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Abstract. The existence of infinitely many conserved currents in the quantized
sine-Gordon and massive Thirring models is proved in renormalized per-
turbation theory.

1. Introduction

In this article we prove the existence (in perturbation theory) of an infinite number
of conserved currents in the quantized sine Gordon model (SGM) and massive
Thirring model (MTM). By a standard argument (see, e.g., [1]) these lead to
conservation laws which imply [2] that the set of initial momenta in any scattering
process is equal to the set of final momenta. Our method is straightforward and
relatively independent of specific details of the theories we hope it will prove
applicable in other two dimensional models.

An infinite number of conserved currents in the classical SGM and MTM have
previously been given explicitly [3-7]. A direct transcription of these currents into
quantum operators (e.g., using Zimmermann normal products), however, would
not be expected automatically to yield conserved quantum currents, due to the
familiar anomalies (anisotropies) which occur in the quantized equations of
motion. One anticipates, rather, the necessity of renormalizing the coefficients of
the terms in the current and possibly of adding new terms. Our approach here is
different we do not use the existence of the classical currents at all, and instead
construct the quantum currents directly, order by order in the coupling constant.

The currents in the quantized theories have also been studied by a number of
other authors. For the SGM, the existence of the lowest order non-trivial current
73 has been established in [8] and [1,5]. The latter references also put forward an
argument for the general case, but we believe this argument to be incorrect (see
Remark 2.6 of Sect. 2). For the MTM the existence of j3 has been established in [1,
9, 10]; [1] states that the methods generalize to all currents but no details are
given.
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The paper is organized as follows. In Sects. 2 and 3 we construct the currents
for the SGM and MTM. Section 4 is a brief review of our method, with a
discussion of those aspects which might be generalized to other two-dimensional
models. Relevant mathematical results on the zeros of certain polynomials are
discussed in Appendix A. An interesting peripheral issue, namely, the purely
kinematical implications of the conservation of a finite number of higher currents,
is treated in Appendix B.

2. Sine-Gordon Currents

In discussing two dimensional models we use light cone coordinates
x ± = {x°±xί)/2, d±=d0±dv For the sine-Gordon model the effective Lagrangian

m2(β)β~2(cosβφ -1) = JS

is quantized using the BPHZ procedure here

oo

m2=m2+ £ akβ
2

akβ
2k

k=l

with coefficients chosen to preserve m as the physical mass. For n odd and positive
we seek a conserved current j n whose zero order term in β is the free current j®:

Λ " "•'••• (2.D
iV-n'ΦΦ,-,,

where φk = dk

+φ. We will construct^ recursively, starting from (2.1).
We begin by listing the operator products to be used their form is suggested

by the classical currents [3,4]. Let a — {aι,a2,... ,a2l) be a finite sequence of
integers, with 0 ^ α t ^ α 2 ^ ... ^a2l and α2, ...,a2l non zero. Write l(a) = l,

, if ^ = 0 ,

m2N[_φaι...φa2icosβφ), if 64 > 0 ,

and for at>0 only,

Here N( = Nr{a)) is the Zimmermann normal product with canonical dimension.
We say that Ba and Ca have length 2l(a) note that Ba and Cα transform like the
+ + ... + component of a Lorentz tensor of rank r(α), and that

2/(α)^r(α)+l. (2.2)

Note also that this list includes all monomials in + -derivatives of φ, and their
products by sinβφ and cosβφ, such that the resulting operator is even under
φ-+—φ. No factors of φ occur (unless the trig functions are expanded).
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Fig. 1. Graphical structure of anomaly contribution in sine-Gordon model

Lemma 2.1. For any current of the form

r(a) = « + 1

r(a) = n- 1

divergence d-J—d_J~ +d + J+ has the form

Σ Φ)ca+i Σ Σ
r(a) = n r(a) = n i = l

(2.3)

(2.4)

Here fc, c, c;, αn<i d are formal power series in β, and the last term is a Schwinger term,
defined by

TN «2I(α) + βφ MΠ
7 = 1

- Σ dϊ+δ(x- φ(yj)0). (2.5)

Such terms will be abbreviated ST in the future.

