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Abstract. The previous theorem of the author on the analytic structure of the
bubble diagram functions that occur in unitary equations (and are kernels of
products of connected scattering operators Sc

m n or (S~l)c

mn, and related
quantities), is extended to a class of situations, called here in general u = Q
points, that were not covered by this earlier result.

This new theorem, which is proved on the basis of a refined macrocausality
condition, resolves one of the remaining crucial problems in the derivation of
discontinuity formulae and related results in S-matrix theory: all points are in
fact u = Q points for some of the bubble diagram functions, such as Ξ3©G0E
( = (S~ 1)3> 3^3 3), that are encountered even in the simplest cases. In all previous
approaches, ad hoc technical assumptions with no a priori physical basis were
required for these terms.

The origin of the u = 0 problem is the absence of information, in general, on
a product of distributions that are boundary values of analytic functions from
opposite directions, and more generally on the essential support, or singular
spectrum, of a product of distributions whose essential supports contain
opposite directions. On the other hand, the recent results obtained by
Kashiwara-Kawai-Stapp in the framework of hyperfunction theory apply
mainly to phase-space factors, whose bubbles are constants times conservation
(5-functions rather than actual scattering operators. The present work has
basically required the development of new physical and mathematical ideas
and methods. In particular, a new general result on the essential support of a
product of bounded operators is presented in u = 0 situations, under a general
regularity property on individual terms. The latter follows in the application
from the refined macrocausality condition, in the same time as information on
the essential support of S-matrix kernels.
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1. Introduction

Discontinuity formulae and related results play an important role in our
understanding of the structure of multiparticle scattering functions, and in further
applications in S-matrix theory [1]. These formulae were first established in the
sixties and the beginning of the seventies, on the basis of a general algebraic
analysis of unitary equations [2, 3]. However, their derivation in [2, 3] makes use
of several crucial technical assumptions (e.g. the patching assumption and mixed-α
cancellation assumption) that have no a priori physical basis1.

The recent mathematical developments of essential support theory [4], first
carried out in connection with the detailed study [5] of the macro-causality
condition [6], have made possible a more satisfactory and powerful analysis of
these problems, and have led to a number of more refined results [7-9]. The
present work, which is a development of [7], is concerned with a basic preliminary
part in this domain of research, namely the study of the analytic structure of the
"bubble diagram functions". These functions occur in equations derived from
unitarity and the decomposition of the S matrix into its connected components.
They are, as will be explained in detail later, integrals over internal on-mass-shell
four-momenta of products of connected momentum-space kernels of the S-matrix,
or of S"1 =S^. These kernels are represented in a usual diagrammatical notation
by plus and minus bubbles respectively. Some of the results of the present work
apply also to cases, encountered in some applications [8, 9], where the bubbles are
more general kernels of bounded operators, or distributions.

1 These assumptions are not mentioned in [3]. This is due to the fact that, while important aspects of
the problems were clearly analysed there, others were ignored. As a consequence, some of the proofs, as
they stand, are incomplete and in fact not correct
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Early results on the analytic properties of bubble diagram functions were
obtained in [2] and [3] from analyticity properties assumed on the S matrix, i.e.
on the individual bubbles, by using distortions of contours in the space of
complexified variables associated with the internal momentum variables over
which there is integration, after elimination of mass-shell and energy-momentum
conservation ^-functions. This method presents, however, several difficulties which
strongly weaken the value of the results of these works, even in some of the
simplest cases. A first difficulty is due to the fact that the scattering functions
associated with the individual bubbles (after factorization of their energy-
momentum conservation <5-functions) cannot, in the multiparticle case, be ex-
pected to be boundary values of analytic functions everywhere. The representation
of a scattering function as the boundary value of a single analytic function is
expected to fail [5, 6] both at certain points lying on the intersection of several
-hα-Landau surfaces [10] and, also, at the so-called Jί^ points. These latter points
are those where several incoming, or alternatively several outgoing, on-mass-shell
four-momenta are collinear. Although these special points of both kinds lie in low-
dimensional sub-manifolds of the physical region, they may often affect the bubble
diagram functions over large portions of their domains of definition. This is
because these special points can affect integrals whenever they occur in the domain
of integration.

The mathematical framework of essential support theory is adapted to the
study of this problem and the analysis carried out in that framework in [7], or the
completely similar analysis carried out more recently in [11, 12] in the related
framework of hyperfunction theory [13]2, completely removed one important
technical assumption of the previous proofs, namely the patching assumption, and
directly provided in a precise way a theorem that is both more general and more
useful for applications [8, 9].

[7] presents general results on products and integrals of distributions. These
results yield in turn information on the essential support of any bubble diagram
function in terms of the essential supports of its individual bubbles. The latter are
known directly [5] from macrocausality in the case of plus bubbles, and with the
aid of unitarity, also in the case of minus bubbles3.

The way the analytic structure of the individual bubbles, and of the bubble
diagram functions, is characterized by their essential support is explained in [5, 7,
9], and will therefore not be explained again here. Let us only recall that the
essential support property associated in [5] with macro-causality can be con-
sidered as a general and precise form of basic physical-region analyticity proper-
ties of scattering functions (analyticity outside + α-Landau surfaces and plus iε
rules) which, in earlier approaches to S-matrix theory were derived from the idea
of "maximal analyticity", and which can also be extrapolated from perturbation
theory.

2 The part of hyperfunction theory which is relevant here is the study of the singular spectrum.
Although the notions of essential support and of singular spectrum were introduced independently by
very different methods, it turns out that they coincide for distributions [14]

3 Unitary ensures that the essential support of a minus bubble is opposite to that of the
corresponding plus bubble
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The structure theorem of [7] (or the similar result of [11, 12]) does not yet
provide, however, any information for certain sets p = {pk} of initial and final (on-
mass-shell) four-momenta ρk. The excluded points in [7] are those for which there
is possible occurrence of JίQ points for some bubbles in integration domains (see
above) and are other "w^O" points. For reasons that appear later, all these points
will be called here u = 0 points. The basic difficulty in all cases is a general aspect of
a second difficulty of the method of [2, 3], which occurs even for values of the
internal momenta such that each scattering function is the boundary value of a
single analytic function: if, in some part of the integration domain, the boundary
values corresponding to the various bubbles cannot be obtained from common
direction with respect to the appropriate internal variables, then there is a priori
no common analyticity domain in which the integration contour can be distorted.
This problem is also closely linked with the fact that no information is a priori
obtained on the analytic structure of a product of distributions that are boundary
values of analytic functions, if these boundary values cannot be obtained from
common directions.

A related problem appears also for values of the internal momenta such that
some scattering functions are no longer boundary values of single analytic
functions, for instance when Jί^ points are encountered, and it arises more
generally from the absence of general mathematical results on the essential
support, or singular spectrum, of a product of distributions, when their essential
supports at some point contain opposite directions.

For many bubble diagram functions, the excluded u = 0 points p are excep-
tional. However, as emphasized in [11], this is not always the case. In particular,
all points p are u — 0 points for certain bubble diagram functions that occur even in
the simplest cases, in the derivation of discontinuity formulae. The most simple
example, in a theory with equal mass particles, is the bubble diagram function
3S00E that occurs for instance in the derivativon of the pole-factorization
theorem for three-body processes [8]. The absence of information on its essential
support at any point p is a first basic problem that completely disrupts the proofs,
and an ad hoc technical assumption was still needed in [8] to cope with that
problem.

The u — 0 assumption considered in [8] says essentially, in the cases en-
countered there, that the same rules that apply at non u = Q points should
determine the essential support also at u — 0 points. An assumption of this type
had been briefly mentioned in [7], but without justification, and it cannot be
expected to be correct, as it stands, in the general case. A detailed analysis of some
aspects of the problem was as a matter of fact carried out more recently. It led first
[11] to a satisfactory understanding of the essential support of S-matrix kernels at
JίQ points, whereas the macrocausality condition used in [7] gave no information
at these points. The essential support at Jί^ points can be obtained in general by
introducing vertices "at infinity" and a certain angular-momentum conservation
law, as will be explained in Sect. 4, and can be associated with an extension of the
macrocausality ideas to Jt$ points. As already mentioned in [18], and as
explained here in Sect. 4.3, the methods of [7] then lead to a slightly improved
structure theorem that applies to some of the previously excluded u = 0 points. The
most important class of u = 0 situations is, however, still not covered by this result:
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this is because the same problems as before still arise in most cases from the
occurrence of JίQ points in integration domains, and because the u = Q problem
arises also in general from the occurrence of internal momenta that do not
correspond to Jί0 points for any bubble4.

A solution of the u — 0 problem that occurs in the study of phase-space
integrals5, was on the other hand obtained in [15], by an explicit analysis of these
integrals, on the basis of a mathematical result [16,17] on the singular spectrum of
products of functions of the form /J 7, where each f . is analytic. This result led in
turn [15] to a corresponding u = 0 assumption on bubble diagram functions, in
that assumption, the previous rules that hold away from u — 0 points are modified
in general at u = 0 points by the introduction of certain limiting procedures that
might enlarge the essential support.

The result of [15] on phase-space integrals is of interest and [15] introduces
for the first time the important idea that limiting procedures might have to be
considered in the general case at u = 0 points. However, some aspects of the
limiting procedures assumed in [15] are questionable6. On the other hand
bubble diagram functions are not phase-space integrals, and the methods of [15]
do not provide a solution of the fundamental theoretical problem in this domain
of research, which is to understand the basic physical and mathematical reasons, in
the general structure of the S matrix (i.e. of the individual bubbles), that may lead
to a solution of the u = 0 problem, and hence to derive a u — 0 structure theorem on
actual bubble diagram functions from basic physical properties of the S matrix.

The purpose of this work is to treat this problem and in fact to present a
theorem that does cover all u = Q points. This new result is based on a refined
version of the macrocausality condition. Macrocausality is the assertion that, in a
certain asymptotic limit, transition probabilities (or transition amplitudes) fall off
exponentially (in a well defined sense) for non causal configurations of displaced
particles. The refined version introduced here adds a condition on the way rates of
exponential fall off tend to zero when causal directions are approached. This new
condition follows, as explained in detail in Sect. 5 on various examples, from the
same ideas as the previous macrocausality condition, and it will be assumed to
hold in general. It has again a neat mathematical expression, and the results
obtained do provide a satisfactory understanding of the u = Q properties of bubble
diagram functions. The u = 0 structure theorem proved here introduces, as the
u = 0 assumption of [15], certain limiting procedures that modify in general the

4 For instance, in the case of Ξ@ΞQΞ , all points p are still excluded because of the occurrence of JίQ

points, and all points p above the four-particle threshold are also excluded in the same time because of
this second problem: see Sect. 4

5 I.e. integrals in which the connected kernels of S or S'1 are replaced by constants times energy-
momentum conservation ^-functions. The factors associated with internal lines are mass-shell
^-functions rather than Feynman propagators

6 A feature, which seems needed in the approach of [15], is the introduction of complex four-
momenta and complex values of the Landau parameters α, in the course of the limiting procedures (see
[17,15b]). The use made in [15] of macrocausality to get a u = 0 assumption on bubble diagram
functions is then questionable. Even for individual bubbles, the limiting procedures of [15] are not
those that can be associated in a natural way with the general macrocausality ideas. (They do not take
into account the fact that the intermediate particles cannot in the quantum case be strictly localized
along classical trajectories)
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rules previously derived at non u = ΰ points in [7]. These limiting procedures are,
however, so far different from those of [15]7. As the latter, they need not be
considered in many usual cases.

The organization of the paper is as follows.

In Sect. 2, the precise definition of bubble diagram functions is given in terms of
bounded operators. This definition is both more general and better adapted to our
present purposes than the definition of [7] in the framework of distribution theory
(or than earlier even less general definitions). In fact, the procedures of [7] do not a
priori define bubble diagram functions in neighbourhoods of the u = 0 points8. The
simple framework set up in this section is more satisfactory than previous ones and
has its own autonomous interest. Certain combinatorial aspects are therefore
briefly treated for completeness, although they play no role in the remainder of the
paper and can be omitted by the non-interested reader.

Section 3, which is independent of Sect. 2, is devoted to the presentation of new
mathematical results on the essential support of a product of bounded operators.
The mathematical definition of u = 0 points is given Subsect. 3.1, where a first
theorem that applies to non u = 0 points is presented. This theorem can be easily
derived from the results of [4,7] on products and integrals of distributions. A new,
more direct and self-contained proof, which eliminates several unnecessary steps,
is given here. It will be directly adapted in Subsect. 3.2, where it leads to a new
theorem that covers u — 0 points, provided the individual operators satisfy a
certain regularity property R on the way rates of exponential fall-off of generalized
Fourier transforms tend to zero when directions of the essential support are
approached. (This property is precisely the condition that arises from refined
macro-causality in the physical application). A certain weak conjecture (or a
corresponding technical condition) is also used so far in the case of a product of
more than two operators. It is introduced in Appendix 2. (It is clearly a minor
problem which does not affect the essence of the arguments.)

The general application of the results of Sect. 3 to physical situations is
described in Subsect. 4.1 in terms of space-time diagrams. These results apply to
cases when the bubbles are not necessarily connected kernels of S or /S"1.
Geometrical definitions and results are then presented in Subsect. 4.2, and Subsect.
4.3 is the application of the previous results to the usual bubble-diagram functions
whose bubbles are connected kernels of S or S"1, The structure theorem of [7]
and, as already mentioned, its improved version based on the extension of macro-
causality to J4§ points, are first presented. The refined macro-causality condition
is then introduced, and the general structure theorem that follows from it is
described.

Finally, the physical discussion of the macro-causality and refined macro-
causality condition, is given in Sect. 5.

7 In contrast to [15] (see previous footnote), only real quantities are involved, but a "doubling" of
the internal lines is introduced in the course of the limiting procedures. The origin of this doubling is
clear from a physical viewpoint (see Sect. 5.2), and also from a mathematical viewpoint, in view of the
results of the present work
8 The same comment applies equally to definitions in the framework of hyperfunction theory used in
[11,12]
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Appendix 1 establishes the connection between the definition of bubble-
diagram functions of [7] and the present one9.

In Appendix 2, a mathematical lemma on bounded operators, needed in
Subsect. 3.1, is established in the framework of essential support theory. The
conjecture needed in Subsect. 3.2, which is a refinement of this lemma, is stated at
the end.

We conclude this introduction with some remarks.
i) The precise content of the refined macrocausality condition in terms of

analyticity properties has not yet been fully established, the study of this problem
being left for further work. Let us only make here the following comment. We
consider for simplicity a simple point p of a H-α-Landau surface L + (G] and a
system of real analytic local coordinates of the physical region chosen such that
L+(G) is locally represented in this system by q1=Q, where q± is the first
coordinate, and such that the physical side of L+(G) is represented by qί>0.

