ9. Clearly, (Jf3^ || ||βo) is a Hubert
space. Therefore J^ 2 : = a0J^7

1 equipped with the Hubert space norm || |[ is an
infinite dimensional Hubert space. Since ^XQΘ and aoeU(S)\ we have
which is a contradiction to (c).
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Next we show that if 2\J ^\ is a Frechet space with an unconditional basis,
then (b)-*(a). Let {φn}neN be an unconditional basis of ^ [ / + ] . The topology / +

can be given by a countable system of Hubert space norms || ||αk, fceiV, akeL+(2).
According to ([6], Prop. 1, p. 117), the space 2 is isomorphic to the Kothe space

{ 00

« = 1

and the seminorms qk, keN, define the graph topology / + . Thus ^ [ / + ] is a
"Stufenraum" of order p = 2 in the sense of Kothe [2]. Suppose (b) is fulfilled. In
particular, there is no subspace 2X of 2 such that 2λ\J + ] is topologically
isomorphic to the Hubert space 12. By a theorem of Kothe ([2], p. 424) this-implies
that 2[_J+~] is a Montel space?1

The statements and the lemma together prove the theorem.
Problem. Suppose the domain Q} is of class I and ^ [ / + ] is a Frechet space. Can we
conclude that ®[V+] is always a Montel space?1

Remarks. 1. The assumption that 2[/ + ~\ is a Montel space is properly weaker
than the existence of an operator ceϋ(β) with compact embedding map
ic:^(c)->^f. First we claim that a Frechet domain ^ [ / + ] is a Montel space if
there is an operator ceL + (^) such that the map ίc is compact. Indeed, let Jί be a
bounded subset of ^ [ / + ] and αeL + (^). Then, in particular, the set (c + c + I)aJί is
normbounded in the Hubert space Jf. Since the operator (c^c + I)"1 is completely
continuous (cf. Lemma 2.3), the set a<M is relatively compact in the Hubert space
Jf\ Using the fact that the domain 2 is closed we see that Jί is a relatively com-
pact subset of £&[/+].

The following example showing that the converse implication is not true is a
slight modification of an example due to Kothe ([2], p. 436). Let us consider the
infinite matrices

where

By a diagonal procedure we write each matrix xik) as a sequence. Then x{k)

corresponds a diagonal operator ak in the Hubert space 12. Let

0= Π

be the intersection of the domains of all finite products of operators αfc, fee AT.
Clearly, the operators a\\..an

k

r

r are in U(β). This implies that ® [ / + ] is a Frechet
space. From the definition it is clear that for all operators a\\..an

k

r

γ the embedding
map xanx an, is not completely continuous. Using the closed graph theorem, it
follows'that the embedding map ia \Θ(a)->3f is not compact for each aeϋ{β).

^ [ / + ] is a Frechet Montel space by Kothe's criterion ([2], p. 424). Hence Θ is
of class I according to Lemma 4, (a)-»(c). But there is no operator ceL+(@) such
that Θ{c) is of class I. Otherwise we would have the existence of a compact

1 Added in proof. The answer to this question is affirmative (P. Kroger, oral communication).
Hence the basis assumption in Theorem 3.1 can be dropped



Unbounded Operator Algebras 125

embedding (cf. [5], Prop. 1, p. 160) which is impossible according to the preceding
discussion.

2. Notice that for domains of the form 3)— f] Q){an), a selfadjoint operator,
neN

Θ\_t+~\ has always an unconditional basis. This is a consequence of the spectral
theorem. In this case the following conditions are equivalent:

(a) The embedding map ίa \3){ά)-*#e is compact.
(b) (a2 + I)~1 is completely continuous.
(c) ® | 7 + ] is a Montel space.
(d) The spectrum of a consists of a countable set of eigenvalues λn with

lim \λn\= + oo.
n-+ oo

(e) 3) is of class I.
Let us add few remarks concerning the proof. (a)<->(b) is clear by Lemma 2.3.

(c)<-»(d) was proved by Pietsch [8]. Finally, (b)<->(d) is well-known from operator
theory in a Hubert space.