Proof. Clearly d + J+ has the desired form, with no Schwinger terms. Using the
quantized equations of motion [11] we have

2l(a)

Σ
i= 1

L7 * i

ΦapT \Φ -

The first two terms are of the form (2.4) the last is the anomalous term present
only if 2/(<2)Ξ>4, in which {φ} denotes that the normal product is twice oversub-
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tracted. As observed in [1,5], however, the only graphs contributing to the
anomaly have the form of Fig. 1, in which lines from the normal product vertex F,
which are indexed by a set $Γ, ie$ΓC{1,...,2/(α)}? \ΘC\ ^ 2 , are contracted to a single
interaction vertex V. The resulting operator is proportional to

m2β'2\dyN[jΠ φa^ (x)d«-1 [^pcosβφ(y)

with M = £ α,., which is of the form (2.4).

Note in particular that if (Mfc)f = δ k ί,

2ϊ(α)

< 5 + C a = Σ C β + 1 ( k + jB2(.. )
fc = 1

(2.6)
2/(o)

d-Ba=- Σca-Uk+β2(.-.)+sτ
k=ί

with the convention that the entries of a ± uk be rearranged in increasing order.
The basic tool for constructing the currents, to be proved shortly, is

Lemma 2.2. Let J be of the form (2.3), and suppose that for some fc>0 and 2rg2/
l, (2.4) becomes

d J = β2k(R + HOT) -}- ST (2.7)

« = Σ caCa (2.8)
i(Λ) = ί, !•(«) = «

(cfle€) αnrf the higher order terms (HOT) either of order β2 or of length greater than
21. Then there exists a current / of the form (2.3) such that

(2.9)

Our main result is

Theorem 2.3. There exists a current j n of the form (2.3), with jn\β = 0=j® given by
(2.1), and with d-jn = SΎ.

Proof. This is an immediate consequence of Lemma 2.2. For let J~ =Bι n,
K = Co,n-15tnen Jn\β2 = o=Jn> a n <^ s m c e S-Jnis of order jS2, we may construct ./„ by
adding to Jn currents which successively eliminate terms in d j of increasing length,
order by order in β.

Remark 2.4. If Lemma 2.2 holds for 21 < 4, then Theorem 2.3 holds for n = 3. For by
(2.2), if we construct j 3 inductively, as described above, only terms in d-j of order 2
or 4 are encountered.
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Remark 2.5. Suppose that Theorem 3 holds for some particular n; we recall the
derivation of the corresponding conservation law. Consider

conn

Φ) Π
i= 1

(where conn denotes connected vacuum expectation values), take the Fourier

transform, multiply by Π{pf — m2), and restrict p1...pk to p2 = m2, pi0>0;

Pk+i " PiL t o Pf — m2-> Pίo<^ The integrated Sch winger terms yield

n

9 (2.10)

where, f rom (2.1), F(0) = 2. H e n c e

(Σfi + )ζmt<p1...pk\-pk+1... - P 2 L > Γ n - 0 .

Proof of Lemma 22

Case 1: 2/^4. For any a with r(a) = n, l(a) = l, let span (a) = a2l — aί since r(a) is
odd, span (α)>0. We will show the existence of a current βa with

(2.11)
ί(α')==/,Kα') = »

span(α') <span(α)

then, using (2.11), we may successively reduce the maximum of the spans of terms
in R until R is written as a divergence (up to HOT).

21

Now since 1=1 or 2 and r(a) = n is odd, J"] φ f l ί must have either the form
i

or the form

(or possibly both). In the first case set β~ =0,

and the first case does not hold, set f* =

(2.11) now follows immediately from (2.6).
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Case II: 2/^6. Consider first a general field polynomial with coefficients bae<E:

S(x)= Σ KCa.
l(a)- L,r(a) = m

To zero order in /J,

2L

Π(p,2-m2)(0
i= 1

2 L

TS(p) Π Φ(Pi)
i= 1

0 ) =i2L+mδ(p + ΣPi)P(Pl + . . . p 2 L + ) , (2.12)

with

Pip1+,...)= Σ Π O W '
πeS2L i= 1

We write P = Λ.(S) the map /I is clearly 1 — 1 and its range consists of all symmetric
polynomials in {pi + }, homogeneous of degree m, in which each monomial is
independent of at most one variable. A similar map A' acts on field polynomials
ΣbaBa, with A'(Ba) = A(Ca) since Ba was defined only for ax ^ 1, polynomials in the
range of A' contain a factor (Πpi + ).

