The Simple Relation Between Certain Dynamical Systems

A. M. Perelomov
Institute of Theoretical and Experimental Physics, SU-117259 Moscow, USSR

Abstract

A simple relation between certain dynamical systems is established.

Consider two classical dynamical systems characterized by the Hamiltonians

$$
\begin{equation*}
H=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+U(q), \quad q=\left(q_{1}, \ldots, q_{n}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{H}=\frac{1}{2} \sum_{j=1}^{n}\left(p_{j}^{2}+\omega^{2}(t) q_{j}^{2}\right)+\varkappa(t) U(q) \tag{2}
\end{equation*}
$$

where the potential $U(q)$ is a homogeneous function of degree k

$$
\begin{equation*}
U(\lambda q)=\lambda^{k} U(q) . \tag{3}
\end{equation*}
$$

Let $q(t)$ and $\tilde{q}(t)$ be the solutions of equations of motion for the corresponding systems

$$
\begin{align*}
& \ddot{q}_{j}=F_{j}(q), \quad F_{j}(q)=-\partial U / \partial q_{j}, \tag{4}\\
& \ddot{\tilde{q}}_{j}=\chi(t) F_{j}(\tilde{q})-\omega^{2}(t) \tilde{q}_{j} . \tag{5}
\end{align*}
$$

Let $\alpha_{1}(t)$ and $\alpha_{2}(t)$ be two independent solutions of equation

$$
\begin{equation*}
\ddot{\alpha}+\omega^{2}(t) \alpha=0 \tag{6}
\end{equation*}
$$

and the function $\beta(t)$ is defined by the formula

$$
\begin{equation*}
\beta(t)=c \alpha_{2}(t) / \alpha_{1}(t)=c \int \alpha_{1}^{-2}\left(t^{\prime}\right) d t^{\prime} \tag{7}
\end{equation*}
$$

Suppose also that the function $\chi(t)$ is of the form

$$
\begin{equation*}
\chi(t)=c^{2} \alpha_{1}^{-(k+2)}(t) . \tag{8}
\end{equation*}
$$

Theorem. If $q(t)$ is the solution of Eq. (4), then

$$
\begin{equation*}
\tilde{q}(t)=\alpha_{1}(t) q(\beta(t)) \tag{9}
\end{equation*}
$$

is the solution of Eq. (5).
Proof. Substitute $\tilde{q}(t)$ from (9) into (5) and take into account the relations (4) and (6)-(8).

Thus, the solution of a more complicated system (5) is reduced to that of a more simple system (4).

From this theorem one can get a number of useful corollaries. Let us give some of them.

Corollary 1. If $U(q)$ is a homogeneous function of degree $k=-2$, then setting $c=1$ we have $\chi(t) \equiv 1$ and consequently $\tilde{q}(t)=\alpha_{1}(t) q(\beta(t))$ is the solution of the system (5) with

$$
\begin{equation*}
\tilde{H}=\frac{1}{2} \sum_{j=1}^{n}\left(p_{j}^{2}+\omega^{2} q_{j}^{2}\right)+U(q) \tag{10}
\end{equation*}
$$

Corollary 2. Let $U(q)$ be a homogeneous function of degree $k=-2$ with H of the form (10) and $\omega=\mathrm{const}$. It is known that in a number of cases such a system is completely integrable: $n=3, \omega=0$ [1]; $n=4$ [2]; $n=5$ [3]; arbitrary $n, \omega=0$ [4] and we even know explicitely the solution of the system [5]. Namely, for $U(q)$ of the form

$$
\begin{equation*}
U(q)=\sum_{j<k}\left(q_{j}-q_{k}\right)^{-2} \tag{11}
\end{equation*}
$$

$q_{j}(t)$ are the eigenvalues of the matrix

$$
\begin{equation*}
\cos \omega t \cdot q(0)+\frac{1}{\omega} \sin \omega t \cdot L(0) \tag{12}
\end{equation*}
$$

where

$$
q=\operatorname{diag}\left(q_{1}, \ldots, q_{n}\right)
$$

L is the matrix introduced by Moser [4]

$$
\begin{equation*}
L_{j k}=\delta_{j k}+i\left(1-\delta_{j k}\right)\left(q_{j}-q_{k}\right)^{-1} . \tag{13}
\end{equation*}
$$

Now we have for the system with H of the form (10) and $U(q)$ of the form (11): $q_{j}(t)$ are the eigenvalues of the matrix

$$
\begin{equation*}
\alpha_{1}(t) q(0)+\alpha_{2}(t) L(0) \tag{14}
\end{equation*}
$$

where $\alpha_{1}(t)$ and $\alpha_{2}(t)$ are the solutions of Eq. (6) satisfying the initial conditions

$$
\begin{equation*}
\alpha_{1}(0)=1, \alpha_{1}^{\prime}(0)=0 ; \alpha_{2}(0)=0, \alpha_{2}^{\prime}(0)=1 \tag{15}
\end{equation*}
$$

In particular, for the case of constant frequency the formula

$$
\begin{equation*}
\tilde{q}(t)=\cos \omega t q\left(\frac{1}{\omega} \operatorname{tg} \omega t\right) \tag{16}
\end{equation*}
$$

is valid.

Corollary 3. Let $\tilde{q}(t)=q^{0}$ be the equilibrium position of the system (10) with $\omega(t)=$ const. Then

$$
\begin{equation*}
q(t)=\sqrt{a^{2}+b^{2} t^{2}} \cdot q^{0}, b=\omega / a \tag{17}
\end{equation*}
$$

is the automodel solution of the system with H of the form (1).
Corollary 4. If $\alpha_{1}(t)=t, \alpha_{2}=1$ then $\omega=0$ and we get the solution of the system (5) with $\omega=0$ and $U(q)$ of the form

$$
\begin{equation*}
U(q, t)=b t^{-(k+2)} U_{k}(q), U_{k}(\lambda q)=\lambda^{k} U_{k}(q) \tag{18}
\end{equation*}
$$

in particular, at $k=-1$ we have the solution for a "Coulomb" case with

$$
\begin{equation*}
U(q, t)=b t^{-1} U_{-1}(q) . \tag{19}
\end{equation*}
$$

It would be interesting to find out whether there exists in the quantum case some analog to the relations obtained here.

References

1. Jacobi, C.: Problema trium corporum mutis attractionibus cubus distantiarum inverse proportionalibus recta linea se moventium. Gesammelte Werke, Bd. IV, S. 533. Berlin: 1886
2. Perelomov, A. M. : Soviet J. Theor. Math. Phys. 6, 263 (1971)
3. Gambardella, P.: J. Math. Phys. 16, 1172 (1975)
4. Moser, J. : Advan. Math. 16, 197 (1975)
5. Olshanetsky, M. A., Perelomov, A.M. : Lett. Nuovo Cimento 16, 333 (1976)

Communicated by J. Moser

Received June 19, 1978

