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Abstract. Recently Pirogov and Sinai developped a theory of phase transitions
in systems satisfying Peierls condition. We give a criterium for the Peierls
condition to hold and apply it to several systems. In particular we prove that
ferromagnetic system satisfies the Peierls condition iff its (internal) symmetry
group is finite. And using an algebraic argument we show that in two
dimensions the symmetry groups of reduced translation invariant systems is
finite.

Introduction

A theory of phase transitions at low temperatures in general classical lattice
systems was developped recently by Pirogov and Sinai [8, 9]. It applies to systems
satisfying the Peierls condition of [8, 4, 9]. In particular, finitness of the number of
(periodic) ground states is assumed.

The main results of this paper are: Criterium for Peierls condition to hold
(Section 3), a necessary and sufficient condition for ferromagnetic systems to
satisfy Peierls condition (Sections 10 and 11) and a theorem on finitness of the
number of ground states of ferromagnetic systems in two dimensions (Section 12).
In addition, to demonstrate how the Criterium works, we apply it to several
models. The criterium applies to all models we consider and often yields more
complete picture than previously obtained.

In Sections 1 and 2 we introduce the framework and recall the Peierls condition.
In Section 3 we formulate and prove Criterium in the proof we take advantage of
the flexibility of the Gerzik-Debrushin [5, 4, 8, 9] definition of contours which
allows us to replace previous considerations based on special symmetries of
models by a general compactness argument. After preparatory remarks of Section
4, in Sections 5-9 we apply Criterium to several models; the discussion of the
antiferromagnet in Section 5 which leads to well known results of Dobrushin [3] is
especially detailed.
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Applying Criterium to ferromagnets (Sections 10, 11) we obtain that a
ferromagnetic model satisfies Peierls condition if and only it its (internal)
symmetry group if is finite. On the other hand in our work [7, 6, 11] on the
number of phases in ferromagnetic systems at low temperatures Peierls condition
is not assumed and we treat cases with infinite number of ground states [7] will
contain a more detailed comparison of the results.

Exploiting algebraic properties of ferromagnetic systems we prove (Section 12),
that any two-dimensional spin^ ferromagnetic system which is ΊL2-mvariant (not
only periodic) has a version ("reduced version") with a finite number of ground
states, which thus satisfies Peierls condition.

We need more algebra to show that if 9* is infinite then it containes an infinite
number of periodic elements—result we use in Section 10. In Appendix the
problem is reduced to a question in commutative algebra which has a positive
solution.

In Section 13 we discuss systems with constrains.

In all the examples we consider the Peierls condition breaks down because for
some values of the parameters an infinite number of ground states occurs. But as
examples discussed in Section 14 show, infinitude of ground states may lead to a
variety of situations at non-zero temperatures. These seems to exist no general
theory describing it.

1. Framework

As in [10] except that we allow for constrains; see [9, 14].
Let S be a finite set and let 9C be a closed subspace of S\ where 1L = ZV for

simplicity. For ylcL, pr^ is the projection S]L^SΛ and pr^ = p r L U ; 2£Λ = pτΛ3£.
A potential Φ is a collection (ΦΛ) where ΦΛ is a real valued function on

$£Λ9AcJL. ΦA will be identified with the function Φyl°pryl on ΘC. We consider only
the case of periodic systems, i.e. when there exists a subgroup of Έv of a finite index
leaving invariant 9C and Φ. Moreover Φ is a assumed to have finite range (ΦΛ is
zero if the diameter of A is large enough).

Two configurations X, YeθC are equal at infinity, X~ Y, if there exists finite
such that pr^X = pr^Z The (relative) Hamiltonian H = HΦ is defined by

H(X\Y)=Σ(ΦΛ(X)-ΦΛ(Y)) for X~Y;
A

we write sometimes

A

Two potentials are equivalent if they yield the same relative Hamiltonian.

2. Ground States and Peierls Condition [9]

Let ^ p e r be the family of periodic elements oϊ3ΐ1

9Xe!%p*τ is a ground state (of if) if

H(X\Y)^0 for any Y~X .