The essential support property associated with macrocausality is then equiva-
lent to the assertion that the scattering function / of the process is locally analytic
away from the surface q1=0, and is moreover, in a neighborhood of p, the
boundary value of an analytic function / from the "plus zε" directions lmql >0,
where ̂ 1 is the complexified variable of q1. Namely, being given any open cone F'
with apex at the origin in ling-space whose closure is contained (apart from the
origin) in the region Im^1>0, / is analytic in a domain of the form Regeω,
ImgeF',|Imgj<β, ε>0, w~here ω is a real neighborhood of p, and the boundary
value / of / is obtained in ω from the directions of F'. However, ε may a priori
tend to zero when Γ expands to the half-space Im^1 >0. Although this is not fully
established so far, refined macrocausality is probably closely linked with a slight
refinement of this analyticity property, according to which / is indeed analytic in a
region of the form ωnlm^1 >0 where ω is a complex neighborhood of p.

This is suggested in particular by the remark that concludes the presentation of
the regularity property R is Sect. 3.2. This remark cannot be strictly applied here
because the regularity property R does not apply to the distribution /, considered
as being defined locally in the space of the coordinates q, but applies to the actual
connected S-matrix kernel (i.e. the product of / by a global energy-momentum
conservation ^-function), defined in the space of all three-momenta variables.
There are, however, close links between them.

If this link is established, the use of the refined macrocausality condition would
allow one to remove the two assumptions needed in [8] in order to establish the
pole-factorization theorem, namely the u = Q assumption, and also the "no sprout"
assumption.

ii) The refined macrocausality condition contains no specific information on
the rates of exponential fall-off and is in fact only, as mentioned above, a general
regularity condition on the way these rates tend to zero when causal directions are
approached.

On the other hand, just as the previous macrocausality condition, it contains
no information for causal configurations of displaced particles. Let us recall that a
factorization property of transition amplitudes for causal configurations is also

9 Related results have been previously given [19] in more particular situations
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considered in the theory and is as a matter of fact essentially equivalent to the
discontinuity formulae of scattering functions around 4- α-Landau surfaces: see
[9] and references therein. We do not wish to use it here, since this work is part of
the program which aims to prove the discontinuity formulae, and in the same time
causal factorization, on the basis essentially of macro-causality and unitarity.

iii) A solution of the u = 0 problem was given in [11] for a particular class of
situations on the basis of specific assumptions on the nature of the singularities of
the S-matrix kernels, in particular in the neighborhood of JίQ points. These
assumptions go much beyond the analyticity properties associated with macro-
causality and can as a matter of fact be derived from the discontinuity formulae, as
explained in detail in [11].

However, that result is not general. On the other hand, making specific
assumptions on the precise nature of singularities is not a priori satisfactory if one
works to establish the discontinuity formulae, since such specific information will
as a matter of fact be derived later from these formulae.

The refined macrocausality condition used in the present paper is a much
weaker and more general assumption.

iv) The mathematical methods of the present work may in principle lead also
to a new derivation of results on phase-space integrals. The expected result is
similar to that of [15], with however again some differences in the limiting
procedures obtained, similar to those already mentioned earlier (see remark at the
end of Sect. 5.2). A complete proof would require checking certain technical points
in detail and is not presented here.

2. Bubble Diagram Functions

2.1. General Framework

In the relativistic quantum theory of systems of massive particles with short-range
interactions, one is led from basic principles to introduce a unitary operator S
form jif to Jjf, where Jtf is a Hubert space of free-particle states. The matrix
elements \(ψ\S\φy\2 between unit-norm vectors \φy and |φ> are the transition
probabilities from the initial state represented by \φy to the final state represented
by lv>>.

For simplicity, we consider in this section a theory with only one type of
(spinless) particle, a boson of mass μ > 0. (The adaptation of the definitions and
results to the more general case requires a somewhat more subtle analysis but
presents no real difficulty.) The Hubert space ffl is then the direct sum of Hubert
spaces J-fm (w = 1,2,...). The space 2?m is the space of all functions φ of m on-mass-
shell four-vectors p. [i = l,...,m, p2 = (pi)l — p2 —μ2, (Pj)0>0, V z ] that are square
integrable (||$||<oo, where \\φ\\ =(φ\φy112 is the norm of φι see definition of
scalar product below) and are symmetric under the interchange of any two four-
vector variables.

It will be convenient to consider also the space Jfm of all (not necessarily
symmetric) square integrable functions φ. The scalar product in J^m is generally
defined by:

~~j dμ(pi), (1)
i = 1,..., m
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where

dμ(p) = δ(p2-μ2Wp0)d*p= 2(p2 ̂ 2)3/2 (2)

The scattering operators Sm n are the linear and bounded operators from ^fm to
J^n whose action on a function φ in ̂  is the component (S\φy)n of S\φy in j^n.
Their extension to all functions φ in ^fm will be defined in a natural way by the
relation :

(3)

where £^φ(pί9 . . . , pm) = Σ Φ(Pπί> > Pπw) an<^ ̂ e sum Σ runs over a^ permutations

π of 1, ... ,m.
The connected operators S^ w are defined in a precise way [20] by the formula :

Sm,n — Sm,n~ L-,

where the sum Σ in ^e right-hand side runs over all non-trivial
partitions Jf of the sets / = l 5 . . . ,m and J = l, ...,n of initial and final indices
(attributed to each initial, or final, particle) into subsets Iκ, Jκ, X = l,...,N(jf).
The order of indices in I κ. or in Jκ, or the relative order of the pairs (IK,JK)
is irrelevant. For a given partition Jf , the operator /(X) 5 κ̂ > Π \ is defined initially

\ K
on functions φ of a product form :

by the formula

), (6)

where mκ, nκ, are the numbers of indices in Iκ and Jκ respectively, qίy...,qna,ΐe on-
mass-shell four-vector variables, φlκ is the usual (tensorial) product of the one-
particle wave functions of the set Iκ [for instance if 7X = (1,3,5) then φIκ(p1,p2>P3)
= φί(pί)φ3(p2)Φ5(P3)'] and qJκ is the subset o f ( q ί 9 . . . , q n ) associated with the set Jκ

[for instance, if Jκ = 2,3, 5 then qJκ = (q2^^^5)]'
By induction on the numbers m, n of initial and final particles, the formulae (4)

clearly allow one to define each operator Sc

m > n for functions φ of the product form
(5). On the other hand, it is also easily seen [21] that they provide moreover a
(unique) definition of the operators Sc

m >n as linear and bounded operators from J^m

to 2tfn (or from J<fm to J^n: the operators Sc

m ̂  have the same symmetry properties
as the non-connected operators Sm >M). We give below an argument that is slightly
different from that used in [21] and is better adapted to our later purposes.

The result is known for Sc

ίΛ=Sίfl=ί1^. If it is known for all operators Sc

m,tn,,
where ra'ίgra, n' <n, or m'<m, n'^n, then the condition JV(Jf)>l in Eq. (4),
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together with mathematical results on tensorial products of bounded operators10,

ensures that each operator ((S)Sc

mκ,nκ\ *n ̂  ̂  *s we^ defined (*n a unique way)
\ κ ' Itf „

as a linear and bounded operator from 34fm to J^π. Since Sm n is already known to
be a well-defined linear and bounded operator from J^m to J^n, the result follows
for Sc

min. [The symmetry properties of Sc

m^n follow from the fact that the sums ]Γ in
Eq. (4) run over all (non-trivial) partitions Jf .] Q.E.D.

At the same time, the above argument shows (by induction) that each operator

i§ a well-defined linear and bounded operator from J^m to $Cn. The

same conclusions hold similarly for tensorial products \^>(S~l)c

mKtnκ of con-
[ κ ' jf

nected operators associated with the operator S~ί=S^.

The bubble diagram operators that arise in equations derived from unitary
(SS~1=S"1S = 1, SS~1S = S, etc, where S'1^), from the "cluster decom-
position" of the S-matrix :

and from the analogous cluster decomposition of S~ *, are by definition (see below
Proposition 1) sums of equal operators of the form :

where each JΓ[/(r),/(r+1)], r = 0,...,g [/(o) = ^J(q+i) = ̂ ] is a given partition of /(r)

= [!,..., m(r)] and /( r+1) = [l,...,m(},+ 1)] into subsets Γ(r}K and Ir

(r+1)Kί and where
stands either for Sc

mKtΛK or for

In view of the previous analysis, each term [(X) S^y is a well-
'K

defined linear and bounded operator from &m{r) to ^m(r+1)5

 an^ consequently one
has 1 1 :

10 The mathematical results needed are the same as those proved in [21]. We learn from Prof. V.
Glaser that they are completely standard in mathematics. They ensure here that there is a unique, well-

defined, linear and bounded operator (&)Sc

mκ n\ from Jfm to J^π, whose restriction to functions φ of

the form 0(p1,...,pm)= YlΦικ(Pικ)
is 8iyen by:

mι

11 The extension of each operator (X) S(

mι^κ to all functions of 3£m(r) is crucial here, since
L K ' 3Π/<r),/(r+l)]

each one of these operators transforms a function of a product form into a function that is no longer, in
general, at the next step, of a product form with respect to the appropriate variables
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Proposition 1. Bubble diagram operators are well-defined linear and bounded
operators from fflm to ffln, where m and n are the numbers of indices of the external
(initial and final) sets /, J.

2.2. Bubble Diagram Operators and Diagrammatical Notation

We now complete the definition of bubble diagram operators. The analysis
presented below provides in a precise and general way results analogous to those
given in Appendix A of [22] in terms of momentum-space functions. It is not
crucial for the main purposes of the present work and can therefore be omitted by
non-interested readers.

In order to write equations derived from unitarity (and the cluster decom-
positions of S and S"1) in a simple way, it is convenient to group together all
operators that correspond to different sets of partitions but are trivially equal,
namely all operators that can be obtained from a given operator A of the form (8)
by permutations πr inside each set I(r) of intermediate indices (r =!,...,#). More
precisely, each πr is here a given permutation of 7(r), i.e. is the same, whether I(r) is

considered as the set of final indices for the operator f (X) S(^^κ or as the

set of initial indices for the operator
K

permutations πr (r = !,...,#), the operator Aπ derived from A is defined by
replacing in (8) the partitions JΓ[/(r),/(}.+ 1)] (r = 0, ...,#) by new partitions
Jfπ[/(r),/(r+1)]. The new subsets of /(r) and /( r+1), respectively, are obtained from
the previous ones by the respective transformations πr and πr+1

12 (π0 and πq+i are
here the identity).

The bubble diagram operator associated with A is the sum of all equal operators
that can be obtained in that way and correspond to different sets of partitions Jfπ,
i.e. all sets π of permutations that give the same set of new partitions are identified
and counted only once. The reason for defining bubble diagram operators in that
way is that there is only one term for each partition in the definition of the
connected operators: see [20]. The sets π that give the same partitions are those
that differ only by changes of orderings of indices inside each subset of each
partition or by changes of orderings of the pairs of subsets of each partition: these
changes are irrelevant and do not define new partitions (see definition of the
partitions above). q

The number of equal operators thus obtained is (l/N) Y[ m ( r )!, where N is the
r=l

number of sets π that give the same set of partitions. For a given set of partitions in
(8), N is clearly independent of the set of new partitions considered. The
calculation of N will be explained below in the diagrammatical notation now
introduced.

In this notation, each operator Sc

m M, or (S"1)^ n is represented by a bubble

12 For instance, i f/ ( Γ ) = (!,..., 5), πr = (l->3, 2->4, 3->l, 4->5, 5->2), then the subset (1,3,4) of/ ( Γ ) is
transformed into (3,1,5) = (1,3,5)



60 D. lagolnitzer

respectively, with m initial and n final lines13. Each operator l&)Sc

mκ WjKW(/ J} is

represented by a column

(where the ordering of bubbles is irrelevant), and each operator
x(I j} is represented by a similar column with minus bubbles. An

operator A of the form (8) is represented by drawing, from left to right, the various

columns associated with each operator [(X)S^JI

cJjr[/(r)>/(r+l)](r = 0, ...,#). Finally,
L K \

the bubble diagram operator associated with A is represented by a bubble diagram
obtained as follows: two lines that belong to bubbles in two successive columns
are joined whenever there is a common index in the corresponding subsets I^K^
and Ifyκ, of/(l>){/^1) and Ifyκ refer respectively to subsets of 7(r) in the partitions
tfU(r-i),I(r)] an<3 ^U(r)>I(r+i)Ί} Each line on the right of a column is joined in
that way to one, and only one, line on the left of the next column. Finally, all
mentions of indices on the internal lines that run between successive columns are
removed. In the case of a bubble

with only one incoming and one outgoing line, the bubble ® or θ can also be
removed.

Example. If A is the operator

A .A -

where the product, according to the conventions mentioned above, is written from
left to right, the corresponding bubble diagram operator is the sum of all equal
operators of the form

/\2cr©r)i,k Vi,k(*€te:) j>Λ/i',k'(αSrK2\
v 3 —0— i A j -*-©»- \ A r •— (±v*~ 3 /

obtained by permutations π(1) = (l->i,2-»j,3->fe) and π(2) = (l— >/', 2— >/, 3->fc') of
(1, 2, 3). It is represented by

1,2 (
-

12 (10)

13 In accordance with some conventions, — (£)—- would represent the operator —(5 1)^I>
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It is easily seen that there is a well-defined 1 — 1 correspondence between
bubble diagram operators and bubble diagrams B of the type that has been
described. Giben B, it defines a sum of equal operators obtained by drawing the
bubbles -̂ ~O~^~ on tne appropriate single lines, and by attributing indices
1, ...,m(r) to the m(r) lines that run between two successive columns (r = !,...,#).
These sets of indices clearly define corresponding partitions Jf [/(r),/(r+1)],
r = 0, ...,g. Operators that correspond to the same set of partitions are identified
and counted only once.

In the example of Eq. (10), the number N of sets π that give the same set of
partitions is one: all different ways of attributing indices to the internal lines
correspond to different sets of partitions. More generally, this number, also
denoted by N(B) since it depends only on the structure of B, is the product of two
terms. The. first one is the product, over all pairs (b1,b2) of bubbles in successive
columns of the factors α(b l 5&2)!, where α(b1 ?b2) is the number of common lines
joining b l v f t 2 : this term clearly accounts for possible changes of orderings of
indices inside each subset of each partition. The second one is the product, over all
sets of identical bubbles b l 5 ...,bp inside a common column (i.e. bubbles with the
same numbers of incoming and outgoing lines) of corresponding factors p!: this
term clearly accounts for possible changes of orderings of the pairs of subsets of
each partition.

For instance, if

B = 1,2̂ 4

then N(B) = 2\ x 2! x 3! x 3! x 2!

