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Local Decay of Scattering Solutions
to Schrodinger's Equation
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Abstract. The main theorem asserts that if H = Δ+gV is a Schrodinger
Hamiltonian with short range V, φeLlompact (R3), and R>0, then
\\Qxp(ίHt)Πsφ\\L2{\x\<R) = O(t~1/2) as ί-»oo where Πs is projection onto the
orthogonal complement of the real eigenvectors of H. For all but a discrete set
of & 0{Γ1/2) may be replaced by O(Γ3/2).

§1. Introduction

A basic dynamical equation in nonrelativistic quantum mechanics is Schrodinger's
equations for u(t, x):

d2

where ίeIR and xeR 3 . Let H^^A = V —-j and H = A-\-V. The formal solution of
oxf

(1.1) is u(t) = eιIίtu(0). If V is real valued and not too singular too example if
FeL2(R3)), then H with domain the Sobolev space W2(ΊR3) is selfadjoint on L 2(R 3)
so eίHt defines a one parameter group of unitary maps. Two types of solution are
easily visualized: bound states, eιωtφ(x\ for which |w(ί,x)| is independent of time,
and, scattering solutions u(t, x) with the property that for any ball J* in R 3

j\u(t,x)\2dx^0 as ί-^oo. (1.2)
m

If F(x)->0 as |x|->oo, it is natural to expect that for solutions in the latter class
there is a u + (t) = eιtH°u + (0) with ||M(ί) —M_l_(ί)||jL2(IR3)—•O as ί->oo. There is a large and
rich literature devoted to showing that these two types of solution form an
exhaustive list, that is, L2(IR3) can be written as an orthogonal direct sum J^B®J4?S

such that eίtH maps both 34?B and jfs into themselves, Jfg is spanned by
eigenvectors of H, and J ^ consists of solutions which decay locally in the sense of
(1.2). For details see ([1, 5, 6, 13]).
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This paper is devoted to obtaining more detailed information about the
scattering solutions eιtH ί 3^s. If one observes from a fixed position in space, then
the solutions decay to zero. The question we ask is at what rate does the solution
decay. To motivate the result, consider the free motion ufrQe = eitH°ψ. The solution
is given by the integral

where c = (4πί)~3/2. It follows that for

decays like ί"3/2. For ψeL2(JR3) the solution is not continuous and pointwise
estimates are neither natural nor true. However, one might expect that
||wfree(ί)||L2(^) = O(ί~3 / 2) for any bounded set J*. This also is false. In fact, there is no
positive function/(ί) with/(ί)->0 as ί->oo such that \\uίree(t)\\L2{m = O(f(ή) a s t^>oo
for all ψeL2(W). To see this, consider the map A(ή:ψϊ->(f(t)~1eitHoψ)\ @. If the
asserted local decay were true then for any ψeL2, the set {A(ήψ:t^0} would be
bounded in L2(β) and the uniform boundedness principle would imply that
{Λ(t):t^O} is bounded in Hom(L2(lR3), L2(J*)) so there would be a constant c > 0
such that for all

Choose T so large that cf(T)<l. For φeC^(β\ let ψ = e~iτHoφ. Then
ll%ee(τ)llL2(^) = IMIL2(R3) violating (1.3). Physically, this corresponds to preparing a
solution that starts near infinity and arrives at J* only after a long interval of time
has elapsed. To get a quantitative form of (1.2), one must restrict to initial states
which are small at infinity. For example, for any J* we have

\KJt)k2(^c\tri2\\uίrJ0)\\LHRn) (1.4)

for all ufree(0) supported in a compact set K. The constant c depends on K and J*
but not on wfree(0).

A stronger inequality than (1.4) is derived as follows. Choose a function ρ such
that

ρGC°°(IR3) and ρ(x) = \x\ for |x| large. (1.5)

For ε>0, let Eε be the multiplication operator

Eεφ = e~ερφ.

The operator t?>l2Eεe
itHoEε has kernel

y\2/4t e - ερ(x)

which is bounded in L2(IR3 xIR3) independent of £>0. Thus

11/7 pitHoj? II < Γ f-3/2 /-j f\
W^εe ^εllHom(L2(IR3)) = 6 ε l \L Ό)

In terms of the solutions u this asserts that

l k - ε β % r e e « I U ^ ε | ί Γ 3 / 2 l|eε e% r e e(0)|| i 2 (1.7)
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provided the right hand side is finite. Inequality (1.7) implies (1.4). Our main result
generalizes (1.6) to the operators eitH.