Now apply the reduction procedure of Remark 2.5 to (2.3) with L = /, keeping
only terms of order at most β2k. The result is

\i= 1 I J terms of order ^2k

+ β2kί2l + Mδ(ΣPi)A(R) = 0 (2.13)

for pf = m2. By Remarks 2.4 and 2.5 and Case I above, however, (2.10) holds with
2/

n = 3 and thus 0Xit(p1... | .. P2/>in vanishes unless Xpf+=O. We conclude that
1

Λ(p1+,...,p2l + ) vanishes for Σpi+=0,

i+^^ and Σp? + +0.

By Theorem 2.3 of the Appendix,

)Q- (2.14)

where Q + ,Q~ are polynomials in pi+ which are homogeneous of degrees n—ί and
n-hi respectively; moreover, Q~ contains a factor 17pf+ and hence each term in
Q+ is independent of at most one pi+ (since /L(K) has this property). Set
/ + = y T H Q I / - = ^ l / " 1 ( β " ) ; (2.6), (2.13) and (2.14) imply that Λ{d f) = Λ(R),
and since A is 1 — 1, (2.9) holds.

Remark 2.6. Lemma 2.2 is not true if the condition (2.7) on JR is omitted. For

example, equations (17) of [5] imply that any Ca with ^ = 0 (i.e., any term
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Y\ φafh
2β~'ί sinβφ, with Yjai odd may be written as a divergence plus Schwinger

terms. Then, repeating the steps leading to (2.13), we find that

p 1 + , . . . ,p 2 Z + ) = 0if ΣPi±=°> PΪ = m2> a n d £ P ? + * O But if n = 9 and

then

does not vanish e.g. at p1±=p2±=p2±=p4±=m, p5+ = p 6 _ = ( - 2 4 - |/3)m,

p 6 + = p 5 _ = ( —2 — ]/3)ra. Thus the derivation of [5] is incorrect.

3. Massive Thirring Currents

Consider the self-interacting spinor theory with BPHZ effective Lagrangian

~ 2(0 ~ μ

(3.1)

where φ is a two-component spinor field, m is the physical mass, g is the coupling
constant and α, 6 and c are finite renormalization constants which are formal
power series in g. We adopt the representation

0 /0 1\ 1 / 0 1

1 0/

for the Dirac matrices and use positive and negative energy spinors

satisfying, when p is on mass shell,

ΰ(p)u{p) = ut(p)y°u(p) = 2m = - v(p)υ(p).

The currents j n analogous to those of the sine-Gordon model have as their
zeroth order terms
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The full current components are constructed by adding to j® ± terms of the general
form

Ca = N[iιψ\aι...ψ\aιψlaι+ι...ψla2l + h.c.']

— 1 <aΛ < α ? < ... <α,
(3.3)

- l ^ α , + 1 < α ( + 2 < ... <a2l

tKΨι ai

\~ψ2 a=-l
Ira

where N = Nd{a), with the canonical operator dimension d(a) restricted by

and

A(a) = no. of ψ2 and ψ\ factors = 0,1,2,

21

r(a) = Lorentz rank = £ (at -f f).
t = 1

Note that

r{a)^l2 - Δ{a)l

i.e.

/^ |zl(α)+ |/r(α) + ̂ zί(<2)2, (3.4)

with equality possible only for / even or A (a) odd. The factor iι in the definition
insures that Ca is even under charge conjugation, ψι—> —ψ\, Ψ2~>ψh a n <^ further
has the symmetry

where

ά = (aι+v...,a2l; α ^ . . . , ^ )

We say that Ca has length 2/.