2.3. Momentum-Space Kernels and Bubble Diagram Functions

The action of any (linear, bounded) operator Fm n from J^m to <&n on a function
φ(m} in &m can be written formally as:

where dμ(p) is defined in Eq. (2).
With the normalization conventions (1) and (12), one checks from Eqs. (6) and

(7) that

S»,n(Pι, » P m ; f l ι » •••»*,) = Σ YlSmκ,nκ(Pικ><ljs) (I3)
3f[I,J] Ketf

The kernel FB(pl5 . . ., pm g1? . . ., qn) of a bubble diagram operator FB (associated
with a bubble diagram B) can be correspondingly written (formally) as an integral,
over all on-mass-shell values of internal four-momenta kt attributed to each
internal line / of B, of momentum-space kernels associated with each bubble of B.
The integration measure is, in view of the normalization conventions

[2(k? + μ2)] ' Il2d\ .
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For instance, if B is the bubble diagram of Eq. (10), then

(k2,P3;^<23)χsc

2,2(
f cιΛ;<h,42) Π d^i^f+μ2)1'2. (14)

1=1,2,3

Expressions such as (14) are formal: bubble diagram operators, and their
kernels, are well defined by the procedures described earlier. We recall, on the
other hand, that kernels of linear bounded operators [such as S(

m^\ S t̂t

1)c, FB] are
always in particular well-defined tempered distributions14. The distribution thus
associated with a bubble diagram operator FB will be called a bubble-diagram
function. It is still denoted by FB in Sect. 4.

We finally recall that, as the operators S^^ or *S^n

1)c, the operators FB satisfy
energy-momentum conservation, as easily checked from their definition (i.e. the
support of (FB\φ(m)))n is at most that derived from the support of φ(m} by energy-
momentum conservation). Just as in the case of the ^-matrix kernels, the
distribution FB can correspondingly be written (if the initial and final four-momenta
are not all collinear) in the form :

ie/

where the sums ]Γ in the right-hand side run over the initial and final variables
respectively, and where fB is a distribution defined on the physical region of the
process /-> J (i.e. the manifold whose points p = {pk} are sets of initial and final on-
mass-shell four-momenta satisfying energy-momentum conservation).

3. Essential Support of Products of Bounded Operators:
Mathematical Results

The mathematical notations used for convenience in the present section are
somewhat different from those used in the physical situation. In accordance with
the present notations, the words: "w==0 points" should be replaced in the titles of
Subsects. 1 and 2, by: "(w,ι;) = 0 points" (this is the notation that appears in the
main text). They become u = 0 points when different notations are used, as in the
physical application, namely notations in which the variable u denotes the set of all
"initial" and "final" variables presently denoted by u and v respectively.

14 I.e. the functional Fm n whose action on pairs φ(m), ιp(n) of functions in J^m and J ;̂, respectively, is
given by:

—f— Π ^WP,) Π

can be extended, as a linear and continuous functional in the Schwartz topology, to all functions φ(m+n}

of m + n on-mass-shell four-momenta variables pl9 ...,pm, ql9...tqn, that are infinitely differentiable and
have a rapid decrease at infinity, as well as their derivatives, and are no longer necessarily of a product
form in the variables pίt...,pm and ql9 ...,qn separately
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On the other hand, the analogue of the distribution a introduced below and
associated with an operator A is, in the physical application, the distribution still
denoted by FB [and not the distribution denoted fB of Eq. (15)].

3.1. Results away from u = 0 Situations

We first consider below two linear bounded operators A', A" from ffl to ffi ' and
ffl' to $C" respectively, where 2fC , .Ϋf, and ffi" are here (non-symmetrized)
Hubert spaces of square integrable functions of real variables x = x 1 ?...,xm,
ί = ί l 5 ...,ίp, and y = yί,...,yn respectively15. Let A = A"A and let a', a", a denote
the distributions associated with A', A", A, respectively, as in the footnote at the
end of Sect. 2. For instance, the distribution a is well-defined by its action on
Schwartz test functions χ of a product form [χ(x,y) = φ(x)ψ(y)'], in which case one
has

a(χ) = (ψ\AΆ\φy. (16)

It is finally assumed that A' and A" satisfy a certain support property. Stated
for instance on A', it says this : A'\φy has a given compact support whenever φ has
a given compact support, the support of A'\φy depending only on the support of φ
(this property will be satisfied in the physical problem in view of energy-
momentum conservation).

The dual variables of the variables x, y, t will be denoted respectively by M, v, w
and scalar products will be defined for convenience by the formula :

(u,v)'(x,y) = U'X — V ' y , (17)

m n

where u - x = ]Γ w.χ f j v y = Σ v y^ the scalar products (u, w) (x, t) and (w, v) - (t, j;)
i = l j = l

being defined similarly.

Definition 1. A point (X, Y) in K£} x R"y)

16 is called a (w,t;) = 0 point relative to the
product A" A if there exist a point Tin Rft) and a point Wή=0 in R^w} such that

(0,W)eESXiT(ar) (18)

and

y(α"). (19)

Here ESX τ(a'} and EST Ύ(a") denote respectively the essential supports of a' at
the point (X, T) and of a" at the point (T, Y). (See definitions in [4, 7]. Throughout
this paper, essential supports are considered as closed cones with apex at the origin
in the appropriate spaces, rather than closed sets of directions. For instance
ESX τ(af) is a cone with its apex at the origin in the dual space R™u) x Rfw) of

'

15 Each variable xt(i=l, ...,w), y// = l» •••,«) or ίk (fe = l, ...,p) is here one-dimensional. The variables
x, y or t will be in the physical problem, sets of components of three-momenta variables (see Sect. 4)
16 The index x, y,..., in R'"κ), R"y),..., serves only to recall the name of the variables in the space Rm,
Rn,..., considered
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The following theorem then holds away from (u,v) = Q points:

Theorem 1. Let (X, Y) be a point R™x} x R"y) and let (U, V) be a point of the dual space
R™u} xRn

(vY If the following conditions are satisfied:
i) (X, Y) is not a (u, v) = 0 point relative to the product A"A';

ii) there exists no pair of points T, W, Γe jRf f ), We Rp

(w} such that (U, W)eESx τ(a'}
and (W9 V}eEST Ύ(a"\ then (U, V] does not belong to the essential support ESX Ύ(ά) of
a at the point (X, Y\

Remark. The conditions i) and ii) of Theorem 1 can be equivalently replaced by the
unique condition :

i') There exists no point T and no sequence 'of points Wk such that the
directions defined by the points ([/, Wk) and (Wk, V) in R™u} x Rp

w} and Rp

w} x Rn

(v},
both become arbitrarily close to directions that belong to ESXίT(a') and EST γ(a")
respectively.

Proof of Theorem 1. Theorem 1 can be easily derived from the results of [7]
(together with those of Appendix 1 of the present paper). In fact, Theorem 4 of [7]
allows one to define the product φc, t)a(t, y\ in the sense of distributions, away
from (u,v) = Q points, and to show that its essential support at a point X, Y, Tis
contained in the set of points (U,V,W) of the form (U,V,Wί + W2) where
(C7,H^)eESx>Γ(α') and (W2,V)εESTty(a"). Then Theorem 5 of [7] allows one to
study the essential support of the integral J α'(x, ί)α"(ί, y)dt and to obtain the
announced result.

As mentioned in the Introduction, we present below a more direct, self-
contained proof.

Let g and h be functions of x and y, respectively, with compact support, chosen
for instance C00 (infinitely differentiable) and equal to one in neighbourhoods oίX
and Y9 and let F be the generalized Fourier transform at X, Y of a(x, y)g(x)h(y) :

^ (20)

In view of the definition of α, F can be written [see Eq. (16) with
φ(x) = g(x)e-ίu'χ-v»(χ-χ}2, ψ(y} = h(y)e~iv y-vo(y-γ}2l as

F(κ, v ι?0) = I dtA'(t u9 v0)A"(t t?, v0) , (21)

where

A'(t M, ι?0) - J α'(x, t)e ~iwx~ vo(x ~ x}2g(x)dx

= (A'\g(x)e~iu'x~vo(x~X}2y)(t)

and A"(t',v,v0) is defined similarly. These two functions are clearly square
integrable functions of ί for any given u, v, vQ. Moreover, A'(t M, υ0) has a given
compact support in ]Rg} as a consequence of the support property assumed on the
operator A'.

By standard arguments on integrals of functions, Eq. (21) can alternatively be
written, for υQ > 0, in the form

(22)
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Finally, by standard arguments on the Fourier transformation of square
integrable functions, one has

F(u, v ι;0) = π" p / 2 f φo^dTf dwF(w, w vΌ9X, T)F'(w, t> ι>0, T; 7), (23)

where F and F' are, respectively, the generalized Fourier transforms of a'(x, t)g(x)
and α"(ί, y)h(y) at the points (X, T) and (7^ Y). For instance:

F(M, w u0, JSΓ, Γ) - j A'(ί M, u0)e " y°(ί ~ T)V wίΛ

- J fl'(x, %CΦ ~ί(M* - wί)e -vo[( t ~ Γ)2+(* ~ *>2yχΛ. (24)

Equation (23) is the basis of the proof of Theorem 1. In view of the very
definition of the essential support, conditions i) and ii) of Theorem 1 will in fact
ensure exponential fall-off properties of F or F", which in turn directly yield the
needed exponential fall-off properties of F, if Lemmas 2 and 3 of Appendix 2 are
used. The details of the proof are easy and we only give below some brief, but
sufficient, indications.

First, let D be the given compact region in IR^ (which depends only by
assumption on the support of g) where the product A'(t u, v0)A"(t v, v0) has its
support, and let Dαι, a1 >0, be the set of points whose distance to D is less than (or

equal to) j/α^. Then the part of the integral (23) corresponding to T outside Dαι

clearly satisfies a bound of the form Ce~ΆV°, α >0, in the whole region VQ >017. We
are therefore left with the study of the contribution of the compact region TeDαι.

Given U, V, the integration regions over T and w are then divided into a finite
number of sufficiently small neighbourhoods of given points 7], WJ9 including
points Wj "at infinity": in this latter case Wj is defined by a certain direction in IR^W)

and a (sufficiently small) neighbourhood of Wj is the part of a (sufficiently small)
cone in IR^w) with its apex at the origin, around this direction, that lies outside a
sphere with (sufficiently large) radius ρ7 >0. Given any point M, ι;, (u2 + v2)112

= τ(U2 + F2)1/2, the integration regions over Tand w are divided into correspond-
ing neighbourhoods of the points Tt and ^W : the neighbourhoods of the points 7]
are unchanged, while those of the points Wj are obtained from the previous ones
by the dilation τ(w-»τw).

Given any set of indices i, 7, the conditions i) and ii) of Theorem 1, applied
respectively to cases when Wj is at finite and "infinite" distances, and Lemma 2 of
Appendix 2 allow one to show that either F' or F" satisfies (uniform) exponential
fall-off bounds of the form given in Lemma 2, when u or v lies in a sufficiently small
cone with its apex at the origin around (7, or around V, respectively, and when T, w
lie in the corresponding neighbourhoods of Tt and τWj introduced above. The
remaining function F" or F', still satisfies the trivial bounds of Lemma 3 of
Appendix 2.

17 This can be seen by using Eq. (22) together with the inequalities

(i) jΛ|^ί;M,ϋ0)H^(ί;«,ϋo)I^MΊIHI>4ΊI |̂ || | |h| |,

where \\A'\\, \\A"\\, \\g\\, \\h\\ are the norms of the operators A', A" and of the functions g, h, and

(ii) J (2v0)
pl2dTe-2voT2<conste-«v°, α>0

|Γ|>1/5Γ
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Since the number of regions considered is finite, it is easily seen that one may
extract a common exponential fall-off factor e~*v°(u>0) in a common cone with its
apex at the origin in IR^ x IRJ^ around (U, V) and in a common region 0 <v0 <y0τ,
70 >0. The remaining integrals over w are bounded by a constant independent oft/,
v, v0 by virtue of the norm properties of the square integrable functions involved in
the bounds of Lemmas 2 and 3 of Appendix 2. Theorem 1 is therefore proved.

Theorem 1 is easily extended to the case of a product of q > 2 linear bounded
operators Av A29...,Aq from Jf(0) to 3?(l\ Jf(1) to Jf(2), ...,^~1) to ̂ (q\
respectively, where ^f(Q\ Jf(1), ..., Jf (?) are Hubert spaces of square integrable
functions of real (possibly multi-dimensional) variables ί ( 0 )Ξx, t(i\ ...,t(q} = y,
respectively. If we denote here by w(0) = u, w(1), . . ., wίg) = v the dual variables of the
variables x, ί(1), . . . 9 y 9 respectively, Definition 1 is first extended as follows.

Definition 2. A point (X, Y) in R™x) x R". is called a(w, ϋ)= 0 point relative to the
product Aq...Al9 if there exist points 7™, ...,7^" υ and ̂ (1), •••, W(q~l\ H^r)φO
for at least one index r, such that :

The following extension of Theorem 1 then holds :

Theorem 2. IfX9 Yis not a (w, v) = 0 point relative to the product Aq... Aί and if there
exist no set of points T(1\ ..., T^"1

The remark that follows Theorem 1 can be readily adapted to the present case.
As Theorem 1, Theorem 2 can be easily derived from the results of [7] (and

those of the present Appendix 1). Alternatively, it is easily derived by induction
from Theorem 1. It is sufficient to notice, as easily checked, that if (X, 7) is not a
(u9υ) = 0 point of the product Aq...A19 then for any point T(q~1}, the point
\X9T

(q~l)~\ cannot be a [u,w ( q~1 )]=0 point relative to the product Aq_v ...Av

3.2. 17 -0 Results

The exclusion of (u9v) = 0 points in Theorem 1 ensures, as we have seen, the
absence of problems when the points w in the integration domain tend to infinity :
uniform exponential fall-off bounds were obtained in each region, including those
associated with points Wj "at infinity". The situation is a priori different if (X9 Y) is
a (u, u)==0 point, since there exist by definition points 7] and points WJ9 which can
be chosen for instance on the unit sphere in R^w), such that (0, Wj)eESXfTι(a') and
(WpO)eEST Y(a"). Therefore, being given any point U9V9 the directions de-
termined by the points (U9λWj) and (λWj9 V) both tend to directions that belong to
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E8XfT.(a'} and EST.fY(a") respectively when A->oo, and the previous proof does not
allow one to extract uniform exponential fall-off bounds.

A more detailed analysis shows, however, that this is still possible under a
certain condition. Let us as a matter of fact consider linear bounded operators
A', A" which, besides the support property already mentioned in Subsect. 1, satisfy
a regularity property on the way rates of exponential fall-off tend to zero when
directions of the essential support are approached. We state it below on a general
linear bounded operator A and then denote by x,y,u,v the initial and final
variables and their dual variables. The actual mathematical significance and
content of this property will be analysed below.

Regularity Property R. The operator A is said to satisfy the regularity property R if,
being given any point (X, Ύ\ any real neighbourhood Jf of (X, Ύ) in Rfx} x Rj^ and
any open cone ^ with apex at the origin in R™u) x R"(v) such that :

(u,v)φESXty(a), V(

there exist α>0, y0>0, a neighbourhood J^' of (X, Y) contained in Jf ^ and
functions dl9d2oϊ the variables u, v, v0, which are square integrable with respect to
u and v respectively and whose norms [$dl(u,v,v0)du"]ίl2, \_ld\(u,υ,υ^dυ\112 are
independent of y, v0 and of M, v0 respectively, such that :

|F(«, υ υ0, x, y)\ <di(u, υ, v0)e~^ (26)

ί=i,2 in the region (x,y)e^f, (u,υ)^ and:

0^υ0^y0(ίί^ d^)(\u\ + \v\). (27)

In Eq. (26), F is as before the generalized Fourier tranform of a(x' , y')g(x')h(yf)
at the point (x, y) and (ί£v d<&) is in Eq. (27) the angle of the direction determined
by the point (u, υ) with the boundary d^ of (6. We note on the other hand that the
bound (27) can be equivalently replaced by :

0 ^ v0 ̂  y'0 dist. ((M, υ) d<#), 7o > 0 , (27')

where γ'Q is possibly different from y0 but is again independent of (u, v) and where
dist((u,v)id^) is the distance of the point (u,v) to dΉ.

