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Absence of Classical Lumps in Constrained Systems

R. Weder

Princeton University, Departments of Physics and Mathematics, Princeton, New Jersey 08540, USA

Abstract. We prove the absence of classical lumps for a large class of
constrained systems. In particular we prove that there is no classical lump in
the 0(7V) non linear σ-model in 2 dimensional space time.

I. Introduction

The possibility of describing particles by quantization of classical lumps1 (i.e. finite
energy classical solutions to the field equations in Minkowski space having the
property that they confine permanently some of their energy in a bounded region
of space) is presently the subject of a great deal of investigation. Methods to
quantize classical lumps have been extensively studied (see [1-3] for example).
Paradoxically, much less is known about the existence of classical lumps.

In this paper we prove that there are no classical lumps in a large class of
constrained systems. In particular we prove that there are no classical lumps in the
0(JV) non linear σ-model in 2 dimensional space-time. This example is particularly
interesting because it is believed to be closely related to the Yang-Mills equations
in 4 dimensional space-time, and because the 0(JV) (in the case JV = 3) non linear σ-
model in 2 dimensional space-time is believed to be equivalent to the Sine-Gordon
equation [4].

From the technical point of view our result has the interesting feature that the
system is not required to be scale invariant and the trace of the energy-momentum
tensor is not required to be equal to zero.

There is some discrepancy in the definition of classical lumps in the literature.
Here we consider a definition that contains most of the definitions found in the
literature as particular cases. We will always consider non-singular solutions.

Definition LI. A classical lump is a finite energy solution to the field equations in
Minkowski space having the property that there exist ε and .R>0 such that for

They are also called solitons, classical glueballs and extended objects in the literature
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some £ =

Θ00(ί,5c) is the energy density and D is the dimension of space-time.
The property that characterises classical lumps among finite-energy solutions

is the ability to permanently confine some amount of their energy in a bounded
region of space. Solutions describing a lump of energy traveling in space can be
made to fit our definition by a change of reference frame.

We consider a system described by N real fields φα(x), 1 ̂  a :g AT, in D space-
time dimensions. The fields are required to satisfy the constrains :

We denote φ = (φv ...,φN).
The Lagrangian density is given by

- lβgμvdμφadvφa - V(φ) - λb(x)Fb(φ).

The λb(x) are Lagrange multipliers. From the Euler-Lagrange equations we
derive the field equations and the constrains:

,-,,„ SV Λ dFh

It will be convenient to study the properties of the system under a scale
transformation φί(x)->λdφί(λx). Where d, a real number, is the scale dimension of
the fields. The current associated with scale transformations is given by

D — 2
With the choice d = - the free system is scale invariant, the scale current is

conserved and the scale charge, Q, is time independent :

We will not assume that the interacting system is scale invariant. Then the scale
charge will not, in general, be time independent. In fact it is even not well defined,
but when suitable modified and properly regularized it will be proven to be
uniformly bounded in time. The method of proof of our theorem will be to show
that this uniform bound is violated by a classical lump. Our theorem is

Theorem II. 1. Assume that

dV

^3 assume \φb\
p^CV(φlfor some p:2^p< -̂  ~ -, and C>0, l^a^



Absence of Classical Lumps in Constrained Systems

Then for every finite energy solution of the system

Fb(φ) = 0, l^

We have

lim inf ER(t) = 0 for every R>0.
ί-»oo

Then clearly the system has no classical lumps.
An interesting particular case is the 0(ΔΓ) non linear σ-model in 2 dimensional

space-time (see Example 1). Particular cases in 3 and 4 dimensional space-time
which are not scale invariant are discussed in Examples 3 and 4.

Several results in the absence of classical lumps exist in the literature. The
older, known as "Derrick's theorem" [5] (see also Hobart [6]) is an argument to
prove absence of time independent solutions (see [2] Appendix 2 for a generaliza-
tion to gauge fields). Notice that this argument can be applied only if the
appropriate boundary conditions are satisfied. For example these conditions are

violated by the Prasad-Sommerfield magnetic monopole and dyon [7, 8] the

4 π 1 . . .
boundary term is equal to -y (cosh 7 — sinhy)(A— 1) and it is for this reason that

the Prasad-Sommerfield solutions [7, 8] are not excluded by the Hobart-Derrick
argument. Other results have been obtained in the absence of time independent [2,
9], periodic [10], and non-radiant [11] solutions for the Yang-Mills equations. All
these results require very strong assumptions in the behavior of the would-be
solution at infinity.

In [12] we proved that the Yang-Mills equations have no classical lumps (in
the sense of Definition I.I) without any assumption on the behavior of the would-
be solution at infinity.

The method that / invented in this paper has been applied in [14] to prove that
after renormalization there are no instantons in four dimensional Euclidean space,
i.e. that there are no finite action solutions to the Euler-Lagrange equations
associated with the every effective lagrangian with an energy momentum tensor
having the usual form of the trace anomaly [15].