Lemma 3.1. //

J -m L
r{a) — n

then

r(a) = n+ 1
J(α) = 0

(3.5)

r{a) = n
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Proof. Let α label all distinct (up to sign and order of factors) normal products Da

of the form

N
7 = 1

which are even under charge conjugation and have Δ(a) = d(cή — r(α)^2. Here Δ(oc)
counts not only the number of xpψ factors, but also twice the number of d_
derivatives. Each Da which is not equal to an element of {Ca} has a factor
d_dι

+xp(p, z^O, or a factor dj

+ψψ, j^l. If there are more than one of the latter,
distinguish one arbitrarily. Applying the normal-product field Eqs. [11], one has

βp + Σ X«aCa (3.6)
r(a) = r(a)

where, if Dae {Cα}, then

and if Daφ{Ca}, then

Taβ = 0 unless Dα has more derivatives than D^ (here {φ} denotes one over
subtraction). On the other hand, the Zimmermann identities [12] imply

Da = gYaβDβ (3.7)

where Yaβ = 0 unless Δ(<x) = Δ(β). Since the matrix (1 + T — gY) has a perturbative
inverse, Eqs. (3.6) and (3.7) can be solved for Dα as a linear combination of Ca of the
same rank, plus Schwinger terms.

Since δ J is a linear combination of Dα, the Lemma is established. Note that

2
d _ C a = - m 2 Σ C ^ + HOT + ST (Δ(a) =

^

(3.8

K C a = Σ C β + B ι
i = 1

where, by convention, Ca±u=0 iϊ a±uί contains a repeated entry.
The basic tool for constructing the currents j n is

Lemma 3.2. Let J be of the form (3.5) and suppose

d'J = gk{R + ΉΩΎ) + SΊ (3.9)

with

R= Σ caCa, cae<C,
r(a) = n
l{ l
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where the higher order terms are either of order g or of length greater than 21. Then
there exists a current / of the form (3.5) such that

Postponing the proof of the Lemma, we state our main result:

Theorem3.3. There exists a currentjn of the form (3.5), withjn\g = 0=j® given by (3.2),
and with d-jn = SΎ.

Proof. Using Lemma 3.2, we may construct ;„ by adding to j® currents which
successively eliminate terms in d j of increasing length, order by order in g.

Remark 3.4. If Lemma 3.2 holds for 2/^4, then Theorem 3.3 holds for n = 3. For,
by (3.4), if we construct j 3 inductively, as described above, only terms in d -j of
length 2 or 4 are encountered.

Remark 3.5. The global conservation laws for scattering processes are a con-
sequence of Theorem 3.3, integrated over all space-time. In particular

0=\d2x{0

i= 1

I

i = l 7 = 1

<0| Tψ(yί)... χ(y.)... ψ(yι)φi) ψ(Zι)\O>

+ i Σ <Q\Tψ(y1). .ψ{yι)ψ(z1)...χ(zj)...ψ{zι)\θy
7 = 1

+ non-bilinear ST (3.11)

where

We evaluate the Fourier transform of the right-hand side of (3.11), with all

momenta near, but not on, the mass hyperbola p2

) = pl + m2, and relabel the

momenta p 1 ? . . . ,p 2 / with p?>0 for z = l,... ,m and p?<0 for z = m + l , . . . ,2/. Next,

we multiply each τp(pf) from the left by u(Pi)(pi — w) if p° > 0 and by v( — pί)(—pi + m)

if p° <0, and multiply each ψ(p.) from the right by (—p. — m)u( — p.) if p? < 0 and by

(/). + m)i)(p) if pt° > 0. Finally, we pass to the mass shells, p? -> j / p ^ + m 2 , ί = 1,..., m,

p°-»— j/pfi+m 2 , z = m + l , ...,2/.