If the intersection of the closure of ^ with ESX Y is empty (apart from the
origin), the regularity property jR holds automatically, as a simple consequence of
Lemma 2 of Appendix 2. [The factor (u^v d%>) can as a matter of fact be removed
in this case from the inequality (27).] The regularity property R gives however
further information when some directions of the boundary of ̂  lie in ESX Y(a).

The fact that there is a uniform constant α > 0 in the exponential fall-off factor
of the right-hand side of Eq. (26) is natural and expected in view of the results of
essential support theory. It comes from the fact that there is a common uniform
neighbourhood Jf of (AT, Ύ\ such that all directions of # lie outside the essential
support of a at any point (x, y) of this neighbourhood. Being given a distribution /
defined on a real vector space18 Rn

(x), the best rate α of exponential fall-off

18 The notations used here are those used in [4,7] for general distributions. In the application, the
variables x and u have to be replaced by (x, y) and (M, v) respectively
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obtained when x varies in a neighbourhood Λr' of a point X and for a given
direction ύ in the dual space of Rn

(x}, depends as a matter of fact on the size of the
neighbourhood Jf of X such that ύ lies outside ESx(f)9 VxeyΓ (see [4]). It is
strictly positive if Ji contains the closure of Jf' in its interior. The constant α
obtained is thus independent of the direction considered, if N' and Jf are
independent of it.

For any given direction ί£v in #, one therefore expects an exponential fall-off
factor e~av°, with a common α, in a region of the form:

0^v0<ymax(i£v)x(\u\ + \v\),

where ymax(ί£v) is strictly positive, but depends on the direction u^v considered, and
tends to zero when one approaches any direction of d^ that lies in ESX γ(a). The
crucial content of the regularity property R lies in the fact that ymaκ(u^v) is assumed
to decrease not faster than linearly with respect to the angle, when the direction u^v
tends to a direction of ESX y(α).

The inclusion of the function <2 in the bounds (26) is natural in view of the
results (and conjecture) of Appendix 2, when the distribution a is the kernel of a
bounded operator.

Remark. The regularity property R can also be stated for distributions which are
not necessarily kernels of bounded operators, with only minor modifications: the
inclusion in the bounds of the function dt is then no longer justified. Instead,
polynomial factors of the variables u, v are expected in general.

In order to give an idea of the content of the regularity property R in terms of
analyticity properties, let us consider the simple example (which is not that
encountered in physical situations in the present work) of a distribution / whose
essential support ESx(f), at all points x in a given neighbourhood Λr of a point X,
is contained in a given closed convex salient cone C. (As previously, / is here
defined in Rn

(x), the variables x, y and M, v being replaced by x and u respectively.) In
view of the results of essential support theory, / is equivalently (independently of
the regularity property R) the boundary value in Jf of an analytic function / from
the directions of the open dual cone Γ of C: namely, being given any real
neighborhood ω of X whose closure is contained in Jf^ and any open cone Γ' with
apex at the origin whose closure is contained (apart from the origin) in Γ, there
exists ε>0 such that / is analytic in the domain x^Rezeω, ImzeΓ", |Imz|<ε,
where z is the complexified variable of x. However, for any given ω, ε may tend to
zero when Γ' expands to Γ.

In view of the results of essential support theory, the regularity property R,
applied here to the case when ^ is the complement of C in Rn

(u} implies that this is
not the case, and it is as a matter of fact essentially equivalent to that result:
namely / is analytic in Nn{ImzeΓ}, where Jf is a complex neighborhood oϊX.

The general regularity property R can be considered as an extension of this
analyticity property to more general situations.

After the above presentation and discussion of the regularity property R, we
now state:

Theorem 3. Let A\ A" be two bounded operators satisfying the same properties as in
Subsect, 1 and the further regularity property R, and let (X, Y) and (U, V) be given

points in R™x) x R"y) and R™u) x Rn

(v) respectively.
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// there exists ε >0 such that, being given any set of points x, y, w, ι;, ί l 5 ί2, w1 ? vv2

satisfying the relations

\x—X\<ε, \y-Y\<ε, \u—U\<ε, \v—V\<ε, \tl-t2\<ε, |w1-w2 |<ε.

One of the following conditions at least is satisfied:

( t t 9 w J φ E S X t t ί ( a f ) (28)

or

(v»29υ)φESt2ty(a") (29)

then(U,V)φESXtY(a).

Remarks, i) Theorem 3 can be equivalently stated as follows: if (U, V)eESx Ύ(a\
then there exists a sequence, when ε-»0, of points xε, yε, u£, uε, ίM, ί2?ε, w1 > £, w 2 ? g

satisfying the relations

|xε-X|<ε, \yε-Y\<ε, |tte-l/|<ε, \ve-V\<ε,

such that :

and

for all values of ε.
In these sequences, w 1 > ε and w 2 ? ε are points of jR^w) and are allowed to tend to

infinity when ε->0.
ii) Theorem 3 is interesting only if (AT, Y) is a (M, t;) = 0 point, since otherwise a

stronger result (namely Theorem 1), in which the regularity property R is not
required and in which the introduction of sequences is not needed, is obtained.

The theorem does provide information at (M, t;) = 0 points. In fact, the existence
of T and W such that (0, W)eESXtτ(a') and (W,ϋ)£ESτ^Ύ(a"} does not prevent the
conditions of the theorem to be satisfied, even though the directions determined by
the points (U,λW) and (λW, V) both tend, as already mentioned, to directions of
ESX T(a'} and EST Ύ(a"} respectively when /ί-»oo.

iii) The regularity property R is needed only in certain situations, and the
hypotheses of the theorem may be correspondingly weakened, as will appear in the
proof of the theorem.

Proof of Theorem 3. The proof of the theorem, given below, is very close to that of
Theorem 1. Although one has here to consider situations in which the maximal
constants ymax(ίCw) or ymax(vίvδ), tend to zero when |w| tends to infinity, the
conditions of the theorem and the fact that the decrease is not faster than linear
with respect to the angle to the essential support, will ensure the existence of
uniform exponential fall-off factors e~av° in uniform regions of the form

δ0(\u\ + \v\), δ0>0
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The beginning of the proof is the same as in Theorem 1. Namely Eq. (23) still
holds and the integration domain over T can be restricted similarly to a compact
region DΛl.

Being given a point T0 in R£}, let us now denote by ^7 the set of points w such
that:

(u,w')φESXtt(a') (30)

whenever x,ί,M,w' satisfy the relations |x — X\<ε/2, \t— T0|<ε/2, |w—C/|<ε/2,
|w' —w| <ε/2.

A set ^7' is defined similarly as the set of points w such that:

(w",υ)φEStty(a") (31)

whenever ί,j,w",i? satisfy the relations \y — Y\<ε/2, \t—T0\<ε/2, \v—V\<ε/2,
|w" —w <ε/2.

It is easily seen from the conditions of Theorem 3 that

τre'uτr;=Rfw). (32)

The regularity property R applied to F' and Lemma 3 of Appendix 2, applied
to F", ensure the existence of α' >0, δ'0>0, of a constant C', of a (sufficiently small)
neighbourhood Jf' of T0 in #£} and of a (sufficiently small) open cone irι with
apex at the origin in R™u} containing U such that:

f dTdw\F'(u, w t;0,X, T)| x |F"(w, u vQ9 T, 7)| < C'e"αυ° (33)
Te^'(To)

wer^e

in the region ue^', 0^υ0^<5'0τ; τ is defined as previously by the relation
(U

2 + v2)112 = τ(t/2 + F2)1/2.
To see this, it is sufficient to remark that, in view of the conditions of the

theorem, Min(ίvvv ί%f) x (|w| + |w|) is strictly positive when u belongs to a suf-
ficiently small neighbourhood of U and when w belongs to f7, Ή" being here the
(open) cone obtained by drawing all lines issued from the origin and joining the
points (u, w) just mentioned. The distance of (u, w) to d^' is in fact always larger
than ε/2.

An analogous result clearly holds when the roles of a' and a" are exchanged,
and in view of (32), one concludes easily that there exists a (sufficiently small)
neighbourhood Ji of T0, a (sufficiently small) open cone V with apex at the origin
in R™} xRn

(v}, containing (U, V\ α>0, (50>07 and C such that:

dTdw\F'(u,w vQ,X,T)\ x |F"(w,v;υ Q ,T,Y)\<Ce-* v ° , (34)

in the region (w
Since the domain of integration Dαι with respect to T is compact, the same

conclusions hold also for the integral over Dαι and the theorem is therefore proved.
The methods used in the proof of Theorem 3 yield also the following slightly

stronger result, which will be useful below:

Lemma. Let A', A" be two linear hounded operators satisfying the same conditions as
in Theorem 3 and let X, Ύand U ΦO be given points in KJ" } x R"y) and R™u) respectively.
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Being given ε>0, let &E be the set of points in Rn

(v} such that whenever x, y, w, ι/,
ί l 5 ί2, w l s w2, satisfy the relations

\x—X\<ε, \y—Y\<ε, |w-l/ |<ε, \v' — v\<ε9 \ti-t2\<ε, |w 1-w 2 |<ε

one oj the following two conditions at least is satisfied

or

Then, there exist a neighborhood Λr of X, Y in R™x} x R"y}, a (sufficiently small)
open cone Ίf with apex at the origin in R™u} containing U, α>0, δ0>Q and a
polynomial $* of the variable v0 such that :

9vQ9x9y)\<0>(vo)e-ΛΌ° (35)

in the region (x,y)eyK, wef", veτ^ε, 0^ϋ0^(50τ5 where τ = \u\/\U\.

If the conjecture stated at the end of Appendix 2 is accepted, the polynomial
factor 0*(vQ) in the bounds (35) can moreover be replaced by a function d of the
variables w, v, v0 which is square integrable with respect to v and whose norm with
respect to υ is independent of u, v0.

The analogous result holds if U = 0 but FΦO, and the results can be extended
by induction to a product of more than two bounded operators Ar (r— 1, ...,g).
The following extension of Theorem 3 is then obtained.

Theorem 4. Let Al9...,Aqbe linear bounded operators satisfying the same properties
as in Subsect. /, and the further regularity property R, and let (X, Y) and (17, V) be
given points in R™x} x R"y) and R™u} x R"v) respectively,

If there exists ε>0 such that, being given any set of points x, y, M, y, t^\ ί(

2

υ, w(±\
w^,...,^-1^ ί(«-1), wί"1^ w^"1) satisfying the relations |x-X|<ε, |y-Γ|<ε,
u- U\<ε, \v-V\<ε, \t({} -t(2}\<ε, jw^-w^l <ε, r = l , ...,^-1, the following con-

dition cannot be all satisfied:

The Remarks i)-iii) that follow Theorem 3 can be likewise extended to the
present situation.

As appears above, the present proof of Theorem 4 makes use (when q > 2) of
the conjecture stated at the end of Appendix 2. If this conjecture turned out not to
be always satisfied, a corresponding technical condition would be needed so far on
all operators A(r} = Ar.,.A1(r = 2,...,q).



72 D. lagolnitzer

4. Refined Macro-Causality Condition and w=0 Structure Theorem

4.1. General Results in Physical Situations

The considerations of this section apply to bubble diagrams B whose external and
internal lines are not necessarily associated with the same type of particle. (As
already mentioned, the results of Sect. 2 can be adapted to this more general case.)
It will be convenient to label all external and internal lines in a given order k and /
will then denote indices referring to the external and internal lines, respectively,
and pk and pl will denote on-mass-shell four-momenta variables associated with
the external and internal lines respectively.

For simplicity, the bubble diagram functions FB9 and the distributions Fb

associated with each bubble b of JB, will be considered, as in [7], as being defined
on the space of all initial and final three-momenta variables pΛ, or of all three-
momenta variables {pfc,p/}fc involved at ft, respectively 19. The essential support of
FB9 or Fb9 at a given point {Pfc}, or {P^PJ^, respectively, is then a cone with its
apex at the origin in the space of the dual variables vfe of the variables pfe, or of the
variables of the set {vfc,vjfe, respectively. The definition of scalar products is the
same as in [7].

It is useful to associate with each point {pfc}, or (p^pj^ and each point {vfc}, or
{v f e,Vj}b, in the space of dual variables a certain configuration of trajectories in
four-dimensional space-time. The trajectory of line fc, or line /, is the full line in
space-time that is parallel to the on-mass-shell four-vector pfc[(pfc)0 = (pjfc +mλ)1/2]>
or ρl9 respectively, and passes through the space-time point vk = (0, VΛ) or vl — (0, v,),
respectively. Diagrams Sb9 <ίβ, and ($B)ε, where ε is a given positive number (ε > 0),
are then defined as follows:

Definition 3. A diagram Sb associated with a bubble b is a configuration of space-
time trajectories associated with each incoming and outgoing line of b such that
{vfc5vjj, lies in the essential support of Fb at the point {pfc,pjfc.

A diagram SB9 resp. ($B)E9 associated with a bubble diagram B is a collection of
diagrams $b (associated with each bubble b of B) that fit together, resp. fit together
up to ε: if bί and b2 are the two bubbles of B at which an internal line / of B is
respectively outgoing and incoming, then the corresponding lines associated with /
in Sbl and $b2 must coincide in space-time (and can be identified as a unique
internal line of /B\ respectively correspond to points (pz)l5 (v^ and (pz)2, (vz)2, such
that

lOOi-ίP^β (36)

IWι-W2l<e. (37)

In the case of diagrams ($B)ε9 the two lines associated with / in <ίbι and Sb2

respectively are thus allowed to be slightly displaced and twisted with respect to
each other, in the sense of Eqs. (36) and (37).

19 This is fully legitimate since the energy variables can be expressed in terms of the three-momenta
variables in view of the mass-shell conditions. One can alternatively translate everything that follows by
considering FB and Fb as being defined in the space of on-mass-shell four-momenta. Both ways are
equivalent (see [9])
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Definition 4. A point {pj is called a u^O point of B in the sense of the diagrams SB

if there exists at least one $B such that all its external trajectories pass through the
origin and have the on-mass-shell four-momenta pk[(pk)0 = (pfc +^)1/2]? while at
least one internal trajectory does not pass through the origin.

The following theorem then holds:

Theorem 5. The only possible points {\k} in the essential support ofFB at a point {pfc}
that is not au = Qpoint ofB (in the sense of Definition 4), are those corresponding to
configurations of external trajectories of some $B.