By analogy with (1.7), it is natural to expect that scattering solutions of the
perturbed equation decay like t~3/2. The correct rate is t~1/2. This is the content of
Theorem 1 which holds even when H is not selfadjoint. Recall that if FeL2(IR3),
I m F = 0 , and H — A + Fwith domain equal to the Sobolev space W2(IR3), then iH is
a maximal dissipative operator on L2(IR3) (see §2 for details) so eιtH is a
contraction semigroup.

Theorem 1. Suppose that for some ε>0 and p>2, elε^VeLp(β?) and ImF^O. Let
J^BCL2(ΊR3) be the (finite dimensional) set of eigenvectors of the operator H = A
+ V with real eigenvalues J^s = jfB

λ and Πs be orthogonal projection onto Jfs. Then
Jί?B and Jfs are invariant subspaces for eιtH and there is a constant c such that

IIF pίtH Π F II O Π -\-t)~1/2 (\ 9λ

for all t _Ό, where Eε is the operator multiplication by e~ερ and ρ is described in (1.5).
In particular, if u(t) = eitHu{0) and eερι<0)eL2(IR3), then

\\e-^Πsu(t)\\L2{R3) S c(l + ί ) " 1 / 2 Ik β β«(0)||L 2 ( R 3 ). (1.9)

Examples. If V{x) = \x\~aF{x)e~a^ with a>0 and F e L J R 3 ) , then Vsatisfies the
hypotheses of the theorem provided α < 3/2. If α = 1 then V satisfies the hypotheses
if FeLp(IR3) for some p>6. These potentials are Yukawian in form.

The exponential decay of V is essential for our method. On the other hand, we
have not been economical in our use of the decay. I expect that the same
conclusions are true provided eερVeLp for some p>2. No doubt, potentials with
more severe local singularities could also be permitted.

On the other hand, the ί"1/2 rate is sharp. There is a £eHom(L 2 ) such that

P.e^ffA-r^BiiH^^gcr3/2 (ϋo)

and for some potentials, B is not zero. In fact, there is an asymptotic expansion for
Eεe

itHΠsEε in decreasing powers of t with t~ll2B as the leading term. Equation
(1.10) shows that scattering solutions decay like ί"3/2 if and only if 5 = 0. We will
show that for most potentials this is the case. For example, if H = Δ +^Fwith Fas
in Theorem 1 and gelR, then for all but a discrete set of values of g, the scattering
solutions decay like ί~3/2. A related result is that if F^O then 5 = 0 so for
nonpositive potentials the ί"3/2 rate always holds. On the other hand, BφO at
those values of the coupling constant at which an eigenvalue emerges from the
continuous spectrum. In particular, BφO if nullspace (H)+{0}. The results
described in this paragraph are contained in § 4.

Theorem 1 is proved by Laplace transform methods analogous to those which
have recently been applied to study the asymptotic behavior of hyperbolic partial
differential equations ([16, 11]). The basic idea is to obtain an analytic con-
tinuation of the resolvent of H across the spectrum of H and then to shift the
contour in the inverse Laplace transform representation for Eεe

ίtHEε. A critical
ingredient is an estimate for Eε(λ — Ho)~x Eε as ReA-> — oo (high energy estimates).
These estimates are used to justify the Laplace inversion. Our derivation of these
estimates is novel. It depends on Huyghens' principle for the wave equation
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utt — Hou = 0. Though there are certainly other ways to prove the inequalities, I
think that this method is particularly interesting. Since the solutions of the wave
equation have a great deal of structure (finite speed, Huyghens' principle,
geometric optics,... etc.), I feel that the solutions of the equations utt — Hou = 0 and
utt — Hu = 0 should be rich sources of information about H and Ho. The derivation
of high energy resolvent estimates is one example. The resolvent inequalities are
proved in § 2 and are used to prove Theorem 1 in § 3.