1 An element of 3C is periodic if it is invariant under a subgroup of Έ of a finite index. Similarly are
defined periodic elements of any Zv-space
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0 or $(H) is the family of all ground states of the Hamiltonian H.
We will assume that the following lemma holds.

Lemma. Let forXe%»eτ

eφ(X)=lim Σ <M*)
A \A\ Λ'CΛ

Then X is a ground state for Hφ iff

This is proved to hold for systems without constrains, ^ = S\ in [9]. It is not
hard to find an example of a system with constrains for which the lemma does not
hold.

For a natural number N and aelL let

and let the N-boundary of a configuration l e f be

Definition. H satisfieds Peierls condition if &(H) is finite and for each N large

enough there exists ρ > 0 such that ifX~Y, Ye^,

H(X\Y)^ρcard(BN(X)).

This differs slightly from the definition of [9] but is easily seen to be equivalent
to it.

3. Criterium

With the preceding notation and assumptions let

φΛ = minΦΛ(X)
Xe3C

and

If ^ / p e r is non-empty then

if <3' is finite then <§' = ̂ {Hφ) and the Peierls condition holds for Hφ.

Proof of Criterium. That in case ^ ' p e r is non-empty it coincides with
follows at once from Lemma 2.

Any translation that leaves Φ invariant maps <§' into itself. If <S' is finite then
the subgroup of the invariance group of Φ which leaves Ψ pointwise invariant is of
a finite index, and therefore of a finite index in Zv. Thus the configurations of Φ are
periodic and therefore Φ = @(HΦ). It remains to show that finitness of $' implies
Peierls condition.
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Let *§A — pr^, and consider any finite A C 1L there exists r > 0 such that for any
χ and any Ye& with pτΛY=X there is A such that

)£r,ΦA(Y)ΦφΛ. (3.1)

Otherwise there would exist sequences (X^C&x^Z and (^) ^^ sucn tnat

prΛYn=Xn,ΦΛ(Yn) = φΛ when dist(Λ,Λ)^n. Since 9CA is finite we may assume
Xn=X, Vπ, and since & is compact (Yn) has a limit point Y But then Ye<$' = 9(Hφ)
and pr^7=Jί which contradicts the assumption ihatXφ^^.

Let N be a positive number; by periodicity and (3.1) there exists r = r(N) such
that if prN(ajXe&N(a)9 Xe&, then there is Λa, depending on a but not on X,
satisfying :

If

dist(α, α') > δ = 2N + 2r + max {diam/L : Φ^ φ <^

then Λa

Let

since Φ is periodic and finite range, εφO. Now for X~ Y, Ye$, the relative energy

H(X\ Y) =
yl A

is bounded from below by ε times the cardinality of any subset A of IL such that
prN(a)Xφ&N(a), dist(α,fc)>5, for any a, be A, aή=b. Therefore

H(X\ Y)^ε x (2N+ l)~v x (Γv x \BN(X)\ .

The criterium is proved.

4. Application of Criterium

In applications one has to choose for given Hamiltonian the potential to which
Criterium applies. This will be illustrated in the following discussion of a number
of examples.

XeS£Λ such that ΦΛ(X) = φΛ will be called a local ground state. Since As
overlap the problem is in first determining local ground states and then in
patching them together into ground states.

Drawing Diagrams the Closure Condition. Usually the lines (more generally the
hypersurfaces) of the zero-temperature phase diagram divide the space of parame-
ters into a number of open regions with Peierls condition satisfied in each of them.
More precisely, in each case we have a finite dimensional space 2tf of interactions

and a family (Uι)iel of open subsets of ffl such that (J [/. is dense in 3tf and any
i

He Ut has the same (finite) family .̂ of ground states, iel. Certainly

is in the dosure of l/J (*)
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but in general the inclusion is proper, i.e. at points where few of the t/^s meet there
may appear new ground state which is in none of ^ ' s . Most often this happens
because at this meeting points we are allowed to combine local ground states
coming from different [/.'s (see Sections 5-9). Usually infinitude of ground states
results then. We say that an interaction H (or corresponding point of the diagram)
satisfies closure condition if in (*) we have equality in place of the inclusion.