II. Constrained Systems

We consider a system described by N real fields φfl(x), I r g α f g i V , where
x = (x0,x l5 ...,xD_ 1) belongs to IRD, and φa(x) is a real valued function defined on
]RD. We will also use the notation x0 = ί, x = (x1, ...,xD_1). We denote

φ(x) = (φ1,... ,φN). (II.1)

The fields are required to satisfy the following constrains:

(U.2)



4 R. Weder

where the Fb are functions from 1RN to R The Lagrangian density of the system is
given by

^ = ̂ μvSμΦadvΦa ~ V(φ) - λbFb(φ) . (II.3)

The λb(x) are Lagrange multipliers, the indices μ, v go from zero to D — 1 and the
usual convention of summation over repeated indices is assumed. The metric
tensor gμv is diagonal and the diagonal components are (1, — 1, — 1, . . ., — 1). V(φ\

Sφ
the potential, is a function from IR^ to IR, and we denote dμφa= —A

OXμ

From the Euler-Lagrange equations we obtain the evolution equations and the
constrains.

(IL4)

where Π = δμδμ is the D'Alambertian operator.
The energy-momentum tensor

θμv = δμΦAΦa-9μ^ (Π.6)

is conserved

dμθ
μv=:Q (11.7)

and the energy integral, £, is independent of time

It will be convenient to study the properties of our system under scale
transformations. For this purpose we introduce the notion of scale invariance
(here we follow [13]). Let φa(x), 1 ̂ a^N, be a set of N real fields with Lagrangian
density:

We define a scale transformation as follows

where d, a real number, is the scale dimension of the fields. Under an infinitesimal
transformation we have

dv)φa(x). (11.11)

The change in the Lagrangian density is

a, (11.12)

« d£e

where ^=~~~~-.
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If

$(£
-D3> + πϊ(l+d)dxψa + d~-ψa==0 (11.13)

Vψa

we have

δ^ = dv(xv^) (11.14)

and the system is scale invariant. Using the Euler-Lagrange equations we obtain

δμJμ = 0, (11.15)

where

Jμ = πμ

a(d + xvdv)φa - xμ^ (II. 16)

is the conserved current associated with scale invariance.
The canonical energy-momentum tensor is defined as follows

(11.17)

The scale current can be written in terms of the energy-momentum tensor as
follows

Jμ = θμvxv + dπμφa. (11.18)

D — 2
We choose a— — - — , then

Jμ = Oμvxv+-πμφa. (11.19)

With this choice the free system is scale invariant and the free scale-charge, Q, is
time independent

Q = $J0(t,x}dD-1x. (11.20)

We will not assume that the interacting system is scale invariant. Then the scale
current will not, in general, be conserved. In fact we have

SμJ
μ = θμ

μ+ ̂  8μ(φaJ
μφa) . (11.21)

The scale charge will, in general, not be time independent. In fact it is even not well
defined, but when suitably modified and properly regularized it will be proven to
be uniformly bounded in time. The method of proof of our theorem is to show that
this uniform bound is violated by a classical lump.

We denote by ER(t) the energy inside a sphere of radius R at time ί, i.e.

ER(t)= I θoofex^x. (IL22)
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Our main result is

Theorem II. 1. Assume that F^O; (D-2)— -φ >2DV (£ - 2) — -̂ - 0,
a

2(D - 1)
^b^M. If D^3 assume \φf^CV(φ\ for some p:2^p< v ;, and C>0,

Then for every finite energy solution of the system

We have

lim inf ER(t) = 0 , for every R > 0 .
ί-»oo

Proof. It will be convenient to add counter-terms to the scale current. Instead of
considering Jμ (11.19) we will study the current

S» = JM _ (D _ 2)πϊφa - x0θ°» . (11.23)

The associated charge, Q, is defined as follows

fω(r)dr J S^x)^"^. (11.24)

ω(r) is a bounded function of compact support. The cut-off ω(r) is introduced in
order to make the charge Q(t) well defined. We have

j \n°aφa\dD~^,

P-2

^m-rη-^

p + 2 (D-l)(p-2) (11.25)

. £ 2p γ 2p ω(r) ^

Where A is the area of the unit sphere in JRD~1. This proves that the charge Q(t) is
uniformly bounded in time.

Now suppose that the thesis of the theorem is not true. Then there exist
constants ε, JR, ^0 such that

We will prove that this violates the uniform bound (11.25).
By conservation of the energy momentum tensor

f ,00

J = l

D — 2 dV
(11.26)
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Assume that support ω(r)c[R9 oo), then

dtQ

where

(p-2)(D-2)

ω(r)

(11.27)

(11.28)

p-2

We must choose a cut-off function ω(r) such that K > 0. Take

0 r<R

ω(r)=\- R^r^R,
r

,0 r>R^

Then if R1 is large enough K>0 and

Q(t}^Kt-Q(Q}> (11.29)

but (11.29) violates (11.25). Q.E.D.
We consider now several examples.

Example /. Suppose D = 2, V(φ) = Q. Then for every finite energy solution of the
constrained system

We have

lim inf ER(t) = 0, for every R > 0.
ί-» oo

If M = 1 and F ί ( φ ) = φaφa— 1 this is the 0(ΛQ non linear σ-model in one time and
one space dimension.

dF - p

Example 2. Suppose D = 3, —^Φa = ®, l^b^M, and 7(φ)= ^ λn(φaφa}\ λ^O,
^Φα n = 3

and at least one of them strictly positive. Then Theorem II. 1 applies and for every
finite energy solution and every R>Q

liminf£Λ(ί) = 0.

Examples. Suppose D = 4, —^0α = 0, l^b^M, and F(φ)= X λn(φaφa)
n, λt>0

vΦa n=2

and /12 strictly positive. Then Theorem II. 1 applies and for every finite energy
solution and every R>Q

liminf£Λ(ί) = 0.
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