There is another not unrelated approach to the problem of local decay
(see [7, 8]) which begins with the observation that the function which
vanishes for ί < 0 and is equal to e~εteitHφ for ί^O, has Fourier transform

/ V Thus ParsevaΓs theorem implies that for

00 -j 00

$e-2«\\AeUHφ\\2dt=— J \\A(λ + iε + H)~xφ\\2dλ. (1.11)
o 2 π -oo

For suitably "smooth" or "gentle" operators A and initial states φ, one shows that
the integrand on the right hand side has a limit as ε->0 and that

00 -j 00

$\\AJtHφ\\2dt=— f \\A{λ + ti) + H)-γφ\\2dλ.
0 ^ - oo

In this way one can show that AeitHφ is square integrable in time which is a decay
theorem. Lavine [8] has given sharp results of this sort. In a sense, our method
corresponds to going beyond the limit ε = 0 to ε < 0 in the above argument.

In the final section of the paper we discuss the behavior of scattering solutions
to Schrodinger's equation for "intermediate" size times. Here terms of the form
eZjtφ(x) with Reτ 7 <0 play an important role. The numbers —iτ } are poles of the
analytic continuation of the resolvent of H across the spectrum of H. If Reτ^ is
small, these solutions are long lived. In the physical literature (see [3, Chapter 8]),
this behavior is called a resonance. We give a rigorous justification of the
occurrence of such terms in the local behavior of solutions to Schrodinger's
equation and of their connection with singularities of the analytically continued
resolvent.

Acknowledgement. It is a pleasure to thank G. Kaylor for her support and encouragement and I. Herbst,
L. Garding, and P. Deift for stimulating conversations about this research.

§ 2. Resolvent Estimates

The idea of the proof of Theorem 1 is to write

E^E^^'T e«Eε{τ-iH)-Έεdt (2.1)
Z π l d-ioo

for d>0 and to shift the contour of integration into the halfplane Reτ <0. For this
we must analytically continue the truncated resolvent across the spectrum of iH
and obtain estimates which justify the convergence of the integral in (2.1) and the
deformation using Cauchy's theorem. We begin with a review of the basic
properties of H.
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Let H0 = A= Σ -r~2 be the operator on L2(IR3) with domain, @(H0)5 the

Sobolev space W^(R3) = {/eL2(IR3):l>i/eL2(R3) for |α |^2}. Then Ho is selfad-
joint and spectrum (ifo) = ( — oo,0]. The reader is warned that this differs from the
standard convention which has Ho=—Δ so that H and Ho are bounded below.
The two conventions are mathematically equivalent one arising from the other by
either reversing time or by replacing i by — i (Note that there is no canonical way
of choosing a square root of — 1.). Suppose that FeL2(IR3), then V is a small
perturbation of Ho in the sense that @(V)D3>(H°\ Vijc-Ή^"1 is a compact
operator on L2(IR3) for Kφ spectrum (if0) and | |F(/c-zl)~ 1 | |^0 as
distance(κ,R_)->oo (see [14,p. 32]).

It follows that H=^H0 + Fwith 9{H) = 9{H0) is closed and if dist (κ:,IR_)>c1,
then K is in the resolvent set of H and the following resolvent identities hold.

{κ-Hy^iκ-H^-'U + Viκ-H^-'T1 (2.2)

(x-HJ-'-iκ-HΓ^iκ-HΓ'Viκ-H,)-1. (2.3)

From (2.2) we see that if dist(κ,lR_)^c2, then

( κ , R _ ) - 1 . (2.4)

To make the next computations more transparent, we introduce a table of
notations.

Symbol

R(z),R°(z)

Eε

LP,W2

£

Hom(Z)
Kernel

F°Aζ),FjtQ
Gε(τ)

Meaning

(z-H)-\ (z-Hoy\ ẑ spectrum
The operator multiplication by e~εe

EεR(z)Eε,EεR°(z)Eε

Lp(IR3), W2(IR3)
Norm in Homβf, Y) when X and Y are Banach spaces
Hom(X,X)
The distribution kernel of an operator, never the nullspace
Analytic continuations of R°(ζ2) and Rε(ζ2)
Analytic continuation of — iRε( — iτ) (see end of § 2)

The operator R°(z) is defined for z in the slit plane (C\IR_. It will be easier to
study R°{ζ2) which is defined for ReC>0 and has distribution kernel

ίίb^ ( Z 5 )

Lemma 1. For any ε>0, the function ζ\->EεR°(ζ2)Eε extends to an analytic function
on the set Re£> — ε with values in the compact operators on L2.