The proof of this result is part of the proof of the structure theorem of [7], as
can be seen by withdrawing from it all specific informations on the essential
supports of each Fb. It applies to cases when each Fb is not necessarily a connected
kernel of S or S~1 but may be a more general kernel of bounded operator or also a
more general distribution satisfying energy momentum conservation.

When each Fb is the kernel of a bounded operator, Theorem 5 is alternatively a
direct consequence of Theorem 2 of Sect. 3.1. Each operator Ar is, in the
application, a tensorial product of operators F&, and the essential support of its
kernel is easily determined in terms of the essential supports of the kernels of each
Fb, since these kernels do not depend on the same variables. As a matter of fact, an
elementary result of essential support theory, which directly follows from the
definition of the essential support, says this: the essential support at a point
X = [X(1), ...,X(S)] of the (tensorial) product ΛCx^lΛDCφ] .../J>(s)] of s distri-
butions /1? ...,/s that do not depend on the same, possibly multi-dimensional,
variables x(1), ...,x(s), is the set of points u = [w(1), ...,u(s)] such that

uweESXMW. (38)

In the application, a point in the essential support of the kernel of the tensorial
product Ar of operators Fb is therefore characterized by a set of independent
configurations of trajectories, each one of these configurations being here as-
sociated with one of the operators Fb.

Theorem 5 applies only away from u = 0 points. If each Fb is the kernel of a
bounded operator satisfying energy-momentum conservation and the regularity
property R stated in Sect. 3, the following result is derived from Theorems 3 and 4
at M = 0 points20.

Theorem 6. The only possible points {vj in the essential support of FB at a u = 0
point {pk} are those for which there exists a sequence, when ε->0, of diagrams (SB)ε

whose external trajectories correspond, for each fc, to points (pk)ε, (vk)ε such that

|(pfc)ε-pk|<ε (38)

l(v f e)ε~ηj<ε. (39)

In other words, in each diagram of the sequence, the two lines associated with
an internal line of B are as before allowed to be displaced and twisted with respect
to each other up to ε [in the sense of Eqs. (36) and (37)], the external trajectories are

20 In the case of a product of more than two operators Ar, the conjecture or technical condition used
in Sect. 3 in the proof of Theorem 4 is also needed so far
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allowed to be displaced and twisted up to ε [in the sense of Eqs. (38) and (39)] with
respect to the given trajectories defined (for each fe) by the points pk, vk and finally
ε-»0 in the limit.

We conclude this subsection by recalling the connection between the essential
support of FB and the essential support of the distribution fB defined in Eq. (15)
(see [5, 7] for details). The essential support of a distribution / defined on a real
analytic manifold M, at a point p of M, is a cone with apex at the origin in the
cotangent space Ύ*Jt at p to M. When Jί is the physical region of a given process,
a point in T*Jl, where p = {pk}9 is a collection u= {uk} of four-vectors uk, defined
modulo addition, for each /c, of vectors of the form λkpk -f α, where a is independent
of k. Equivalently, a point in T*Jl is characterized by a relative configuration,
defined modulo global space-time translations, of space-time trajectories as-
sociated with each initial and final particle and parallel to the respective four-
momenta ρk. If a configuration of external trajectories corresponds to a point in
the essential support of FB, the class of configurations obtained by global space-
time translations defines a point in the essential support of fB. (Conversely, if a
configuration, defined modulo global space-time translations, corresponds to a
point in the essential support of /B, then all configurations derived from it
correspond to points in the essential support of FB).

4.2. Geometrical Definitions

In this subsection, we present preliminary definitions that will be needed in
Subsect. 3.

Definition 5 below of graphs Gb is the usual definition of multiple scattering
graphs. The definition of the graphs GB is also the usual definition, given for
instance in [7], of topological graphs associated with a bubble diagram B.
Definition 6 of diagrams Q)b is, when b is a plus bubble, the usual definition of
classical multiple scattering space-time diagrams (-f α-Landau diagrams), except
that vertices "at infinity" are also introduced when all incoming and outgoing
trajectories are parallel. In this case, these trajectories are not required to coincide,
but must satisfy an angular-momentum conservation law [11, 15]21. Definition 7
of the diagram @B that can be associated with a bubble diagram B is again
analogous to that given in [7], but vertices at infinity are also introduced. Finally,
the diagrams (@b)ε and (@B)ε introduced in Definitions 6 and 7 are defined
similarly, but some of the constraints of the diagrams Q)b or Q)E are satisfied only
"up to ε". For a physical discussion of the introduction of these diagrams, see Sect.
5.

Definition 5. A connected multiple scattering graph Gb associated with a bubble b
is a connected topological graph characterized by a set of vertices and of oriented
external and internal lines. There is one external line for each incoming or
outgoing line of b. It is associated with a given vertex and is incoming or outgoing,
at that vertex, if it corresponds to an incoming or outgoing line of ί>, respectively.
Each internal line of Gb is associated with two vertices. It is outgoing from one of

21 In the terminology of [15], diagrams Q)b would be called "generalized + α-Landau diagrams" if
they contain vertices at infinity
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them and is incoming to the second one. A particle, with a given mass, is moreover
associated with each internal line. Finally, there are at least two incoming and two
outgoing lines at each vertex (or one incoming and one outgoing line of identical
particles).

A graph GB associated with a bubble diagram B is a collection of graphs Gb

associated with each bubble b of B being given any internal line of B, which runs
between two bubbles b1 and b2 where it is respectively outgoing and incoming, the
two corresponding lines in Gbι and Gb2 are moreover identified as a common
internal line of Gβ. It is outgoing and incoming at the respective vertices of Gbl

and Gb2.

Definition 6. An elementary space-time diagram 3)Ό [resp. (S>υ)J associated with a
vertex υ of a graph Gb or Gβ, is a space- time representation of that vertex and of
the incoming and outgoing lines at that vertex. In this representation, each line is
represented by a full line in space-time, which must be parallel to a given on-mass-
shell four-momentum. Energy-momentum must be conserved :

ΣP,= Σ P j , (40)
ie/ υ jeJυ

where Iv and Jv are the sets of incoming and outgoing lines respectively.
Finally, the incoming and outgoing lines of *3) v [resp. (^)J must pass through

a common space-time vertex V that represents v, (resp. must pass at a distance less
than ε of that vertex) except for the following possibility: if all incoming and
outgoing four-momenta are colinear, V is called a parallel vertex and is possibly
"at infinity" in some direction. Then the incoming and outgoing lines of 2υ, [resp.
of (^JJ, which are parallel, are not required to coincide, but must satisfy angular-
momentum conservation22:

ίelυ

(«A,(Pi)v-(«i)v(pW= Σ

μ, v = 0, 1,2, 3 where uί9 or uj9 is an arbitrary point on line z, or 7, respectively, and
μ, v denote components of the four-vectors considered, [resp. must satisfy angular-

momentum conservation up to ε: if uk = (0,uk) denotes the point of line k with zero
time component, then the quantity

must be less than ε\.

A connected diagram £)b, resp. (^b)ε, associated with a connected graph Gb is a
collection of diagrams Q)v that fit together, resp. is a collection of diagrams (@>v)ε

that fit together up to εiiίv^ v2 are the vertices of Gb at which an internal line / of
Gb is outgoing and incoming respectively, then the corresponding lines in @Vi,@V2,
resp. in (@Vί)ε and (^2)ε, must coincide and are identified as a common internal

22 One sees easily that this condition is independent of the choice of u{, or HJ. Condition (41) is
automatically satisfied by virtue of energy-momentum conservation if v is not at infinity (to see this, it is
sufficient to choose all points u. or uj at v). When v is at infinity, it is on the other hand sufficient to state
it for the components μ = 0, v = 1,2,3. Since all four-momenta involved at υ are parallel, Eq. (41) is then
also satisfied for the values μ, v = 1,2,3
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line of @b, resp. must coincide up to ε in the sense of Eqs. (36) and (37). Moreover,
the following time ordering condition must be satisfied: the space-time vertex that
represents v2 must be strictly later in time23 than the space-time vertex that
represents v1 if b is a plus bubble, or strictly earlier in time if v is a minus bubble.

Definition 7. A diagram Q)E, resp. (&B\, associated with a bubble diagram B is a
collection of diagrams @b, resp. (&>b)ε, that are associated with each bubble b of B
and fit together, resp. fit together up to ε. Equivalently, it is a collection of
diagrams 2υ, resp. (&>v)ε, that are associated with each vertex of a graph Gβ, fit
together, resp. fit together up to ε, and satisfy the time ordering conditions
introduced in Definition 6 for pairs of space-time vertices corresponding to
subgraphs Gb of GB.

There is no time ordering condition on pairs of space-time vertices correspond-
ing to vertices of an internal line of GB associated with an original internal line of
B.

The following further definitions will be useful. In these definitions, a point {pk}
is a set of external, initial and final, three-momenta associated with each external
line of a bubble diagram B. The definitions cover the case when B is composed of a
single bubble b, or the case of non-trivial bubble diagrams B.

Definition 8. ^B({pk}) is the set of points {vfc} such that the trajectories defined for
each /c, by the points pk,vk are the external trajectories of at least one diagram Q)E.

^β({pj) is trιe set of points {vfc} such that the trajectories defined, for each k, by
the points pfc,vk can be obtained as limits, when ε-»0, of the external trajectories of
a sequence of diagrams (^B)f.

We next introduce a geometrical definition of u = 0 points in the sense of space-
time diagrams. They are closely related to the u = 0 points introduced in Sect. 3, in
the case when the bubbles are connected kernels of S or S"1, i.e. when their
essential supports will be those provided by macrocausality and unitary (see Sect.
4.3).

Definition 9. A point {pfc} is called a u = Q point of B in the sense of diagrams @B if
there exists a 2>B such that all its external lines pass through the origin and have
the respective on-mass-shell four-momenta ρk, while at least one internal line does
not pass through the origin.

The internal lines of &B considered here can either be internal lines of
subdiagrams Q)b or internal lines associated with original internal lines of B,

Definition 10. A point {pj is called a restricted u = 0 point of B (in the sense of
diagrams @B) if there exists a @B such that all its external lines pass through the
origin and have the (on-mass-shell) four-momenta pk and such that at least one of
the two following conditions is satisfied:

i) One internal line of &B associated with an original internal line of B does
not pass through the origin.

ii) One internal line of a subdiagram Q)b of ̂ B has specified vertices that are
not both parallel vertices24 and does not pass through the origin.

23 An appropriate extension of this notion is introduced to cover cases in which two space-time
vertices would be at infinity in the same direction

24 The specified vertices of a line are the vertices where it is outgoing and incoming. A vertex is a
parallel vertex if all incoming and outgoing four-momenta at that vertex are colinear (see Definition 6)
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Conditions i) and ii) can equivalently be replaced in Definition 10 by the
following Conditions i') and ii'):

i') One internal line associated with an original internal line of B has specified
vertices that are both parallel vertices, and does not pass through the origin.

ii') One internal line of &B has specified vertices that are not both parallel
vertices, and does not pass through the origin.

Condition ii') can itself be equivalently replaced in Definition 10 by:
ii") Non parallel vertices do not all lie at the origin.
In fact Condition ii') obviously entails Condition ii''). Conversely, let v be a

non-parallel vertex that does not lie at the origin. In view of the properties of the
diagrams Q)B considered in Definition 9, all external lines of Q)B pass through the
origin. Since v is not a parallel vertex, at least one internal line whose v is a
specified vertex does not pass through the origin.

Restricted u — 0 points will be in turn divided for some purposes.

Definition ίl25. A restricted u = 0 point of B is called a u = Q point of the second
kind if there exists a ^B satisfying the conditions of Definition 10 and such that
Condition ii') or equivalently Condition ii") is satisfied.

We give below some examples of u = Q points.

Examples, a) First consider a single bubble b. Then all points {pfc} of the set M^ (i.e.
some initial, or some final, on-mass-shell four-momenta pk are collinear) are u = 0
points of b in the sense of Definition 9. If for instance two initial four-vectors p1,p2

are parallel, one can always consider diagrams @b of the form

where the vertices vl9υ2 are both at infinity. All external lines, as well as the
internal lines / 3 ,/ 4 pass through the origin, but I ί 9 l 2 do not.

However, the points of the set Jl^ are not in general restricted u = 0 points of b.
The only restricted u = 0 points of a single bubble b are (by definition) of the
second kind. The only possible examples known to us occur in very exceptional
situations (special values of masses, etc.) at very special M$ points.

b) Let B be more generally a bubble diagram with more than one bubble, and
let {p J be a set of external three-momenta. If there exists a set of internal three-
momenta PJ in the allowed integration domains such that {p^, pl}b is a ̂ 0 point of
at least one bubble fc, then {pk} is always a u = 0 point of B in the sense of
Definition 9. To see this, it is sufficient to consider a diagram @b of the type
introduced in the above example a) and to construct a corresponding diagram @B

by choosing all other subdiagrams 3)v of @B with only one vertex put at the origin
(and no internal line).

Such diagrams &B are excluded from the Definition 10 of restricted u = 0 points,
and {pj is therefore not a restricted u = 0 point, unless the conditions of Definition

25 Second kind u = 0 points seem to coincide with the "generalized u = 0 points" of [15]
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10 are satisfied by other diagrams @B. In general, {pj will not be a restricted u = 0
point of B if the only origin of the u = 0 problem is the occurrence of internal
momenta (for the internal lines of B) that correspond to Jt§ points for some
bubbles, and if the internal lines of B that may have parallel four-momenta do not
run between two common bubbles.

An example, which occurs in [7], is the bubble diagram

in a theory with equal-mass particles. Let us consider a point {pfc} — {pj, . . . , p6} such
that P ΦP; when iΦj, ij =1,2,3 or z,j = 4,5,6. The condition p 5 Φp 6 ensures that
p7 Φp8, where the indices 7,8 refer to the two internal lines of B. However, there may
exist in certain cases internal on-mass-shell four-momenta p7,p8 (satisfying
pΊ -f p8 =p5 +p6) such that for instance p4 = p7. The point {pj^^Pa^P^Pv^Pg} ^s

then an JίQ point of the plus bubble and correspondingly the point {pj is a w = 0
point of B in the sense of Definition 9. However, it is not a restricted u = 0 point.

If the lines that may have parallel four-momenta run between two common
bubbles, the point {pj will on the other hand be also a restricted u = 0 point of B:
see next example.

c) For some bubble diagram functions, all points {pk} are restricted u = 0
points. An example, which occurs in [7], is the bubble diagram

< _. 7. _ __ 4

2 -̂ — + Hh-f - y-— 5

3 — —\_y 9» v^y „ e
with equal-mass particles.

Given any point {pj, there always exist, in fact, on-mass-shell four-momenta pl

(1 = 1,8,9) such that pΊ = p8, £ p z= ]̂ pί= ^ p^. The diagram ^β

/ = 7 ,8 ,9 i = l , 2 , 3

considered is then of the form:

where the vertices vί and υ2 are both at infinity (the lines / 1 } / 2 , and / 3,/ 4, are
internal lines of the diagrams 3>bί and Q)b2, associated with the plus and minus
bubbles, respectively).