Making use of the identities (z = 1,2,3)

[ φ ) ^ - m ) M . ( ^ + m)(p 2 -m 2 )~ 1 ] i ? 0 = κ ^ 2 T ^ =

0\ /0 0\ m /0 0N

oj' M 2 = \ o i j ' Λ^3 = P 7 U o
one verifies that the integrated bilinear ST yield

( 3 1 2 )

j = + for particle/antiparticle).
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Since hί(g)= -2 + 0{g) and h2(g) = 0(g\ h3(g) = 0{g), and the non-bilinear ST
merely give 0(g) corrections to ht{g\ we obtain the desired conservation law for
the scattering amplitude.

Proof of Lemma 3.2

Case 1: 21 = 2. The bilinear part of R is a linear combination of Caιa2 with aί + α 2

even. For a1 > α 2 , repeated use of

C β i α 2 = 3 + C α i . l i α 2 - C β l _ l p β 2 + 1( + HOT + ST if α 2 = - l )

leads to

•l/2(αi-α2)

Σ
fc=l

)
+ HOT + ST.

Case II: 21 = 4. It is easy to check that any quadrilinear Ca may be written as a
linear combination of normal products

(a, b)X(c, d)] a n d NlX[a, b]X[c, d

where

By repeated application, within the normal product, of

Ma,b)~ 2U+ Mb,b) LJ

( + HOT + ST if b=-l)

it is clear that χ(a b), a>b, can always be written as a linear combination of
^a + b-2c ^ Similarly, χ[fl b], α>b, can always be written as a linear combination
of δ++ b c~ 1χ [ c + 1 > c ]. Thus, it will suffice to show, for p + q odd,

(3.13a)

(3.13b)

Further, without loss of generality, we may assume that a > b (if a = b, the field
product is an obvious divergence) and p = 0 (otherwise, integrate by parts). But

ΛOq— — m2r) Λ°^~ι — A1>q~1 4- H O T 4- S T

= —m2d__A^l^\ —

Iteration of (3.14) leads to

(3.15)

But

<° (3.16)
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Substitution of (3.16) in (3.15) yields the desired result, Eq. (3.31a). The derivation
of (3.13b) is strictly analogous.

Case III: 21^6. The argument here parallels closely that used to prove con-
servation of the sine-Gordon currents. We define a one-one mapping from the set
of complex linear combinations of composite fields Cfl of length 21 and rank r to
the set of all polynomials in p ί + , i = l , . . . ,2Z, which are (i) homogeneous of degree
r + Z, (ii) anti-symmetric under permutations of the p/ + 5 i = 1,..., Z alone, or of the
pί + , ΐ = Z+1,. . . ,2Z, alone, and (iii) symmetric (resp. anti-symmetric) under the
interchange ( p 1 + J . . . ,pz + )<-Kpz + 1 + , . . . ,p 2 / +)for I even (resp. odd). In particular, we
set

^(CΛ)=Σ(signπ)(signρ)Πp^ Π P^-ί
π,ρ i = l j=l+l

+ (-l)/(p1,->Pι<-Ψi+i>->P2i) (3 1 7 )

where the sum is over all permutations π and ρ of {1, ...,Z} and {Z+l,... ,2Z},
respectively.

Integrating Eq. (3.9) over all space-time and applying the reduction process as
in Remark 3.5, one obtains

terms of order ^ k

(3.18)

where A is a non-vanishing function of the momenta and g. Since the scattering
21

amplitude in (3.18) vanishes for ]Γ pf+ φ θ (see Remarks 3.4 and 3.5), we conclude
i- 1

that Λ(R) vanishes for all p + such that

ί = l

i+= Σ PtΛ = m2

i = 1

By Theorem A.3,

" (3 1 9 )

where Q + , Q~ are polynomials in the pi + , homogeneous of degrees n + l—1 and
n + Z+1, respectively, and possessing the same (anti-)symmetry properties as Λ(R);

21

moreover, Q~ contains a factor Σ Pi+- Since A is invertible, we may set

f±=A~\Q±). Then, by (3.8),

/ ) = A(R) (HOT + ST neglected).