Proof For Re(>0, the kernel of #ε°(C2) is given by

which for Re ζ > — ε is a holomorphic function of ζ with values in L2(1R3 x 1R3). D
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The next result, due to Dolph, McLeod, and Thor [2] shows that a similar
assertion is true for Rε(ζ2).

Lemma2. Suppose that eερVeL2 for some ε>0. Then, the function ζ±-*Rε(ζ2) from

Reζ> ]/c to Hom(L2) extends to a meromorphίc function of ζ on Reζ> — ε with

values in the compact operators on L2.

Proof Multiply (2.3) on the left and the right by Eε to obtain for ReC> ]/c

Rε(ζ2) [/ + (e?° V)R°(ζ2)EJ = R°(ζ2). (2.7)

The operator in brackets is equal to / + K(ζ) where K(ζ) has the kernel

which is holomorphic on R e ζ > — ε with values in L2(lR3xIR3). Thus K(ζ) is
holomorphic on the same set with values in the compact operators on L2. In
addition, ||X(OIIHiibert-schmidt̂ O as R e C ^ + oo so that [I + Kίζ)]- 1 exists for Reζ
large. Thus the analytic Fredholm theorem [12, Theorem VI. 14] together with
Lemma 1 implies that

Rε(ζ2) = R°ε(ζ2)U + K(ζ)Γ1 (2.9)

has a meromorphic continuation to R e £ > — ε with values in the compact
operators on L2. D

It is dangerous to continue to use the notation R°(ζ2) for Re£<0 since there
would be two possible meanings: one as the analytic continuation and another as
R® evaluated at the point ζ2φspectrum(Ho). The symbol R^(ζ2) will be used only in
the second sense. For the analytic continuation a different symbol is used.

Definition. Let F°(ζ) be the analytic function from Re£> — ε to Hom(L2) such that
Fε°(0 = £ε°(C2) for ReC>0. Let Fε:{Reζ> -ε}->Horn(L2) be the meromorphic
function with Fε(ζ) = Rε(ζ2) for Reζ large.

The next goal is to show that Fε(ζ) is small when ImC is large. The basis of the
method is the representation

1 (2.10)

which is merely a restatement of (2.9). Observe that

K(Q = (e2«V)F°B(Q (2.11)

so it is natural to expect that Fε(ζ) is small wherever F°(£) is small. For Im£ very
large, the kernel (2.6) of F°(ζ) is highly oscillatory which forces the norm to be
small.

Proposition 3. For any a > 0 there is a constant c = c(a, ε) such that

(2.13)

for all ζ with Reζ> - - +a.
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For ζeϊfiί such estimates were proved by Herbst [4, Appendix]. The estimates
(2.12) and (2.13) are sharp in the sense that the rates of decay as |Im£| -*oo are correct.
In fact, llFβ°(iκ)llL 2^constM"1 for |κ |>l ,and llFe°(C)llL2fLoo is independent of ImC.
The second assertion is elementary and is proved below. A proof of the first
assertion is contained in an appendix at the end of this section. On the other hand,
the result is not sharp in the sense that estimate (2.14) should be valid in any region
Re > — ε + α. It is in the proof of (2.14) that the wave equation utt—Hou=0 enters.

Proof of (2.13).Using the expression (2.8) for the kernel of F°(ζ), one finds

-2ερ(y) -2Reζ\y-χ\ -2ερ{x)

»*«.ι-= SB ί ( ϊ^ iF dy

which as asserted after the statement of Proposition 3 is independent of the
imaginary part of ζ. Choose cί (possibly negative) so that Q{x)^c1

Jt\x\. Then

-2ε\y\ -2Rcζ\y-χ\ -2ε\x\

- J ^ - ^ dy.