The lines with infinite number of ground states are fattened on the diagrams.

5. Antiferromagnet [3]

We consider the two-dimensional case only generalization to higher dimensions
is obvious.

In examples of Sections 5-10, S = { — 1,1}, and for aeΈv, σα = pr(f l} ,. Here

(a,b} a

with Σ denoting sum over pairs of nearest neighbor points of the lattice. Let
<a,b)

a = 0,b = e1,c = e1 + e29d = e29 where ei is the canonical base of 2£2, let

Φ0 = σaσb + σbσc + σcσd + σaσd ~ h(<7a +
 σb + σc + σd)

and let

φΛ = τxΦo i f Λ = τx(Λ0),Λ0 = {a,b,c9d}

= 0 otherwise ,

where τx stays for translation by xeΈv. Then H = ΣΦΛ we apply Criterium to Φ.
A

Computation yields the following local ground states in Λo:

) (ι xx x:

*--'(: :)(- X X X X X
h<-2\

in a selfexplanatory notation.
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Since Φ is Z2-invariant, ground states are obtained by patching together these
configurations, if such patching is at all possible. The following obtaines: for \h\<2
or \h\>2 each of the local ground states admits unique extension to a ground
state for \h\ = 2 the extension is not unique and one gets infinite number of ground
states. This is because for h = 2, for instance, the last four local ground states allow

to pass from ( I to I | or | I as m

6. Antiferromagnet in a Staggered Magnetic Field

σa-
aeLo

where

lL0 = {(x1,x2)eZ2:x1 + x2 is even}, I L 1 = Z 2 \ L 0 .

With the notation of Section 5, let

ΦΛ =

+ ε(x)ητx [σα + σd - σb - σc]

if Λ = τxΛ0 and ΦΛ = 0 otherwise; here ε(x)=l if xe!L0, ε(x)= - 1 if xelL^ Then
H = HΦ. One has to analyse two types of ΦΛ, say ΦΛo and Φτ& Λo. Proceeding like in
Section 5 the following T=0 phase diagram results:

Fig. 1

The lines of the diagram divide the (//, /2)-plane into four open regions with one
ground state in each of them. There is an infinite number of ground states on the
inclined half lines. All other points of the diagram satisfy Peierls condition and the
closure condition of Section 4.

7. The Preceding Model with a Next Nearest Neighbour Ferromagnetic
Interaction in Addition

(Fisher's antiferromagnet of [9] in a staggered magnetic field)

JΣσaσbi J>0 .
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Defining the potential like in Section 6 we see that the only effect of the
ferromagnetic next nearest neighbour interaction is an elimination of the local
ground states

etc.

Thus Criterium yields the following phase diagram at zero temperature:

Fig. 2

with Peierls condition satisfied everywhere the closure condition is satisfied at all
points of the diagram.

This model of metamagnet is supposed to exhibit a tricritical behaviour with
phase diagram like that of [13, Fig. 2]. The Pirogov-Sinai theory yields the low
temperature portion of this phase diagram.

8. Gertsik-Dobrushin Model [5]

(aby n.n.n a

When ε = 0 the model splits into two ferromagnetic (J < 0) or antiferromagnetic
models (J > 0). Hence it is enough to consider two cases: ε > 0 and ε < 0.

In contradistinction to models considered so far, here the two-dimensional
case is much simpler than the higher dimensional; we will comment on this later
and now we consider only the v = 2 case. Results obtained here are more^complete
than those in [5].

Decomposing H as in preceding sections and applying Criterium we obtain
the following zero-temperature phase diagrams.

(ϊ ί) iU)

(U)

ih

2e
f ( ί ί ) [--%)

ε .__ + _
( + + + - -

^ ^ infinite? infinite ^

Fig. 3 Fig. 4
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Peierls condition, and the closure condition, is satisfied everywhere except on
the inclined lines, and on these lines the number of ground states is infinite.