Since A is one-one, (3.10) is established. This completes the proof of Lemma 3.2.
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4. Discussion

The proofs of the conservation laws given in Sects. 2 and 3 have essentially the
same structure. Let us briefly review the common elements of the proofs,
emphasizing those key ideas which might survive in an application of the method
to other models.

The first step in both cases is to isolate two sets of composite-field operators:
Θc, the current-building terms, and ΘD, the terms which arise as divergences
(potential obstructions). It is crucial to show that (i) GD includes enough terms to
express the divergence δ-J of any current constructed from Θc (including
anomalous terms arising from the field equations) and (ii) Θc includes enough
terms to eliminate any obstruction in ΘD arising as the divergence of a lower-order
current. The verification of these complementary properties of Θc and ΘD is the
content of Lemmas 1 and 2 of Sects. 2 and 3. Note that in the MTM Θc and ΘD

essentially contain all operators of appropriate dimension and quantum numbers,
while in the SGM the special form of the anomalies is used to eliminate many such
terms and keep Θc, ΘD finite (for fixed n).

The proof of Lemma 2 (removal of obstructions) proceeds in three stages. First,
all bilinear and quadrilinear terms in ΘD are shown explicitly to be divergences
(plus terms involving products of more than four fields). Second, the current j 3 is
shown to be conserved in all orders. And finally, j 3 conservation is exploited to
eliminate all obstructions involving products of six or more fields. (We show in
Appendix B that the higher laws are not a purely kinematic consequence of j 3

conservation.) In both the sine-Gordon and the Massive Thirring Models, only
bilinear and quadrilinear terms arise in the proof of j 3 conservation, and so the
second stage is an immediate corollary of the first it is interesting to note that this
is the only role which the finiteness of the sets Θc and ΘD play in the proof of all
conservation laws. Conceivably there exist models in which j 3 is not restricted to
involve products of length at most four, but can nevertheless be shown to be
conserved our arguments should then lead to the higher laws.

Appendix A

We wish to verify some simple properties of certain polynomials and their
associated algebraic varieties. Let C [ X ] = C [ X l 9 . . . ,Xm] (resp. 1R[X]) denote the
ring of polynomials in Xί ...Xm with complex (resp. real) coefficients, and let V
denote the gradient operator.

Lemma A.I. Let /eJR[X] be irreducible in C[Z], and set V={xeWn\f(x) = 0}. If
for some #e(C[.x] there exists a yeV and a real neighborhood U of y with Vf(y)=\=0
and g(χ) = 0 for all xeVnU, then g = hf for some /zeCpf].

Proof. Let Fc={ze(Cw |/(z) = 0}, Wc = {ze<Cm\f(z) = g{z) = 0}. Clearly WCCVC; if
WC=VC, the desired result follows from Hubert's Nullstellensatz (see, e.g., [13]).
Suppose for definiteness that (V1f){y)ή=0; then by the implicit function theorem
there exist real analytic functions α2(x1),... ,αm(Xi) defined near y1 such that, in
some complex neighborhood of y, F={(x1,α(x1))|x1 real} and Vc = {(zί,<x(zί))\z1

complex}. But since c/(x,α(x)) = 0 for x real, g(z5α(z)) = 0 for z complex, i.e., locally
Wc = Vc. Since locally Vc is a smooth hypersurface, Wc and Vc both have dimension
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n — 1 since Vc is irreducible, its proper subvarieties have dimension less than n— 1,
and therefore WC=VC. (See, e.g., [13, III.5.8, IV.2.3, IV.2.15].)

Now take m = 2k with fc^3. Let σf (z = l, ...,m) denote the zth elementary
symmetric function of X1,...,XM, and set Fx = {xeΊSRm\σ1(x) = σm_ι(x) = 0}. (In
applications x1 ? ... ,xm are the + components of momenta on the mass shell, Fx

the variety determined by momentum conservation.)