The supremum occurs when x = 0 and the resulting expression implies (2.13) for
D

Proof of (2.13). Consider the Cauchy problem

wtt-Aw = 0, w(0)=/, wί(0) = 0 (2.14)

and let P(f) be the solution operator, P(t)f=w(ή. Then P(ί) = cosί ]/ — Ho so

\\P(t)\\L2,L2 = l. Since

oo r

J e~ζtcostλdt= z ReC>0,
o ζ ~^~ λ

it follows that

j e ~ζt P(ί) dt = ζR°{ζ2), Re ζ > 0. (2.15)
o

This formula can also be derived by taking the Laplace transform of (2.14) directly.
If P(t,y,x) is the kernel of P(ή then Huyghen's principle asserts that
suppP{t,y,x)c{(y,x)\\y-x\ = t}. In particular, if supp/c{|x|^ί/2} then
suppP(ί)/C{|x|^ί/2}. Formula (2.15) implies that for Reζ>0

F%)=-]e-«EEP{t)Eεdt. (2.16)
4, 0

To prove the proposition, it suffices to show that for t large,

2>L2e-e"2 (2.17)

for, then the integral in (2.16) converges for Re£> — ε/2 and (2.16) remains true by
uniqueness of analytic continuations. Then
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which yields (2.12) for ζ away from 0. Near ζ = 0 there is nothing to prove since
F°(ζ) is continuous.

To prove (2.17) let X\x\>t/2 be the operator multiplication by the characteristic
function of {|x|^ί/2} and χ^<t/2 similarly. Then

EεX\x\ϊt/2> ( 2 1 8 )

where Huyghen's principle is used in the second step. Choose r o > 0 so that
ρ(x) = \x\ for | x | ^ r 0 and suppose that t^2r0 then

= sup e-
εW = e-ε

\\*/2

This together with (2.18) proves (2.17). D

Corollary 4. // QeLp with 2 ^ p ^ o o and Rεζ> -ε/2 then QF°(ζ)eHom(L2). In
addition, for any a > 0, there is a constant c = c(a, ε, p) such that

^ (2.19)

for Reζ>a-ε/2.

Proof For p = 2, (2.19) follows from (2.13) and for p=oo it follows from (2.12).
Interpolating between these extreme cases yields the general result. D

With the above result in hand we return to the original goal of showing that
Fε(ζ) is small for Imζ large.

Proposition 5. Suppose that e2 ε ρFeLp(IR3) for some p>2, then for any a>0 there
are positive constants c = c (α, ε, \\e2ερ V\\L ), i = 1,2 such that Fε(ζ) has no poles in the
region {£:Re£>α — ε/2 and \ζ\>c1} and in that region

(2.20)

Proof Fix α>0. Equation (2.11) and Corollary 4 yield the estimate

,L2 ύ Φ, ε)|| e 2 ε ρ 7| |L p(l + \ζ\)"'+ ?

so we may choose c^α,ε,| |e2 ε < ?F||L p) so that ||X(C)||^l/2 for ReC>fl-ε/2 and \ζ\
>cv Then (2.10) shows that Fε(ζ) is holomorphic in this region and satisfies
ll^(0llL 2,L2^2||F ε

0(0||L 2 s L 2. Estimate (2.12) completes the proof. D

Since (τ — ίH)~ί = —iR( — iτ) occurs in the representation (2.1) it will be
important to translate inequality (2.20) into an estimate for Rε( — iτ)1. We present a
result needed in the proof of Theorem 1. For 0</?<ε/2, consider the region Ϋ~β in ζ
plane shaded in Figure 1.

1 The reader is reminded that with the convention Ho — A the resolvent R(z) is singular for zelR_.

Thus R( ]/z) is singular on the imaginary axis IΊR
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(β,β)

\£1
(-β-βi

Re C-β

Fig. 1. The region yβ in the ζ plane

Under the mapping τ = iC2 this is taken 1 — 1 onto the region ΰUβ shaded in

Figure 2.

Fig. 2. The region %β in the τ-plane {τ =

If ζEi^β with ReC large (say Re£>c) then ζ2 is in the resolvent set of H and for

such ζ

Rε(-ίτ) = Fε(ζ) ( 2 2 1 )

where the mapping — iτ = ζ2 is implicit in this formula and those to follow. By
Proposition 2, Fε(ζ) continues to a meromorphic function on i^β and it follows that
Rε( — ίτ) has a meromorphic extension to %β.

Definition. Let Gε(τ) be the meromorphic continuation of — iRε( — iτ) to %ε/2.

The reason for introducing a new notation is to avoid an ambiguity in the
symbol - iRε( - iτ) when τ is in <%β and - iτ is not in the spectrum of H.