If v ̂  3, because of presence of local ground states

etc.

one has to choose different decomposition of H. Presumably cubes as elementary
domains would do. But this leads to much more computations than in the two-
dimensional case we did not try it.

9. Spin Version of Eight Vertex Model [12]

Let

Φ0 = Jσaσc

and

xeΈ2

The interaction is invariant under flipping of all the spins on 1LO and JL1 separately
(cf. Sections 5 and 6 for notation). Hence there are at least four ground states if
there is one. For J 4 = 0 one obtains two independent Ising models, and the case of
J 4 < 0 is related to that of J 4 > 0 by a simple transformation [12]. Therefore we
consider the later case only. Proceeding as before in applying Criterium we obtain
the phase diagram of [12, Fig. 2] which was deduced from Baxter's solution of
Eight Vertex Model:

J = - J 4

l ί ί) etc.

(ί±) etc

' J1

\

ttletc.

( ί

J

ί)etc

J--J*

Fig. 5

here etc. stays for three ground states obtained from the one indicated on the
diagram by applying the symmetry operations; Peierls condition is satisfied
everywhere except on the lines of the diagram and on these lines the number of
ground states is infinite.



Peierls Condition and Number of Ground States 185

10. Spinl/2 Ferromagnetic Systems

S={-1,1} (as before),

ΦA=-J(Λ)σΛ9

where

aeΛ

Λ\->J(Λ) is periodic, non-negative, and J(Λ) = 0 if the diameter of A is large
enough the last condition, finite range of the interaction, is unessential.

Let

By Lemma 2, <̂  = ̂ p e r (the family of all periodic elements of Sf\
By Appendix if Sf is infinite then so is y p e r . In case 9* is finite it follows from

Criterium that ^ = <̂  and Peierls condition holds. Thus ferromagnetic spin \
system satisfies Peierls condition if and only of £f is finite.

This allows us, in case of a finite ^ to deduce the results of [7] from that of [4]
or [9]. Since ^ may be infinite in general, it is of interest to have a simple criterium
for its fmitness; this is discussed in Section 12.

11. Generalized Ferromagnetic Systems

These include higher spin ferromagnetic systems; cf. [11] for more details.
S is a finite set of real numbers, invariant with respect to SH-> — S.
A multiplicity function (m.f.) is a map IL->{0, 1,2,...}, zero almost everywhere.

For a m.f. B let

A ferromagnetic interaction is of the form

H(X\Y)=- ΣJ(B)(sB(X)-sB(Y))
Be®

with J(B)>0 for all Be J*, where £% is a periodic family of m.f.'s, J is periodic and
we assume that for any αelL

is finite ("finite range"), and non-empty. If m = sup {s:seS} then the configuration

Ea = m, V α e L ,

is a ground state and for any ground state X:

\Xa\=m, VαelL;

this follows from Lemma 2.
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Let the group {-1,1}L act on 3C by

(G-X)a = GJίa9 G = (Gα) f leL, Ga=±l.

Then for any m.f. A

with

A = {aelL:A(a) is an odd number} .

Defining the symmetry group Sf by

we see that the map G±->G E sets one-to-one correspondence between £fper and
&(H). Applying Criterium and the result of Appendix we obtain that the system
satisfies Peίerls conditions if and only if Sf is finite.

12. Finitness of the Number of Ground States
in Two Dimensions

The framework is as in Section 10 with additional assumption that 3$ is
Zv-invariant. We refer to [7] for the notion of reduction, for notation and for the
algebra see also [6,11]. We recall only that any system has a reduced version with
the same number of extremal periodic equilibrium states as the original one. The
system is reduced if the greatest common divisor of J* is trivial (g.c.d. J* = 1), and to
verify the last condition one has to find the greatest common divisor of a family of
polynomials in v variables associated with the system. Our result is that reduced
systems in two dimensions have finite number of ground states:

Theorem. In two dimensions, if g.c.d. Si = 1 then if is finite.
(If g.c.d. & is non-trivial then if is infinite.) The theorem is easily deduced from

the following.