4. On the Continuity of Trace Functionals

The main purpose of the present section is to characterize the (not necessarily
positive) trace functionals on an Op*-algebra stf by the continuity in a certain
locally convex topology τ% on si. First we shall define the topologies under
discussion. The uniform topology τΘ on an Op*-algebra si (see [3]) is given by the
seminorms pjfί(a): = sup |<αφ, φ>| taken for all bounded sets Ji of 3)\J J\. The

well-known decomposition

- ί(a{φ + vψ\ φ + iψ} + i(a(φ - iψ\ φ - i

implies that τ^ can also be defined by the equivalent system of seminorms
pf

M(a): = sup Ka</>, </>>|. If we restrict ourselves to relatively compact (bounded)
φeJί

subsets Jί of 3)\J^\ then the seminorms pM{d) (or equivalently, the seminorms
p'jiiμ)) define a locally convex topology denoted by τ%. Clearly, τB 2 τ%. \i3l\tj\ is a
Montel space, then we have τ% = τ2.

Since the image aM of a relatively compact subset M of 3)\ίJ\ is relatively
compact, the right and left multiplications in s$ are τ^-continuous. The continuity
of the involution is trivial. Therefore, stf[τc

9~\ is a topological *-algebra.
Now we are in position to establish our results. We assume in the following

that the underlying Hubert space is separable.

Proposition 1. Let sd be a dosed Op^-algebra on the dense domain 3). For each
continuous linear functional f on s$[τc@\ there exists an operator ί e S ^ j / ) such that
f(a) = Trta for all aesd.

Proof. Since fe £#[τ%J, there is a relatively compact set Jί oϊ3)\tj\ such that \f(a)\
<^p'M(a) = sup |<aφ, φ}\. Without loss of generality we may assume that J( is closed

φeJί

in 3}\έJ\, Then Ji endowed with the topology έ^ is a compact Hausdorff space.
Each operator aesrf corresponds to a function ha(φ):=(aφ,φ} on Ji. These



126 K. Schmύdgen

functions are continuous on Jί\_tJ\ for all ae$0. By putting F(ha)=f(a) we define a
linear functional on the vector space Ψ" of the functions ha, aestf. This definition is
correct because ha(φ) — 0 for aΆφeJi implies f(a) = 0 by \f(a)\ g p'M{d). By the Hahn-
Banach theorem we extend F to a continuous linear functional (also denoted by F)
on the C*-algebra C{Ji) of all continuous functions on the compact Hausdorff
space Jί. F can be written as a linear combination F = F1—F2 + ί(F3 — F4) of
positive linear functional F l 5 . . . , F 4 on the C*-algebra C{Jί). Obviously, for all
elements ξ,ηeJ^ the functions hPξ^{φ) = (ξ,φ} (φ,η} are /^-continuous on Jί
(they are even continuous in the Hilbert space norm). Since each ae J^(Jf) is a linear
combination of operators Pξψ where ξ,ηeJ^, C{Jί) contains all functions ha(φ)
= (aφ,φ} for the operators aeϊF(j^) and hence for fle^w. Therefore Fp

7 = 1 , . . . , 4, induce strongly positive linear functionals / ; on s4^{π) by the definition
fj(a) = Fj(ha\ aestf^^y It is sufficient to prove the assertion for the strongly
positive linear functionals fp j = 1,..., 4, because f=fi—f2 + Kfz ~Λ) a n d ® i ( ^ ) is
a vector space.

By the Riesz representation theorem there exists a positive Borel measure μ. on
the compact space Ji such that

β f
Jί

for all functions heC(Jί). In particular, for the functions ha, aestf^^, it means
that

Fβa)=fj(a)= $(a
Jl

In virtue of Lemma2.1 there is an operator ί.G 1S(rf)+ such that fj(a) = Trί^α for
all α e ^ J f 7 ) . We claim that fj(a) = Trί7 α for each operator aejtf,j=l,...,4.

Take an orthonormal basis {φn}neN on J f of vectors φneQ). Suppose aestf.
Then we have

j.α= Σ <tjaφn,ψn>= Σ TΐtjP^,Φn
M = l « = 1

00 00

= Σ / / ^ , J = Σ I <Paφn,φnΦ,Φ>dμj(φ)

= Σ \<aφn,φ}<ψ,φn>dμj(φ)= $ Σ(aφn,φ}(φ,φnydμj(φ)
Jί Jί l

To interchange the summation and integration we could apply the Lebesgue
theorem, because

and the function haa+ +1{φ) = ({aa+ + I)φ,φ} is μ-integrable.