For any point {pfc}, one source of the w = 0 problem is thus the occurrence of
JίQ points in integration domains. When the point {pj is above the four-particle
threshold ((pί +p2 + p3)

2 > 16μ2), the u = Q problem arises also from other possibi-
lities, which entail again that {pj is a restricted u = 0 point of B. Another diagram
&B whose all external lines pass through the origin, but such that the internal lines
associated with the original internal lines of B do not all pass through the origin is
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for instance the diagram S)B obtained as the collection of the following diagrams
®b , &>b associated with the plus and minus bubble respectively, after identifi-
cation of the internal lines 7,8,9 associated with the original lines of B:

Subdiagram &)b2

With this example, we end our presentation of u = Q points and we conclude
this subsection with the following result:

Lemma. // {pk} is not a second kind u = Q point of B, then (^>

jB({pfe}) = (^β({pfc}).

This result is analogous to a result announced independently in [15]. We
therefore only outline the proof below. Since (^β({p/c})C(tβ({pfe}), it is sufficient to
show that conversely ^B({pfc})C^B({pk}) if {pk} is not a second kind u = 0 point.

We may restrict our attention to sequences of diagrams (@B)ε that have a
common topological structure (i.e. are space-time representations of given graphs
GB). In general, points {\k} that belong to ^B({pk}), but not to ^B({pk}), may be
obtained in the following situation. In the course of the limiting procedure (ε-»0),
certain vertices whose incoming and outgoing four-momenta do not tend to be all
parallel may be sent to infinity, although the points (vjε that are associated with
the external trajectories tend to actual points \k (that remain at finite distances).
Hence a limiting point (vj and a corresponding limit configuration of external
trajectories are obtained, although there is no limiting diagram 2B.

Let us now fix a scale in the limiting procedure by keeping constant the sum of
all distances between the vertices whose incoming and outgoing four-momenta do
not tend to be all parallel. In this scale, these vertices are therefore not sent to
infinity and a limiting diagram 2)B exists26. If in the limit the external lines of Q)B

do not all pass through the origin, then the point {\k} obtained also belongs to
^({Pfc})- On the other hand, if in the limit, all external lines pass through the
origin, then by definition [see Condition ii")] {pj is a u = 0 point of the second
kind (non-parallel vertices do not all lie at the origin). The lemma makes no claim
at these points.

4.3. 17 = 0 Results on Usual Bubble Diagram Functions

As explained in [5,7], the macro-causality condition (and unitarity if b is a minus
bubble) lead to the following property: the essential support of any bubble

26 The lines of ( β̂)ε that are involved at vertices whose incoming and outgoing lines tend to be all

parallel might be sent to infinity in the limit. However, by using the fact that the two lines associated in

(^B)ε with any internal line of B must become close up to ε, it can be checked that they can be replaced
in the limit by lines that remain at finite distances (even when the corresponding parallel vertices are "at
infinity")
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function Fb at any non Jί^ point27 {pλ} is contained in the set ^b({pk}) introduced
in Definition 8 (in the case when B is a single bubble b)28.

In view of this essential support property, Theorem 5 of Subsect. 1 then leads
to the following theorem, which coincides with the structure theorem of [7].

Theorem 7. // {pk} is not a u = 0 point of B in the sense of diagrams Q)E (Definition

9j, then the essential support of FB at {pfc} is contained in ^B({pk}).
As a matter of fact, the assumption that (pj is not a u = Q point of B excludes

in particular the occurrence of Jί0 points for any bubble in integration domains
[see remark in the Example b) of u — 0 points in Subsect. 2]. Hence the above
mentioned essential support property of each Fb covers all points encountered in
integration domains and the result follows.

Remark. Theorem 7 is not the best result that follows from Theorem 5 and from
the above mentioned essential support property of each Fb. In fact, some
information on the essential support of FB at some w = 0 points can be obtained29.
However, it is not of much interest and is omitted here.

The arguments upon which macrocausality is based lead on the other hand to
admit in general certain limiting procedures in the statement of macrocausality
that might enlarge the essential support. This is discussed here in Sect. 5. The
macrocausality condition then leads in general to the following postulate if b is a
plus bubble: the essential support of Fb at any point {pfc} is contained in the set
^({pj). As previously, the same essential support property is derived for minus
bubbles from unitarity.

As a consequence of the lemma of Subsect. 2, applied in the case when B has a
single bubble b, ^((pj) can be replaced in the statement by #b({pk}) whenever
{pfe} is not a second kind u — 0 point of b. This includes the cases when {pfe} is not
an J^Q point, but it also includes most of the M^ points (see discussion in Subsect.
2). Theorem 5 of Subsect. 1 and the above mentioned essential support property of
each Fb then yield the following extension of Theorem 7 to u = 0 points of B that
are not restricted u = Q points.

Theorem 8. // {pk} is not a restricted u — 0 point of B in the sense of Definition 10,

then the essential support of FB at {pj is contained in ^β({pfe}).

In other words, Theorem 7 can be extended without change to all points that
are not restricted u = 0 points of £, if the definition of the set %>B given in Subsect. 2
is adopted. Theorem 8 applies for instance to the case described in the Example b)
of u = 0 points in Subsect. 2.

The proof of Theorem 8 follows in the same way as before. It is sufficient to
note that if (pj is not a restricted u = 0 point of B, then given any bubble b of B and

27 {pk} denotes here the set of the incoming and outgoing momenta of b. In the application to the
study of bubble diagram functions, it has to be replaced by {p^pjj,
28 The set (βb introduced in [5,7] is defined in terms of ordinary + α-Landau diagrams. However, the
two definitions coincide if {pfc} is not an Jί0 point. This is because a diagram Q)b whose set of external
momenta is not an Jl§ point cannot have vertices "at infinity"
29 The best result would be obtained by using Theorem 5 with the essential support property given at
non //o points, the essential support at Mϋ points being allowed to be the whole space of the variables
{vj. The result can be stated by introducing diagrams that differ from the diagrams @B when J/Q

points are involved
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any point {pjfc in the allowed integration domains, {pfc,p/}j, cannot be a second
kind u = 0 point of b. Otherwise, there would exist a @b such that all its external
lines pass through the origin (and have the four-momenta of the set {pk,pjb), while
at least one internal line would not have its specified vertices both parallel and
would not pass through the origin. But then there would also exist a @B with the
analogous property, defined by choosing all other subdiagrams 2b, with only one
vertex put at the origin (and no internal line).

The point {pfc} would therefore be a restricted u = Q point of B, a situation for
which Theorem 8 makes no claim.

Theorem 8 does not cover the restricted u = 0 points, such as the points
described in the example c) of u = 0 points in Subsect. 2. As mentioned there, all
points {pfe} are as a matter of fact restricted u — 0 points of the bubble diagram

In order to cover these points, we shall use the following refined macro-
causality condition which, as explained in Sect. 5.3, follows from the same physical
ideas as the previous macro-causality condition.

Refined Macro-Causality Condition. Being given any plus bubble b, the essential
support of Fb at any point {pj is contained in the set ^6({pJ). Moreover, Fb

satisfies the regularity property R of Sect. 330 when directions of ^({pj) are
approached.

As previously the same properties are derived for minus bubbles from unitary.
Refined macro-causality (so far, together with the mathematical conjecture, or

technical condition, needed in Sect. 3 in the case of a product of more than two
bounded operators) then leads, in view of Theorem 6, to the following general
structure theorem.

17 = 0 Structure Theorem. The essential support of FB at any point {pj is contained

in #B({P*})
The proof of the theorem follows from a straightforward application of

Theorem 6. As a matter of fact, Theorem 6 provides a slightly more refined result:
namely, the essential support of FB at {pk} is composed at most of the points {vk}
such that the trajectories (pfc,vj can be obtained as limits when ε-»0 of the
external trajectories of diagrams (S'B)ε ($B)C is here a collection of diagrams $b that
fit together up to ε [in the sense of Eqs. (36) and (37)]. For each bubble ft, $b is here,
in view of the essential support property of Fb, a configuration of incoming and
outgoing trajectories that can be obtained as limits, when ε'->0, of the incoming
and outgoing trajectories of a sequence of diagrams (@>b)ε>.

If one does not encounter, in integration domains, points {pfc,pz}b that are
second kind w = 0 points of some bubble b,$b is simply, in view of the lemma of
Subsect. 2, the configuration of external trajectories of a diagram 2b and the set
^JB({P/C)) can correspondingly be replaced in the theorem by a somewhat more
simple set. To our present knowledge, this should be a very general situation. On

30 We recall that the analogues of the variable x, y of Sect. 3 are here the sets of components of the
incoming and outgoing momenta, and that the analogues of the variables u, v are correspondingly the
sets of components of the space three-vectors vk associated with the incoming and outgoing lines of b
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the other hand, if moreover {pj is not a second kind u = 0 point of J5, the set
Cg({pfc}) can be replaced in the theorem by the set ^B({pfe}), again by virtue of the
lemma of Subsect. 2. However, second kind u = 0 points of B are not always
exceptional and this result is thus not sufficient to eliminate limiting procedures in
general. It is our present belief that the set ^B can be replaced by ^B, i.e. that
limiting procedures do not enlarge the essential support, in more general
situations, but we have so far no general result of this type.

The connection between the essential support of FB and the essential support
of the distribution fB of Eq. (15) has already been outlined at the end of Subsect. 1.

5. Macro-Causality and Refined Macro-Causality:
Physical Discussion

The purpose of this section is to describe the physical ideas upon which
macrocausality is based, in order to explain how they lead in the same time to the
refined macrocausality condition stated in Sect. 4.3. These ideas are those already
essentially contained in [6]. A somewhat more detailed discussion will however be
needed. We shall omit from it all technical aspects which can be directly derived
from [5] or [6].

Macro-causality is an expression of a certain classical limit of quantum theory
in terms of particles, and more precisely of the idea that all transfers of energy-
momentum over large distances that cannot be attributed to stable real particles in
accordance with classical ideas, give effects that are damped exponentially with
distance31.

This idea is expressed in the form of exponential fall-off properties of transition
probabilities. To that purpose, it is useful to consider a special class of initial and
final displaced wave functions. These wave functions correspond to particles that
have sharp localization properties both in momentum space and space-time and
behave in fact like classical particles, in a certain asymptotic limit, up to
exponential fall-off properties. They are introduced in Subsect. 1, where the main
results needed later on their localization properties will be described.

A certain semi-classical model is then introduced in Subsect. 2, where we
explain how it leads to the macro-causality condition of [5,6], and to its extension
at ^0 points. Finally, the way it leads at the same time to the refined macro-
causality condition is described and explained on simple examples in Subsect. 3.

Before giving details, we emphasize that there is no attempt to "prove"
macrocausality or refined macro-causality, or even to determine precise rates of
exponential fall-off. The aim is only to determine the type of exponential fall-off
properties that can be reasonably expected. The semi-classical model of Subsect. 2
is not the only one that might be considered. However, it seems to us so far the
most satisfactory from a physical viewpoint and is supported by the mathematical
methods of the present work, applied for instance to the study of Feynman or
phase-space integrals. An alternative model, which can be elaborated on the basis
of the results of [15,17] on Feynman and phase-space integrals, is proposed in
[15]. It will be briefly presented and discussed at the end of Subsect. 3.

31 We recall that we consider only systems of massive particles with short-range interactions
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5.1. Localization Properties of Free Particles

We consider initial and final displaced wave functions of the form:

Φ^W = Xk(pf^'^^^e-^^\ (42)

where pk is a given on-mass-shell four-momentum, χk is locally analytic in the
neighbourhood of pfc, Φ is for instance, of the form Φ(p'k;pk) = (\)'k — pk)

2, y is a
positive constant (7 ̂ 0), τ is a space-time dilation parameter and uk is a space-time
translation four-vector which will be taken in the following of the form (0, uk), i.e.
(Wfe)0=0. The index k labels as previously the initial and final particles.

In a space-time coordinate system scaled to τ (i.e. in x-space, where x = xτ), the
free particle whose wave function is given by (42) behaves like a classical particle
with on-mass-shell four-momentum pk and with a well defined space-time
trajectory that is parallel to pk and passes through the point uk9 up to exponential
fall-off properties in the τ—>oo limit. More precisely, the following results are
obtained (for simplicity, we leave below the index k implicit):

i) The probability density in momentum space, which is equal to \φτ

τ

u(p')\2 up
to normalization factors, decreases like e~ayτ when p' is different from p\ α>0
increases with the distance to p.

This probability density vanishes, as φ™ itself, if p' is not on-mass-shell.
ii) The fall-off properties of the probability densities in macroscopic space-

time32 are extrapolated by assumption from those of space-time wave functions.
These functions fall-off exponentially like e~α y τ for all sufficiently small values of y,
away from the trajectory defined by (p,u) in the space-time coordinate system
scaled to τ.

The value of α is constant (and strictly positive) on any given line issued from
the point u and not parallel to p. It is an increasing function of the angle of this line
with the trajectory (p, u) (and it tends to zero when this angle tends to zero). The
maximal value y0 of γ for which the fall-off factor e~aγτ is obtained on a given line
issued from u, is proportional to the distance to u. The proportionality coefficient
is again an increasing function of the angle of this line with the trajectory (p, u) and
is strictly positive when this angle is non-zero.

iii) More generally, the fall-off properties of joint probability densities with
respect to both momentum-space and space-time variables33 are extrapolated by
assumption from those of joint density functions [23].

Being given an (on-mass-shell) four-momentum p', these functions remain
constant when the point x in space-time varies along any given line parallel to pf.
In other words, they are functions of space-time trajectories.

32 ΐn the relativistic quantum case, space-time probability densities make sense only at the
macroscopic level. This level is obtained in the τ-^oo limit: any arbitrarily small region in the space-
time coordinate system scaled to τ becomes macroscopic in actual space-time in this limit. For a more
detailed analysis, see [5,6]
33 Joint probability densities make sense only, in the relativistic quantum case, at the macroscopic
space-time level and over regions large compared to ft3. These conditions are again satisfied for large τ :
in particular, any arbitrarily small region centered around a given momentum and a given point in
space, at time zero, in the space-time coordinate system scaled to τ, becomes large compared to /z3 in
the τ->co limit
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For a trajectory that is parallel to an (on-mass-shell) four-momentum p' and
passes through a point w' = (0,u') in the space-time coordinate scaled to τ, the
exponential fall-off factor obtained when p' Φ p or u' φ u is approximately a product
of two terms. A factor e~ayτ is obtained in a way similar to that of Paragraph i) if p'
is different from p. A further factor e~*'yτ is obtained for sufficiently small values of
y if u'φii. Here α'>0 is a given constant and the maximal value y0 of γ is
proportional to the distance of u' to u, with a certain strictly positive pro-
portionality coefficient.

Remark. The properties mentioned in Paragraphs i)-iii) can be likewise extended
to integrals of the previous functions over appropriate regions (see [5]).

5.2. Semi-Classical Model and Macro-Causality Condition

Being given a set of initial and final displaced wave functions of the form (42), the
transition probability of the process is not expected to fall-off exponentially with τ
if there exists a diagram Q>b (see Sect. 4.2, Definition 6) whose external trajectories
are the trajectories (pk, uk) in the space-time coordinate system scaled to τ : energy-
momentum can then be transferred from the initial to the final particles, via stable
physical particles, in accordance with classical ideas. (The bubble b is always here a
plus bubble.)