Lemma. // & is 7LV-invariant and g.c.d. SS = \ then for any z = 1,..., v, J* contains a
non-empty subset of the hyperplane {xeΈv:x i=0}.

For if v = 2 and &g contains non-empty subsets A, B, ACΈ eu BcZe2 then
elements of if are uniquely determined by their restrictions to any rectangle with
sides of length diam(y4) and diam(B). Hence if has no more than

2diam(.4) x diam(β)

elements.

To prove the lemma it is enough to show that

if P 1 , . . . ,P n eF 2 [X 1 , . . . ,X v ] are relatively prime then there exist

Ql9...9QneF2lXl9...9XJ such that Q1P1 + ...+QnPnisinW2[X29...9Xvl
For a proof identify F2[X1,...,XV] with A [ X J where A = IF2[X2,...,XV]. By

assumption, P1,...,Pn are relatively prime elements of A [ X J . By [1], P 1 ? . . . , P n

are relatively prime also when considered as elements of DC[XX] where DC is the
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field of fractions of A. Hence there exist Qι,...9QneK[_Xι] such that

Since IK is the field of fractions of A there exists Re A such that
i = 1,..., n. Setting Q = R Qt we see that

is in A. The theorem is proved.

In case of generalized ferromagnetic systems, a Zv-invariant system need not be
equivalent to a reduced one. But the theorem of this section applied to {B.Be^}
instead of 0& yields a criterium of finitness of the number of ground states. In case
of spin systems, even if g.c.d. {B\Be0β} is non-trivial, and therefore the number of
ground states is infinite, the theorem and the results of [11] show that,
nevertheless, there is only a finite number of extremal periodic equilibrium states
at low temperatures.

13. Systems with Constrains

We do not discuss the most general type of constrains for which Lemma of Section
2 holds. We note only the following sufficient condition ("specification"): there
exists (5>0 such that if/lC^yl'ClL, άist{Λ,Λ')^δ α ώ l e f ^ Γ e f ^ , then there
exists YeS:AyjA. with pr^7=X, ^xΛΎ=X'.

Suppose we start with a system with no constrains (SL as the configuration
space) and with an interaction Ψ to which Criterium applies yielding a finite family
4?(Φ) of ground states. Suppose 3C C S11 is the configuration space of a new system
whose interaction Φ is the restriction of Ψ to 3C. If ΘC satisfies the condition above
and %c\<g{Ψ) is non-empty then it follows from Criterium that ^(Φ) = ^n^(Ψ)
and Φ satisfies Peierls condition.

For example, let

& = {Xe{-ll}12: if a,beZ2 are n.n then Xa o r X b = -1} .

ΘC satisfies the condition above since if dist(Λ,Λ')> \,Xe9£A,X'eθ£A, then one can
define Y by:

Y\A=X, Y\Λ'=X\ 7 α = - l , VαeTL2\{ΛKJΛ') .

ΘC is the configuration space of the model considered in [2]. The remark of the
preceding paragraph allows us to deduce the results of [2] from those of Pirogov
and Sinai.

In case ^(Ψ)n^ = 0 constrains may lead to drastic changes of the phase
diagram: with same as above configuration space, consider the Ising model in
magnetic field,

Defining

^0 = - (
σ
a

σ
b +

 σ
b
σ
c +

 σ
c
σ
d +

 σ
d
σ
a) + K^a +

 σ
b +

 σ
c +

 σ
d)
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Fig. 6

(cf. Section 5 for notation) and applying Criterium the following is obtained. With
{— 1,1} Έ2 as the configuration space, the phase diagram at Γ = 0 is as on Figure 6,
i.e. one ground state for /z>0, one for /i<0, and two for h = 0. Peierls condition
holds for all values of h.