It remains to show that the tj is in 6 X ( J / ) for j= 1,...,4 but not only in ^{srf).
[Notice that for self-adjoint Op*-algebras this is automatically fulfilled by
Lemma 1.1, (2).]
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Take an arbitrary vector ξe^P. Let aestf. It is enough to check that

tjξe@(a**) because s/ was assumed to be closed on Θ and hence

2 = Π @{a)= f] 3>{a**). Suppose ηe3>(a*\ Since hPξ a%eC{Jί\ we have
aesd

=f{PiilΛl)= \ <ξ,φ)(φ,a*η}dμj(φ)
Jί

Now we estimate

\^ $ Kξ9φ>(aφ9η>\dμJ(φ)
JI

SUW \\η\\ 1 \\aφ\\ \\φ\\dμj(φ)S\\ξ\\ \\η\\ J
Jί Jί

= const. -\\η||.

This means that tjξe@(a**). Therefore t^Q9 and hence
This finishes the proof.
For Montel spaces Q)\J^\ the topologies τ^ and τc

@ coincide. Thus we get the
following corollary which generalizes Theorem 3 in [4] because the existence of
the inverse of a nuclear operator in stf implies the Montel property of 2\έ J\ (see
Remark 1 in the preceding section).

Corollary 2. Let s$ be a closed Op*-algebra on Si. Suppose S)\JJ\ is a Montel
space.

Then all uniformly continuous linear functionals f an s$ (i.e. f£srf[τΘ~\') are of
the form f(a) = Ύΐta with ίe® 1 (

The following proposition deals with the converse problem.

Proposition3. Suppose s$ is an Op*-algebra with metrizable graph topology έ^.

If ίeSiGs/), then the linear functional f (a) = Tvta is τ%-continuous on sd.

The proof of Proposition 3 is a modification of the argument used in proving
Theorem 2 in [4].

Proof Since each operator te&^jtf) is a linear combination of positive operators
ί; e®1(e5/)+ [Lemma 1.1, (5)], it only remains to prove the τ^-continuity of f(a)
= Ύrta for positive operators te(Z1(s0) + . Suppose the topology t^ is defined by
the countable set of seminorms || ||βk, akestf, keN. Since ίG® 1 (j/) + there are an
orthonormal system of vectors φne@ and positive numbers λn such that
f(a) = Ύτta= Σλn(aφn,φn} for all aestf.

n

We show that there is a sequence {oιn}neN of positive numbers such that

(1) l imaJa k φ n \\ 2 =0 for all keN
n-+ oo

and

(2) ΣlA^αo.
n

For the sake of continuity we shall verify the existence of such a sequence

below. Using this sequence, let us consider the set J( = {~\f~ΰnφn,neN}. Clearly, Ji
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is relatively /^-compact because each countable subset of Ji is converging to zero
in ®[7rf]. We have

\f(a)\ = Σλn<aΦn>Φn>

f o r

Hence / is τ^-continuous.
Now we construct the sequence {ocn}neN by induction on n. Put

Let cq =2~1 β^\, OL2 = 2~~1 β~\,...,oιn2_ί = 2~1 /?^ —1,1 where the number n2eiV is

chosen so large that £ A ^ ^ : g 2 " 2 ' 2 . This is possible because f{a^ax + a\a2)

= Σ 4 < ( « ί f l i + f l ί « 2 ) ^ ^ » > ^ Σ 1 Λ 2 < C O Further, put

n3 will be chosen such that ]Γ λrβr 3 ^ 2 " " 2 " 3 . Continuing this construction, we

obtain a sequence {an}neN. We check the conditions (1) and (2). First we get

Σ^1=λ12
1β1,1+λ22

1β2Λ+...+λn2_ι2
ίβni_1Λ+ Σ j Σ KnΔ

^ c o n s t . + X 2 s {2~ 2 > s }<oo

which gives (2).

Next we show (1). By the construction we see that for j = l v . . 5 s βns+ktS

^<aΐajφn + k,φn + ky and hence

Obviously this implies (1).
Propositions 1 and 3 together give us Theorem 4.

Theorem 4. Suppose .9$ is α closed Op*-αlgebrα on 3) with metrizαble graph topology
έrf. Suppose the Hilbert space Jf is separable.

