A Lower Bound for the Mass of a Random Gaussian Lattice ${ }^{\star}$

David Brydges ${ }^{1}$ and Paul Federbush ${ }^{2}$
${ }^{1}$ Rockefeller University, New York. New York 10021, USA
${ }^{2}$ Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA

Abstract

We give a criterion that the two point function for a Gaussian lattice with random mass decay exponentially. The proof uses a random walk representation which may be of interest in other contexts.

Random mass gaussian lattices are lattice systems where the single site distribution has the form

$$
\left(\int_{0}^{\infty} d \sigma(a) e^{-a \phi^{2}}\right) d \phi
$$

An example is $\frac{d \phi}{1+\phi^{2}}$. Related systems have been discussed quite frequently, at least in one dimension [1]. ${ }^{1}$

Let $d \sigma(a)$ be a Borel measure on $(0, \infty)$ such that

$$
\begin{equation*}
\int d \sigma(a)(1+a)^{-1 / 2}<\infty . \tag{1}
\end{equation*}
$$

For $\mu \geqq 0$, define

$$
\begin{equation*}
d m_{\mu}(\phi)=\left(\int d \sigma(a) e^{-(a+\mu) \phi^{2}}\right) d \phi . \tag{2}
\end{equation*}
$$

Let $L_{\alpha} \subset \mathbb{R}^{d}$ be a unit lattice centered on the origin, parallel to the coordinate axes. L denotes the finite part of L_{∞} contained in the box $\prod_{j=1}^{d}\left[-l_{j}+1 / 2, l_{j}-1 / 2\right]$ where $\left(l_{j}\right)$ are given integers. On the space $\mathbb{R}^{|L|}$, where $|L|$ denotes the number of lattice points in L, define the probability measure

$$
\begin{align*}
d P_{L, \mu} & =Z_{L, \mu}^{-1} \prod_{l \in L} d m_{\mu}\left(\phi_{l}\right) e^{\left(\phi, \Delta_{D} \phi\right)} \tag{3}\\
\left(\phi, \Delta_{D} \phi\right) & =-\sum_{l, l^{\prime}}\left(\phi_{l}-\phi_{l^{\prime}}\right)^{2} . \tag{4}
\end{align*}
$$

[^0]$Z_{L, \mu}$ is the normalisation. Δ_{D} is the finite difference laplacian with Dirichlet boundary conditions, so the sum in (4) is over nearest neighbor lattice points in L_{∞} and $\phi_{l} \equiv 0$ if $l \notin L$.

The measure for the random mass gaussian lattice is to be obtained by taking limits $L \rightarrow L^{\infty}, \mu>0$ in that order. By Griffith inequalities the moments of $d P_{L, \mu}$ are monotone increasing as $|L|$ increases and μ decreases, therefore existence reduces to uniform upper bounds.

In order to state and prove the theorem, we define for $n \geqq o$,

$$
\begin{align*}
d m_{\mu, n}(\phi) & =\left(\int d \sigma(a)\left(\frac{2 d}{2 d+\mu+a}\right)^{n} e^{-(a+\mu) \phi^{2}}\right) d \phi \tag{5}\\
Z_{T, \mu, n} & =\int \prod_{l \in T} d m_{\mu, n}\left(\phi_{l}\right) e^{\left(\phi \cdot \mathcal{A}_{T} \phi\right)} . \tag{6}
\end{align*}
$$

T is a lattice wrapped around a torus. Given L, it is defined by identifying the boundary points of $L_{x} \cap \prod_{j=1}^{d}\left[-l_{j}-1 / 2, l_{j}+1 / 2\right]$ in the obvious way. Δ_{T} is the finite difference laplacian with periodic boundary conditions defined by an equation like (4) in which l, l^{\prime} are summed over nearest neighbors in T. Corresponding to $d P_{L, \mu}$ is a measure $d P_{T, \mu}$ obtained by replacing L by T, Δ_{D} by Δ_{T} and $Z_{L, \mu}$ by $Z_{T, \mu, 0}$. The periodic pressure is defined by

$$
\begin{equation*}
P_{\mu, n}=\lim _{L \backslash L_{\infty}}|T|^{-1} \log Z_{T, \mu, n} . \tag{7}
\end{equation*}
$$

Theorem. The two point function

$$
\lim _{\mu>0} \lim _{L \rightarrow L_{\infty}} \int d P_{L, \mu} \phi_{l} \phi_{l^{\prime}}
$$

exists and is $0\left(e^{-M|l-l|}\right)$ as $\left|l-l^{\prime}\right| \rightarrow \infty$ for some $M>0$ provided

$$
A \equiv \liminf _{\mu \rightarrow 0}\left(P_{\mu, 0}-P_{\mu, 1}\right)>0 . \quad(M \geqq A)
$$

Remarks. The inequality $A \geqq 0$ is an obvious consequence of the definitions. We think $A>0$ will hold for $d \geqq 3$, provided $d \sigma(a) \neq \delta(a)$. For $d<3$, one must either place additional restrictions on $d \sigma(a)$ near $a=0$ to ensure even existence as $\mu \rightarrow 0$ or look at correlations of different quantities such as $\operatorname{grad} \phi$. The proof will use the following proposition ${ }^{1}$ which may also be of interest.
Proposition. Let $b=\left(b_{l}\right)$ be a strictly positive function on T. Then

$$
\left(b-\Delta_{T}\right)_{l, l^{\prime}}^{-1}=\sum_{\omega} \prod_{l \in T}\left(2 d+b_{l}\right)^{-n(l, \omega)}
$$

ω is summed over all random walks on T of arbitrarily many nearest neighbor steps starting at l, ending at $l^{\prime} . n(l, \omega)$ is the number of times ω hits l. The left hand side means the l, l^{\prime} entry of the matrix inverse.