Macro-causality gives information when such a diagram does not exist. Before
going on, we recall on the other hand that, for reasons explained elsewhere [24],
the connected diagrams are the only ones relevant in the study of the exponential
fall-off properties of the connected amplitudes.

It is assumed that the type of exponential fall-off properties obtained is that
suggested by semi-classical arguments. More precisely, we shall consider, in the
space-time coordinate system scaled to τ, diagrams of the form (@b)ε (see
Definition 6 in Sect. 4.2) whose external trajectories need not coincide with the
trajectories (pk, uk). We shall below denote by p!

k the on-mass-shell four-momentum
of line k in such a diagram and by uk = (0, uk) the point that lies on this line at time
zero.

The diagrams (@b)ε are similar to the diagrams ̂  except that there are on the
one hand possible violations of the locality conditions at each vertex (or of
angular-momentum conservation if the vertex is at infinity) and that there are on
the other hand possibly two different lines in (&>b)ε for each internal line of Gb. The
introduction in the model of this latter possibility is due to the fact that, just as the
external particles, an internal particle cannot in the quantum case be strictly
localized, even asymptotically, along a given classical trajectory. The con-
sideration of all possible trajectories for an internal particle must be replaced in the
quantum case by the consideration of all possible gaussian-type wave functions of
a form similar to (42) (see below) with mean trajectories (K, w) corresponding to all
possible classical trajectories. This interpretation is linked with the fact34 that a
sum over all possible intermediate states of a particle is an integral, over all
possible classical trajectories, of projectors on corresponding gaussian-type wave
functions:

34 Note that this fact is essentially that used in the derivation of Eq. (23) in Sect. 3
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where

; v0~yτ.

With any diagram (@b)ε is then associated an exponential fall-off which is the
product of the following factors :

i) If the incoming and outgoing trajectories at a given vertex do not pass
through this vertex, a factor of the form e~βτ, β>0, is obtained. The value of β is
assumed to be proportional to the violation of locality, which is characterized (in
the space-time coordinate system scaled to τ) by the sum of the distances of this
vertex to the incoming and outgoing trajectories at that vertex.

The proportionality coefficient depends physically on the various mechanisms
that may give rise to the non-locality effect (unstable particles, etc. ...). It will be
assumed that it has a fixed, strictly positive, lower bound.

In the case of a vertex at infinity, it will be similarly assumed that β is
proportional to the violation of angular-momentum conservation, i.e. to the

quantity introduced in Definition 6.
ίeJv ieJv

ii) If the trajectory of an external line k is different from (pk, uk), an exponential
fall-off factor arises in the way described in Subsect. 1.

If PiΦPfcj ^ can be chosen to be that associated with the fall-off of momentum-
space probabilities. If the approximate interaction region that involves line k as an
incoming, or outgoing, line does not intersect the trajectory (pk,wk), it can be
chosen to be that associated with the fall-off of space-time probabilities in that
region (in the τ-^oo limit). More generally, it is the factor associated with the fall-
off properties of the density functions away from the trajectory (pk, uk).

iii) If the trajectories of the two internal lines associated in (&tb)ε with a
common internal line of Gb do not coincide, a similar exponential fall-off factor is
considered, in accordance with the previous analysis, the pairs of points pk, \k and
pfc, vk in the case of an external line being here replaced by the pairs of points (pz)l5

(v^ and (P|)2, (vj)2 corresponding to these two lines.
The rate of exponential fall-off of the connected amplitude between initial and

final wave functions of the form (42) is then determined, in the model, as the
minimal one obtained by considering all possible diagrams.

We first note that, if there exists a sequence of diagrams (@b)ε whose external
trajectories coincide, in the ε->0 limit, with the trajectories (pk,Mk), the rates of
exponential fall-off that arise from the above analysis are arbitrarily small, if ε is
chosen sufficiently small. Hence exponential fall-off cannot be expected in these
situations. According to Definition 8 of Sect. 4.2, they correspond to the cases
when {uje^ίpj).

If on the other hand {uk}^b({pk}), then an exponential fall-off factor e~α y τ is
obtained (see below) for some α>0 and for sufficiently small values of
7(0 ̂  γ ̂  y0> 7o > 0). It is directly at the origin of the essential support property of Fb

stated in Sect. 4.3, in view of the definition of the essential support (see details in
[5]).

The above result can be obtained for instance as follows. When
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violations of the locality conditions at each vertex (or of angular-momentum
conservation) is larger then ε0, or one of the quantities |p^ — pk|, \uf

k — uk or Kp^
""(PzWϊ i(v/)ι "Wil is larger than ε0. In the second case, an exponential fall-off
factor e~ayτ is obtained for sufficiently small values of y : see Paragraphs ii) and iii)
of the present subsection. Moreover, it is easily seen, in view of the discussion of
Subsect. 1, that α>0 and the maximal value y'0>0 of y are independent of the
diagram considered. In the first case, an exponential fall-off factor of the form e~βτ,
β>0, is obtained [see Paragraph i) of the present subsection], and β is again
independent of the diagram considered (it depends only on ε0). This fall-off factor
implies a fall-off factor of the form e~ayτ for all 7 satisfying 0 g y gj /ό = β/α.

The minimal fall-off factor obtained for any diagram (&b)ε is therefore β~α y τ

when 0^y^y 0 = Min(y;

0, y'ό) and the announced result is proved. Q.E.D.

Remark. If the S matrix is replaced by the Feynman or phase-space integral
associated with a given graph Gb, the type of exponential fall-off properties of the
corresponding amplitudes can probably be determined similarly, but without any
need of introducing violations of the locality conditions (or of angular-momentum
conservation) at each vertex. The latter are introduced for the actual physical
transition amplitudes. They correspond to complex singularities of the S matrix
different from those associated with Feynman or phase-space integrals (poles
corresponding to unstable particles, ...). In the case of phase-space integrals, the
time ordering conditions of the diagrams (£&b)ε should on the other hand be
removed.

5.3. Refined Macro-Causality

A detailed analysis of the way the fall-off factor e~Λyτ is obtained when
{uk}^b({pk}) in Subsect. 2 shows that α depends only on the distance of (pj to the
nearest point {pk} such that {uk}e^b({pk}), while y0 depends on the distance of
{Pfcjuj to tne nearest point {pk,uk} such that {uk}e^6({pk}).

If we consider an open cone # (with apex at the origin) of points {uj that all lie
outside ^({pJJ) at all points {pk} of a neighbourhood ,λf of a point {pk}, then there
is more precisely a common α > 0 for all points of any given neighbourhood Jf' of
{p J whose closure is contained in Jf and all points {u J in #. The maximal value
of y may depend on the point {uk} but is at least equal to y0 |{uk}; d^\ or
y0|{uk}| x ({u^JT^X where y0 >0 is a constant independent of {uj, |{uk} d^\ is the
distance of {uk} to 3 ,̂ and ({uj d<&) is the angle of the direction of {uk} with dΉ.

To obtain these results, one may here divide, for each point {uj in #, the
diagrams (£#b)ε into two sub-classes that include respectively the diagrams such
that the sum of the quantities associated with the violations of locality and
angular-momentum conservation is less than, or larger than, a given percentage (to
be determined) of |{uk} d^\. These two classes are then treated as in the argument
given at the end of Subsect. 2. To complete the proof, one must show here that in any
diagram of the first class at least one of the quantities |pk — pk|, V{pJJ e Jf\ or |uk — uk|,
or Kp^ — (Pi)2l, or KV^ — (vz)2| is larger than a certain percentage of |{uk};δ#|.

The way these results arise is easily seen on the two simple examples described
below. The connection between these informations and the behaviour of the
maximal value of y in the regularity property R of Sect. 3 is established by noting



u = 0 Structure Theorem 87

that the analogues of the variables v0 and (u,v) of Sect. 3 are in the physical
application the variables γτ and {τuj respectively: see the expression of the
connected amplitude between initial and final displaced wave functions of the form
(42).

The examples that we shall consider occur in the study of the bubble
ΞΞΞ0ΞΞΞ, in a theory with only one mass, when one wishes to determine the
essential support of the bubble diagram function ^©ΞQΞ according to the
method of Sect. 3.2. We recall that all points are u = 0 points for this bubble
diagram function (see Sect. 4.2).

We shall denote, as in Subsect. 2, by 1,2,3 and 4,5,6 the initial and final particles
of the bubble ==@=== and by p1? ...,p6, and u x, ...,u6 corresponding momenta
and space displacements. In the two cases that we shall consider, p l 5 ...,p6 vary in
(sufficiently small) neighbourhoods of points P1? ...,P6 such that P ΦP;, 1,7 = 1,2,3
and P5=P6, and u 1 ;...,u 4 vary in (sufficiently small) neighbourhoods of given
points U15 ...,U4. On the other hand, u5 and u6 are chosen sufficiently large and
may tend to infinity. The analysis extends easily to the cone *$ of lines issued from
the origin and passing through these points {uk}.

First Case. We first consider the case when the initial trajectories defined by the
points (Pk,Uk), k— 1,2,3 do not meet.

Then, the trajectories defined by the points pk, uk, k = 1, ...,4 still do not meet
when pk and uk lie in sufficiently small neighbourhoods of Pk and Uk respectively.
Because of this fact, it is easily seen that, independently of the (sufficiently large)
values of u5 and u6, {uk}k=1 6φ^b({^k}). Moreover, a common fall-off factor
e~αyτ, α>0, is obtained for O r g y r g y 0 , y0>0, where α and y0 are given constants
independent of u5, u6, as a consequence of the informations of Subsect. 1 and 2
applied to the trajectories 1,2,3,4.

This conclusion holds in particular if the region over which u5 and uό vary
includes sets of points of the form u5 =£>U5, u6 = ρ\J6, where U5 and U6 are given
points such that U 6= — U5 and ρ is sufficiently large. In this case, the direction
determined by the point (uk}k= ̂  6 tends, when ρ-> oo, to the direction determined
by the point (0,0,0,0,U5,U6) which does belong to #ft({PJ):

In the application to the study of the essential support of ΞφΞQE, the points
pk, %, k = 4,5,6 are sets of possible mementa and space displacements of the
intermediate particles, over which there is integration. The refined macro-causality
condition in this case is relevant to solve the w = 0 problem when the initial
momenta and displacements are Pk, Uk, k= 1,2,3 independently of the given
momenta and space displacements of the final particles as we have seen, a
uniform exponential fall-off factor e~ay\ 0^y^y 0, can in fact be extracted, for all
sufficiently large values of u5 and u6, from the generalized Fourier transform F'
associated with the bubble ΞΞΞ(+)EΞΞ .

Second Case. We next consider the case when the trajectories (Pk, Uk\ k~ 1, ...,4
meet at the origin (Uk = 0,/c = l, ...,4) and when u5, u6 vary in a region such that
|u5-hu6 |Ξ>;(5, where δ is a strictly positive given number; |u54-u6 | is allowed to be
arbitrarily close to δ even when u5 and uό tend to infinity.

The condition |u 5-fu 6 |^<5>0 does not allow angular-momentum conser-
vation to be satisfied and hence it is again easily seen that {uk}k = 1 > t 6<^({pfc}),
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although the direction determined by the point {uj tends to a direction of
^b({Pk}) when u5 and u6 tend to infinity in a way such that |u5 +u6| remains close
to δ. This direction is again that determined by the point (0,0,0 All 5,U6 = — U5) if
for instance u5=ρU5, u 6= — ρU5+δ, |δ| = <5, ρ— >oo. Moreover, a common expo-
nential fall-off factor e~Άγ\ α>0, is again obtained for Ogy:gy 0, y0>0, where α
and γ0 are constants independent of u5 and u6. To see this, one applies again the
rules given in Subsect. 2.

In the application to the study of the essential support of ΞdφΞΐQE , the
refined macro-causality condition in this second case is relevant in the solution of
the u = Q problem when the initial trajectories meet at the origin, the final
trajectories meet at a point V, and when there exist moreover intermediate on-
mass-shell four-momenta P4, P5, P6 such that P5=P6 and V = λP4ί λ>0: see Fig.
1. (Other cases are treated more easily.)

In fact, let δ be the point in space that lies at time zero on the line passing
through Fand parallel to P5=P6 and let us consider points u4, u5, u6 such that u4

is close to zero and u 5 +u 6 is close to 2δ. We note that δφO in view of the
assumption P ΦP;, ij= 1,2,3 (it implies that P4ΦP5).

SPACE

3 * T i m e

Fig. 1

Then the configuration of incoming and outgoing trajectories 4,5,6 and I',2',3'
(where Γ,2',3' label here the final particles) may correspond to a point in the
essential support of the bubble ===Qp= ? and hence no exponential fall-off factor
can be extracted from the generalized Fourier transform F" associated with it. But
in these situations a common exponential fall-off factor e~αyτ, 0^y^y0, can be
extracted as we have seen from the generalized Fourier transform F' associated
with the bubble ΞΞΞφEΞΞ .

We have in this subsection considered examples in which the point (P1? ...,P6)
was an Jί^ point. On the other hand, one may consider other situations in which
{PJ is not an JίQ point and is, for instance, a simple point of a -fα-Landau surface
LQ(G). In this case the scattering function of the process is known from macro-
causality to be locally the plus zε boundary value of an analytic function.

In such a case, refined macro-causality still gives informations and follows
from the same physical ideas. Let Gb be for instance the graph
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and let us start from a corresponding diagram @b of the form shown in Fig. 2a, in
which the trajectories 1,2,4 and 3,5,6 meet respectively at the origin and at a point
V, with V = λK, λ > 0, K = P! -f P2 — P4. A typical situation in which refined macro-
causality gives information is obtained by displacing the trajectories 1,2,4 in a way
such that they do not meet (Fig. 2b) and by letting λ tend to infinity.

The situation is then analogous to that of the first example described above. In
fact, let U15 U2, U4 be the given space displacements of the trajectories 1,2,4. If u l 5

u2, u4 lie in sufficiently small neighbourhood of U1? U2, U4, and if p^, ...,p6 lie in
sufficiently small neighbourhoods of P1?...,P6, then {ufc}fc = 1 ̂ ..^^(ίP/J) even

though Λ-+OO, but the direction of {uj tends in this limit to the causal direction in
^({Pfc}) determined by the configuration of external trajectories of the diagram Q)b

of Fig. 2a.

SPACE SPACE

α)

Fig. 2

The refined macrocausality condition then follows again physically from the
fact that the displaced trajectories 1, 2, 4 do not meet.

Although this is not yet fully established, there is probably a link between the
refined macrocausality condition in such situations and the "no sprout" property
which is introduced in [8] and is a slight refinement of the plus is rule: see Remark
i) at the end of Sect. 1.