Lemma A.2. // for some ge<C[X'] ί/ierg is a ye V1 and a real neighborhood U of y
with Vσί and Vσ2 linearly independent at y and g(x) = 0 for xe V1nU, then g = h1σί

+ h2σm_ί,hι,h2e€[Xl
m - 1

Proof. If fieC[X], the substitutionXm = σ1 — Σ Xt allows us to write h = h + hσv
1

where he<£[Xv... ,Xm_1']. The result then follows from Lemma A.I if we can
show that σm_ί is irreducible. Let σj, σ" denote the symmetric functions of
Xι,...,Xm_ι a n d X l s ...,Xm_2, respectively. Then

and since the discriminant (σ'[σ"m_ 3 ) 2 — 4σ'[σ"m_ 2σ"m_ 3 is not a perfect square (recall
σm_x is irreducible.

Theorem A.3. Let V3 = {xeW^lΣxf =0}. If ge<£\X~\ satisfies g{x) = 0 for all xe Vv

xφV3, then g = h1σί +h2σm_1, hv h2e<E\_x~].

Proof Let j/eIRm be defined by yt=h l ^ ι ^ 2 m - 2 , y2 m-i=3 ;2m = - ( m " " 1 )
+ [m(m —2)] 1 / 2 . Then direct computation shows that yeVl9 yφV3, and Vσ1 and
Vσm_1 are linearly independent at y. The result follows from Lemma A.2.

Appendix B

We wish to verify that the cubic conservation law arising from j 3 does not, on
purely kinematic grounds, imply higher conservation laws and the equality of the
sets of incoming and outgoing momenta. We actually prove a more general result.
Consider a process in which k particles, momenta p 1 ? . . . ,p k , scatter into k'
particles, momenta p' 1 ?... ,pf

k,(k + k' = m), subject to the conservation laws arising
from the K currents j1j5,... J2κ- I a n c * t n e h- images under parity transformation.
If we set Xt = pi + , l^ i^/c, and xk + i= —p'i + , lrgz^/c', and use the mass shell
condition, the conservation laws become

F ; ( x ) = ! ^ = 0, j = ± l , . . . , + ( 2 f C - l ) ; (B.I)

conversely, any x (with non-vanishing components) satisfying (B.I) gives such a
process, with fe = |{ί|χ.>0}|, fc' = |{φc f<0}|.

Lemma B.I. If m>4K and k~^2K, k'^2K, k + k' = m, there exist solutions of(BΛ)
such that (i) fc = |{i|x f>0}|, fe/ = |{i|x ί<0}|, and (ii) the next conservation law

F2κ+i(x) = 0 (B.2)

does not hold.
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Remark. Since we can take k = 2K, fc'Φ/c, (i) suffices to conclude that j v ... J2κ-i
conservation does not imply equality of sets of in and out momenta. It can be
shown, however, that this equality does hold if m^4K, m even.

Proof. Let aly... ,aκ be distinct positive reals. For p^2K consider the equations

i= 1

their Jacobian with respect to y l 5 . . . ,yx,

1 ... 1

= Π (2/-1) Π ^?-^2) (B.3)

does not vanish at y = ( α l 5 . . . , aκ, — α l 5 . . . , — aκ, 0,..., 0) so by the implicit function
theorem there is a nearby solution y = yip) with y\p)>0, i>2K. Now for
i;elRfe', AGIR with non-vanishing coefficients, define

xx(u,υ,λ) =

Then (B.I) becomes

Fβ{u, v, λ)) = Fβ{u9 v,λ)) = 0, j = 1,3,..., 2K - 1. (B.4)

But u = y(k\ υ = y(k'\ λ = 0 solves (B.4) and the Jacobian with respect to u1,...,uκ,
vv...,vκ is non-zero there, so again there are nearby solutions. In fact, fixing
X — χo > 0, we get a family of solutions parametrized by ut and vt, i > K, any one of
which gives a solution of (B.I) satisfying (i) of the Lemma. Further, (B.2) cannot
hold at all these points, for the Jacobian of the (2X + 1) Eqs. (B.2), (B.4) with
respect to w1 ?...,%, vv ..., vκ, and uk (if k > 2K, otherwise υk) is non-vanishing [as
in (B.3)], and therefore, within our set of solutions, (B.2) determines uk in terms of
wί5 K<i<k, and vt, K<I
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