A linear functional f on s$ is of the form f(a) = Ύxta with te © ^ J / ) if and only if
it is τc@-continuous on s$. If ^ [ / ^ ] is a Montel space, then the τ2-continuity of a
linear functional on stf is a necessary and sufficient condition that f is a trace
functional f(a) = Tτta whereby feS^ j/) .

We note a corollary of the preceding results.

Corollary 5. Suppose s$ is an Op*-algebra on Θ such that 3)\/ J\ is a Frechet
Montel space. Then each strongly positive linear functional f on sέ is τ@-continuous.

According to Theorem 3.1 (more precisely, Lemma 3.2) f(a) is a trace
functional Trία with te<Zί(jtf) + . Thus Proposition 3 gives the τ^-continuity.
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5. Some Applications

In this section we apply the results of the preceding section to some concrete Op*-
algebras. Furthermore, we want to demonstrate how one can get results on the
structure of the state space and of the linear functionals on unbounded operator
algebras by topological methods.

Example 1. Let si be the Op*-algebra generated by the position and momentum
operators q , Pj,j=l,...,n, on the Schwartz space ^(Rn).

Then each linear functional f on si is a trace functional /(α) = Trία, aesi,
whereby te&^si).

First Proof The uniform topology τ3 on si is equal to the strongest locally convex
topology τst on si. This was first shown in [17] another proof is contained in
[14]. The graph topology έ^ is the usual topology of the space ^(Rn). Since the
Schwartz space is a Montel space, we have τB = τ% and hence τ% = τst. Now the
assertion follows from Theorem 4.4 or from Proposition 4.1.

To illustrate how the topological method works we include a second proof
which avoids the application of Theorem 4.4 or Proposition 4.1.

Second Proof Since τ^ = τsV the cone si + is τsί-normal and hence each linear
functional on J / is a linear combination of strongly positive linear functionals on
si [11]. Thus it is enough to show the assertion for strongly positive linear
functionals. But in this case we can apply Theorem 2.2.

Example 2. Let Gbea compact connected Lie group and S(G) the enveloping algebra
of the Lie algebra ̂  of G. Let dUr be the realization of S(G) as a closed Op*-algebra
of left invariant differential operators on G with the domain Q) = Cco(G)nL2(G, μ) μ
denotes the Haar measure of G.

Then every linear functional f on dUr{$(G)) is a trace functional f (a) = Ύτta with
te &ί(dUr(S'{G))). Iffis strongly positive on the Op*-algebra dUr{$(G)\ then there is
an operator te^ί(dUr(S:(G)))+ such that f(a) = Ίvta.

Proof Let x l v . . ,x w be a basis of ^ and A = x j + . . . +x^. Since the group G is
compact, the operator dUr(A — 1) has a compact inverse. Hence ^\Jdvr{β{G))\ ^s a

Montel space. By ([13], Theorem 1), the uniform topology τ^ is equal to the
strongest locally convex topology τst on dUr(${G)\ Therefore τ% = τst because
τS) = τ% for graph topologies with Montel property. From Theorem 4.4 follows
that f(a) = Ίrta\/aestf where ί e S ^ d l / ^ G ) ) ) . If / is strongly positive, then we
obtain the assertion from Theorem 2.2.

Both examples are contained in the following general theorem. Using Lie
group representations or differential operators on Rn or on manifolds it is possible
to derive further applications from this theorem.

Theorem 3. Let si be a countably generated, closed Op*-algebra on 9). Suppose the
following assumptions are satisfied:

(1) $)\JJ\ is a Montel space.
(2) For every xesi the vector space

is finite dimensional
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Then for each linear functional f on s$ there is an operator ίeS 1 ( j^) such that

Proof. According to Theorem 1 in [14], condition (2) is equivalent to τSl = τst. Since
τ3)= τ% bv the Montel property of /^, this implies τ% = τst. Further, the Frechet
Montel space 3)\έJ\ is separable [2]. Hence the underlying Hubert space must be
separable. Now the assertion is an immediate consequence of Theorem 4.4.

Remarks. 1. Clearly, it is enough to check condition (2) for a sequence {xn} of
operators in $0 for which the seminorms | |0 | | X n : = ||xn0|| already define the
topology έ^ on Q).

2. By considering examples it is not difficult to see that neither condition (1)
nor (2) can be dropped in Theorem 3.
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