With 9£ as the configuration space, ^(Ψ)n^ = 0 for h<0. Hence con-

figurations different from I enter the competition. One obtains the

following local ground states in Λo:

-Λ infinite # 4 0
Fig. 7 3

Peierls condition holds for h > — f and h < — 4. It does not hold for — 4 ^ h ̂  — f
since, as it is not hard to see, in this region the four local ground states combine
into infinitely many ones.
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Appendix

We show here that if in a ferromagnetic system the group Sf is infinite then so is
the subgroup y p e r of its periodic elements this result is used in Section 10. In case
translations act transitively on the lattice, we prove a stronger statement: y p e r is
dense in Sf.

The notation is as in Section 3 and in Appendix B of [7].
1. ΘC = {— 1,1}ZV the dual group 3C of ΘC is identified with (the additive group

of) JF2C^V] ( = ^/(^v)) equipped with the discrete topology. In particular we can
speak about orthogonality of elements of % and F 2 [ Z V ] .

It is readily seen from [7] that if (G is a subgroup of Έ with generators av..., αv

then an element of $£ is (G-invariant if and only if it is orthogonal to

the ideal of IF2[ZV]-generated by
Hence if if is a closed translation invariant subgroup of ΘC and J = 9 1 is the

corresponding ideal of F 2 [Z v] the set of (D-invariant elements of 9 coincides with

It follows that the set ^ p e r of periodic elements of 9 is
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N = {1,2,3,...}. And since ^ p e r is a subgroup of ̂  ^ p e r is dense in Sf if and only if
and anby if

y n i , . . . , M v e N

The left hand side here is equal to

Therefore the density of <f^x in 9> follows from the following:
for any different from 1 invertίble element X of F2 \J^Λ and for any ideal of

Barry Simon has kindly passed the above to Prof. N. Katz of Princeton University
who provided a proof of it we do not reproduce the proof here.

2. In the general case, let

L = L 1 u.. .ulL Λ

be the decomposition of 1L into different 2£v-orbits. We have:

where

and

each of ̂ ( IL ) being ίsomorphic, as a Ψ2 [Zv]-module, to F 2 [Z v ]. Let p., ί = 1,..., n,
stand for the projections dC-^dC^ ^.(L)->^.(IL/) and pv for the complementary
projection f - > f x ... x ^ ι _1x^ ι.+ 1 x ... x^n.

By induction with respect to the number n of Zv-orbits we will prove that for
any infinite, closed, Zv-invariant subgroup Sf of 3C, ^ p e r is infinite. The case n = 1 is
already dealt with.

Since ίf is infinite, one of the projections p^Sf\ i— 1,..., n, is infinite we may
assume that p^Sf) is infinite. If £fc\(β£2 x ... x &n) is infinite then, by the inductive
assumption (^n(«J 2 x ... x 3Cn)ftτC^per is infinite too; here ^ 2 x ... xSCn is iden-
tified with the subgroup { 0 } x i 2 x . . . x f π of 2£. Hence we may assume that
Sev = ̂ r\(βC1 x ... x 3Cn) is finite.

Since px(Sf) is a closed infinite Zv-invariant subgroup of ΘCγ periodic elements
are dense in it. In particular it contains an infinite number of periodic elements. It
is therefore enough to show that for any periodic Xep^^) there is a periodic
Yepv{&) such thatX+ Ye^.

Thus, letZ be an element oΐp^) which is invariant under a cofinite subgroup
(G of Z v ; let Yepv(^) be such t h a t X + F e ^ . Then for any ge<B



190 W. Holsztynski and J. Slawny

is in ίfv, since Z{g)eθC2 x ... x9Cn and

Z(g) = g-(X+Y)-(X+Y)e<?.

By direct calculation:

, Z(0) = 0

(i.e. Z is a y r-valued cocycle). Since 5^, is finite it is pointwise invariant under a
cofinite subgroup, say (CΓ, of Έv. Hence the above identities show that Z is a
homomorphism Wl->Sfv where H = (DnCr/ is again a cofinite subgroup of TΠ.
Since all elements of $£ are of order 2 it follows that Z(2g) = 0 for any ^ e E Thus Y
is invariant under the cofinite subgroup 2 H of Zv. This ends the proof.
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