We conclude this section by a brief presentation and discussion of the
alternative semi-classical model proposed in [15]. In contrast to the model
presented in Subsect. 2, each internal line of a graph Gb is always represented in
this model by a unique internal line in the corresponding space-time diagrams, and
vertices at infinity are not a priori introduced. On the other hand, besides the
violations of locality at each vertex, violations of the mass-shell conditions for the
internal and external lines are introduced. The set #b({pfc}) obtained by consider-
ing sequences of modified diagrams of this type is not a priori identical to the set
^b({pj) defined in Sect. 4.2. On the other hand, it is contained in the set #b({pfc}), if
{pj is not a second kind u = 0 point35.

Most of the configurations of external trajectories of diagrams 2b, including
possibly vertices at infinity, can be obtained as limits of configurations of external

35 We recall that the sets #b({pfc}) and ^5({pk}) of Sect. 4.2 coincide if {pj is not a second kind w =
point, and that second kind u = 0 points of b are exceptional
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trajectories of the above modified diagrams, as easily seen on simple examples36,
the angular-momentum conservation law being then derived as a consequence of
the properties of the model (see [15].

In connection with the present work, the refined macrocausalίty condition,
in particular at ,Jt§ points, can still be derived in such a model, if the rates of
exponential fall-off associated with a mass-shell violation are assumed to be
proportional to (pi — m^)dk or (pi — m%)dl9 where pk, resp. pb is the (off-shell) four-
momentum of the external line fe, or of the internal line /, and dk, resp. dz, is the
distance of the vertex where line k is incoming or outgoing to the region of
intersection of this line with some fixed temporal region (for instance the time zero
hyperplane), resp. is the distance between the vertices where line / is respectively
outgoing and incoming. These conditions are suggested by the results of [15,17]
on Feynman and phase-space integrals.

While this model presents certain interesting features, one has, however, to
consider, in accordance with the discussion of [17], complex (and not only real)
values of the four-momenta in the course of the limiting procedures as also
possibly complex values of the Landau parameters ott.

Remark. In some situations, the set ̂ ({pj) obtained seems to be strictly contained
in the set ̂ ({pj) [25]. Points of #b({pk}) that do not belong to I b({p}) would
therefore be outside the essential support of Fb at {pj. This is not impossible, but
would be surprizing.

Acknowledgements. I am pleased to acknowledge interesting correspondence and discussions with
Professors H. P. Stapp, M. Kashiwara, and T. Kawaϊ.

Appendix 1. Comparison Between Different Definitions
of Bubble Diagram Functions

In this appendix, we check that the definition of bubble diagram functions given in
[7] in the framework of distribution theory away from u = 0 points, coincides with
that given here in Sects. 2 and 3 when the bubbles are kernels of bounded
operators.

We first consider a product A = A"A' of two linear bounded operators that
satisfy the properties stated at the beginning of Sect. 3.1. The distribution a
associated with A is then well defined by its action on Schwartz test functions of a
product form according to Eq. (16). We then wish to show that α(χ) is equivalently
defined by the procedures of Sect. 2b of [7] on products and integrals of
distributions.

It is sufficient to consider functions φ and ψ with sufficiently small supports.
(Otherwise partitions of unity can be used.) On the other hand, by virtue of the
assumption on the support oϊ A'\φy, the distribution a vanishes outside a certain
compact set K in the space of the variables ί, when x lies in the support of φ. Let h

36 Some vertices of these modified diagrams tend to infinity in the limit, all four-momenta involved at
these vertices tending to be colinear. (These four-momenta are possibly off-shell, but tend to on-shell
values)



u = 0 Structure Theorem 91

be an infinitely differentiable function of ί, with compact support, equal to one in
K, and let h(t)= Σ^ W be a decomposition of h into a (finite) sum of infinitely

i

differentiable functions hί with sufficiently small supports. Then, according to the
procedures described in [7], a(χ) is defined, under certain conditions on the
essential supports of a" and a' 37, by

w' , (43)

where ά'χι ι and a"χ2 . are, respectively, the Fourier transforms of α'(x, ί)χ1 .(x,t,y)
and a"(t,y)χ2 ti(x,t,y) in relation to the variables x,y,t, and χM, χ2 - are infinitely
differentiable functions with sufficiently small support, equal to one when
φ(x)ψ(y)hi(t) φ 0. Finally, φ, ψ, hi are the respective Fourier transforms of φ, ψ, ht.
(The dual variables of the variables x,y,t are denoted, respectively, by w,t;,w.)

The definition (43) does not depend on the choice of χ1 . and χ2 - with the
above properties (see [4, 7]). By choosing functions χM and χ2J of a product form :

it is easily seen that Eq. (43) can alternatively be written in the form

a(ti = Σ ί ai{ 2) (Φ, w + w')α^2) (w', ψ)h t( w)dwdw' , (44)

where α'(2)(φ,w) and α^2

2>(w,ι/;) are the Fourier transforms in relation to t of
fl'OMki.iW and a"(t>ψ)%(2?i(t)> respectively; a'(φ,t) and a"(t,ψ) are the distributions
in the variable ί obtained by taking the partial action of a' on φ, and of a" on ιp,
respectively.

Since a and α" are the respective kernels of A' and A", α'(φ, ί) and α"(f, ψ) are
square integrable functions of t. For instance

α/(φ,ί) = (^ΊΦ»(ί) (45)

since its action on any Schwartz test function r of t is (r\A/\φy = $(Af\φy)(t)r(t)dt.
Hence, it follows from Eq. (44) and standard results on Fourier transforms of

products of square integrable functions that

a(χ)=Σ$a'(φ,t)a"(t,ψ)hί(t)dt
i

= \a'(φ,i)a"(t,\p)dt (46)

a result which clearly coincides [see Eq. (45)] with Eq. (16). Q.E.D.

37 These conditions ensure absolute convergence properties of the integrals of Eq. (43) (as ordinary
integrals of functions) for general distributions a', a". We shall see below that the Definition (43)
coincides with (16) and hence defines a(χ) independently of these conditions, when a' and a" are kernels
of bounded operators
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In order to extend this result to general bubble diagram functions, we first
indicate the following results which can be checked in the framework of Sect. 2b of
[7] (and are as a matter of fact, partly needed to complete the proofs given there) :

i) The product of r distributions (r > 2) is well defined under the conditions
stated in Theorem 4' of [7]. While this is directly seen by induction from the
previous result of Theorem 4 on the product of two distributions, it can moreover
be checked38 that the definition is independent of the order in which the product is
made, and that one can equivalently first make partial products, in any order, of
subgroups of distributions.

ii) The following property holds on integrals of distributions that satisfy
adequate support properties :

ί L/i(χ, t', 0/2(ί, yWdf = ί EίΛ(χ, f, ί)A']/2(t, y)dt .

We then first consider a product of two operators

The product of the distributions associated with the operators S^1^ involved in A'
(or A") is clearly the distribution a' associated with Af39 (or the distribution a"
associated with A"). Hence, the previous analysis can be directly applied, as a
consequence of Remark i) above.

In the case of a product of more than two operators (A=Aq...A2Aί\ the result
follows by induction on q, and by applying on the one hand Remark i) and on the
other hand Remark ii) with fί(x,t\t) = a1[x,t(1)~]...aq_ί[t(q_2)9t],

'

Appendix 2. Essential Support Theory
and Bounded Operators

In this appendix, we present some simple results, established in the framework of
essential support theory on kernels of bounded operators. Lemmas 2 and 3 are
directly used in Sect. 3.1. Lemma 1 is an intermediate step in the proof of Lemma 2.
It may have other applications and is therefore presented separately.

The mathematical conjecture used in the proof of Theorem 4 in Sect. 3.2 is
described at the end. It is based on the one hand on Lemma 3, and on the other
hand on Lemma 4, which is an improved version of Lemma 2.

The notations are the same as in Sect. 3.

Lemma 1. Let f be a square integrable function of a real variable x = (x1 ?..., xn) and

let F be its generalized Fourier transform:

38 To see this, one may for instance define the product by multiple convolutions that generalize Eq.
(5) of [7] whenr>2
39 This is a straightforward consequence of the fact that these distributions do not depend on the
same variables [see Eq. (13): for each K, plκ and qJκ are different sets of on-mass-shell four-momenta]
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// V = (Vί, ... , Fn)eESx(/), ί/zerc ί/zere exists an open cone i^ with its apex at the
origin in R"v) containing V, a>0, y0>0, such that:

\F(v9vQ9X)\<d(v,v0)e-*v° (47)

in the region vei^, 0^ι;0^y0|ι;|, where d is, for any z^^O, a square integrable
function of v whose norm [_§d2(v9v0)dυ]il2 is bounded by a constant independent of
v0.

Proof. By definition of the essential support, the condition VφESx(f) implies
bounds of the form (47), where d is replaced by a polynomial ̂  of v, v0 (times an
inverse power of VQ). However, it is also known [4] that the generalized Fourier
transform Fχ of χf at X, where χ is a C00 function with a sufficiently small compact
support, equal for instance to one in a neighbourhood of X, satisfies analogous
bounds in which d is replaced by a rapid fall-off factor CN/(l + \v\)N, VJV^O, where
CN is independent of v0 .

On the other hand, the generalized Fourier transform F(ί_χ) of (1 — χ)f is
trivially bounded in the whole region VQ ^0 by

|F(1 _>, v0 ;X)\ < e-v°«x 1 -*>|f /(*X1 - χ)(x)

where δ(X, 1 — χ) >0 is the distance oίX to the support of 1 — χ. The integral on the
right-hand side of Eq. (48) is the Fourier transform with respect to x of a function
that is square integrable for any given u 0 ΞgO and whose norm is bounded by a
constant independent of v0 .

Since F = Fχ + F(l_χ), Lemma 1 is therefore proved. Q.E.D.

Lemma 2. Let a(x,y) [x = (x l9...,xm), y = (yι,»' >ynj] be the kernel of a linear
bounded operator A and let F be its generalized Fourier transform :

F(u,v;v0,X,Y)=$a(x,y)e-iu χ-ίv y-Vo[(χ-χ}2 + (y-γ]2]xdxdy. (49)

// (I/, V)φESx γ(a\ then there exists an open cone i^ with its apex at the origin in
IR^ x IR^ containing (ί/, V\ a neighbourhood ^ of X, Y in ]R£} x ff^^, α > 0, y0 > 0
such that:

\F(u, v v0,X\ T )| < φ, v, VoJζ', Y')e ~ av° (50)

in the region (X\ F)eyΓ(X, 7), (M,ϋ)eτr(l/,7), 0<t;0^y0(w2 + ί;2)1/2; d is, for any
given u, v0,X

f, Y' a square integrable function of v whose norm is bounded by Cv^2

where C and q are constants independent of u, υ0, X', Y' :

[_\d2(u,v,υ^X\ Y')dv-]ίl2<Cv-ql2. (51)

// a is replaced by a(x,y)g(x\ where g is a C°° function of x with compact
support, equal to one in some neighbourhood of X, then the same result holds with
moreover q = 0 in the bounds (51).

Proof. If χ and χ' are C°° functions of x and y, respectively, with sufficiently small
supports, equal to one in respective neighbourhoods of X, 7, then it is known (as in
the proof of Lemma 1 above) that the generalized Fourier transform at X, Y of
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a(x,y)χ(x)χ'(y) satisfies bounds of the form (50), in which d is as a matter of fact
replaced by a rapid fall-off factor CN/(l + \u\ + \v\)N (CN is independent of u,v,υ0).

The fact that one can also obtain uniform bounds of the same type for all X\
Y' in a sufficiently small neighbourhood of X, Y is analogous to Remark 2 of [7]
(p. 41) and is proved by methods similar to those of [4].

Finally, the treatment of the generalized Fourier transforms of

α(x, y)χ(x) x (1 - χ')(y) , α(x, y) x (1 - χ)(x) x χ'(y)9

a ( x , y ) x ( l - χ ) ( x ) x ( l - χ f ) ( y ) ,

presents no difficulty and is analogous to that given at the end of the proof of
Lemma 1. It is sufficient to notice that the integral

J α(x, y)e ~ iux ~ Vo(x ~ X}2χ(x)dx ,

or

is a square integrable function of y whose norm is bounded by
x \\e~vo(x"X}2χ(x)\\ or

The same analysis provides the announced results when α is replaced by
a(x,y)g(x). Q.E.D.

The following trivial lemma is presented for completeness, in view of the
applications to Sect. 3. The proof follows from an argument analogous to that
given at the end of the proof of Lemma 2.

Lemma 3. Let a and g be defined as in Lemma 2. Then there exists a function d of
v,u,v0 which is square integrable with respect to v and whose norm satisfies the
properties described in Lemma 2, such that:

\F(u, v, v0,X
r, Y')| < φ, υ, v0,X

f, T) (52)

in the region v0^Q, and at all pointsX', Y',u,v.

Results analogous to Lemmas 2 and 3 clearly holds also when the roles of u
and v are exchanged.

The following improved version of Lemma 2 holds and can be proved by the
same methods:

Lemma 4. Let a and g be defined as in Lemma 2, let F be the generalized Fourier
transform of a(x,y)g(x), and let us assume it satisfies the bounds:

\F(u, v v0,X
f, r)| < &(μ, υ, v0)e ~ΛVQ, α > 0 (53)

in the region u,ve%, (Xf, Yf)eΛ^(X, Y\ Q^v0^γ0(u^v)(u2+ v2)112 where α>0 is a
given constant, Jf is a neighbourhood of a point (X, Y\ ^ is an open cone with apex
at the origin in R™u} x R"υ) and y0 is continuous function of the direction u^v which has
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a strictly positive lower bound over any closed subset of directions contained in ̂ 40.

Finally, & is a given polynomial of the variables u, v, v0.

Then, being given any open cone %>' with apex at the origin whose closure is

contained in <& (apart from the origin), any α'<α, any neighbourhood jV' of (X, Y)

whose closure is contained in Jf, ana any continuous function y'0 such that

MinUfVe<gf[y0(u^v) — y'0(u^v)']>0, there exists a function d of u, v, v0,X', Y', which is

square integrable with respect to v and whose norm is independent of u, u0, X', Y',

such that

\F(u9v,v0,X'9 Yf)\<d(u,v,v0,X\ Y')e~a'v° (54)

in the region (X\ Yf)e^',(u,v)E^f, 0^v0^yf

0(u^v)(u2 + v2)112.

We next state :

Conjecture. Let the assumptions of Lemma 4 be satisfied. Then being given any

α' <α, any Λr' whose closure is contained in ./K" and any continuous function y'0 ofu^v

such 70 — y'0 has a strictly positive lower bound over any closed subset of directions

contained in Ή, there exists a function d with the same properties as in Lemma 4, such

that the bounds (54) are satisfied in the region (X\Yf)εJ^\ (U,V)E(£, Orgι;0

Compared to Lemma 4, this conjecture asserts that the function d of Lemma 4

can be chosen independent of '̂, i.e. uniform when one comes close to the

boundary d%> of Ή. The methods used so far in the proof of Lemma 4 are not

sufficient to ensure this uniformity property. It is, however, suggested by Lemma 4

on the one hand, and by the fact that F always satisfies on the other hand the

uniform bounds of Lemma 3, at all points u,v,v0^Q,Xr, Y'.
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