Proof of Proposition. $\left(\Delta_{T} \equiv \Delta\right.$.)

$$
\begin{align*}
(b-\Delta)^{-1} & =(b+2 d-2 d-\Delta)^{-1}, \tag{8}\\
& =(b+2 d)^{-1}+(b+2 d)^{-1}(2 d+\Delta)(b+2 d)^{-1}+\ldots . \tag{9}
\end{align*}
$$

[^1]This is the resolvent expansion in the off diagonal elements. The last line can be rewritten as the right hand side of the proposition because $(2 d)^{-1}(2 d+4)$ generates random walk. (It is a matrix with positive elements which sum to one.)

Proof of Theorem by a Griffiths inequality

$$
\begin{equation*}
0 \leqq \int d P_{L, \mu} \phi_{l} \phi_{l^{\prime}} \leqq \int d P_{T, \mu} \phi_{l} \phi_{l^{\prime}} \tag{10}
\end{equation*}
$$

Substitute for $d m_{\mu}(\phi)$ using (2). The right hand side becomes $\left(Z \equiv Z_{T, \mu .0}, \Delta \equiv \Delta_{T}\right)$

$$
\begin{align*}
& 1 / 2 Z^{-1} \int \prod_{k \in T} d \sigma\left(a_{k}\right) \operatorname{det}^{-1 / 2}(2(\mu+a-\Delta))(\mu+a-\Delta)_{l, l^{\prime}}^{-1} \tag{11}\\
& \quad=1 / 2 Z^{-1} \int \prod_{k \in T} d \sigma\left(a_{k}\right) d \phi_{k} \exp \left\{-\left(\mu+a_{k}\right) \phi_{k}^{2}\right\}(\mu+a-\Delta)_{l, l^{\prime}}^{-1} e^{(\phi, \Delta \phi)} . \tag{12}
\end{align*}
$$

Therefore by the proposition

$$
\begin{align*}
\int d P_{T, \mu} \phi_{l} \phi_{l^{\prime}}= & 1 / 2 \sum_{\omega} \prod_{k \in T}(2 d)^{-n(k, \omega)} \\
& \cdot Z^{-1} \int \prod_{k \in T} d m_{\mu, n(k, \omega)}\left(\phi_{l}\right) e^{(\phi, \Delta \phi)} . \tag{13}
\end{align*}
$$

We now apply Osterwalder-Schrader positivity in the form of the chess board estimate [2] (Lemma 4.5) to show

$$
\begin{align*}
& \int \prod_{l \in T} d m_{\mu, n(l, \omega)}\left(\phi_{l}\right) e^{(\phi, \Delta \phi)} \\
& \quad \leqq \prod_{l \in T}\left(Z_{T, \mu, n(l, \omega)}\right)^{\frac{1}{|T|}} . \tag{14}
\end{align*}
$$

Combine (10), (13), and (14) and pass to the limit $L \succ L_{\infty}$ using definition (7).

$$
\begin{align*}
\lim _{L \rightarrow L_{\infty}} \int d P_{L, \mu} \phi_{l} \phi_{l^{\prime}} \leqq & 1 / 2 \sum_{\omega} \prod_{l \in L_{\infty}}(2 d)^{-n(l, \omega)} \\
& \cdot \exp \left(P_{\mu, n(l, \omega)}-P_{\mu, 0}\right) \\
\leqq & \text { conste } e^{-A\left|l-l^{\prime}\right|} \tag{15}
\end{align*}
$$

The last inequality is using the fact that each ω must visit at least $\left|l-l^{\prime}\right|$ lattice points and $P_{\mu, n} \geqq P_{\mu, 1}$ for $n \geqq 1$. Proof concluded.
Remarks. (1) Representations like (13) can be obtained for n point functions.
(2) By using

$$
\begin{equation*}
\delta\left(\phi^{2}-1\right)=\frac{1}{2 \pi} \int d a e^{i a\left(\phi^{2}-1\right)} \tag{16}
\end{equation*}
$$

representations like (13) can be obtained for rotators with n components. Despite the complex numbers in (13) one still obtains positive measures $d m_{\mu, n}(\phi)$.

References

1. Lieb, E., Mattis, D.: Mathematıcal physics in one dimension. pp 119-196. New York: Academic Press 1967
2. Fröhlıch, J. : Phase transitions, Goldstone bosons, and topological superselection rules. Acta Phys. Austraca, Suppl. XV, 133 (1976)

Communicated by A. Jaffe

Received March 29. 1978 ; in revised form May 8, 1978

[^0]: * Supported by N.S.F. Grants PHY 76-17191, MPS 10751

 1 The thermodynamic limit is taken after integrating over the masses, in this paper

[^1]: 1 This is a reformulation of a well known theorem in random walk