Corollary6. Suppose e2ερVeLp for some p>2 and that β>-ε/2. There is a

constant c = c{ε,β9 \\e2ερV\\L ) so that

(2.22)

for all with \τ\>c.
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Proof. Gε(τ)= —iFε(ζ) where τ and ζ are related by the mapping — iτ = ζ2. Since
|τ | 1 / 2 = |CL the Corollary is an immediate consequence of Proposition 5.

Appendix

In this appendix we show that | | ^ ( ^ ) | I L 2 , L 2 =
 c o n s t M ~ \ s o inequality (2.17)

gives the correct rate of decay as |Im£|-> oo. The lower bound is not needed in any
of the proofs. A similarity by the operator e~^eβ and a change of scale shows that
it suffices to consider the operator L(ζ) with kernel e'^^π^y — xl)"1 e " ζ | y " x | e~ | x L
The idea is to reduce to a one dimensional problem by considering the restriction
of L(ζ) to spherically symmetric functions.

Let ^:Lr

2

adial(IR3)->L°dd(IR) be defined by (0tg)(s) = g\{x\=s for s^O and ^g(-s)
k= — @tg{s\ and let SFk be the Fourier transform acting on L2(JRk) (kernel of <Fk is

(2π)~k/2e~ίx'ξ). Then 01 commutes with #"fe in the sense that
&k\Uf*xφ})-*Ufί*xφ}\ JvL°d d(IRHL°d d(IR), and ^ " 1 ^ 1 ^ = ̂ 3 on
Lr

2

adial(IR3).
To estimate L(ζ) observe that for Re£>0

where we have used the fact that # 3 ((4π |x | )- 1 ^- ζ | x | ) = (2π)"3 / 2(C2 + | ξ | 2 ) " 1 . Thus,

on L°dd where we have used s for the variable on IR and σ for the dual variable. On
rod

1

L2(R) the operator 2Fγ

 1(ζ2 + σ2) ι^γ has kernel ζ ιe ζ | s ' s |. Thus for φ, ψeL°2

dd

— oo — oo

is s'ίsj

Since φ and ψ are odd, the integrand is invariant under the map (s,s')\-> — (s,s')
which interchanges the regions s'^s and s' ̂  5. Thus the integral over IR2 is twice
the integral over the set s'^rs. In this region \s'— s\ = s' — s so we obtain

2 _ , _ , _ _ τ

This formula proved for ReC>0 remains true for Re{> — 1 by uniqueness of
analytic continuation. We restrict attention to ζ = ίκ for κeIR For such ζ the
integrand in (2.24) is replaced by its complex conjugate under the mapping (s, 5')
H> — (s, s'). Thus for C = iκ

Take φ = φ to be real valued, then Fubini's theorem and the oddness of φ imply
that

/co \2

V , ^ " » ] - 4 J β->(s)cosκsds
\o /
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Let φκ = e~scosκs for sΞ^O, then the L2

dd(IR) norm of φ is bounded independent of
κ and the last identity yields

4 °°
> κ , « " > J = - - J έΓ2 s(cosκs)2ds. (2.25)

γ o

As |κ|—>CXD9 the integral on the right converges to - J e~2sds, so (2.25) yields the
2 o

desired lower bound.

§ 3. Proof of the Main Theorem

For Reτ>0 we have the identity

CO

-iR(-iτ)= J e-τteίtHdt. (3.1)
o

Thus, Eεe
ίtHEε has Laplace transform — iRε( — iτ). Our strategy is to recover

Eεe
ίtHEε by inverting the Laplace transform. For technical reasons, we consider

Eε(eίtH — I)Eε which has Laplace transform — iRε( — iτ) — τ~1E2. Formally, for any
d>0

E(eitH-I)E = _L d 7V(- i* β (- iτ ) - —) dτ (3.2)

where the ε dependence of Eε has been suppressed. The first goal is to study the
convergence of the integral in (3.2).

Multiplying the identity R( — ίτ)( — iτ — H) = I on the left and the right by E
yields

- ίRε( - iτ) - ^- = 1 ERε( - iτ)HE . (3.3)

For ψ in the Sobolev space W2 the commutator of H and E is given by

Since every derivative of ρ is uniformly bounded on IR3 it follows that for any
multiindex α, \Dle~εβ\^cae~ερ. Therefore, E~1[H,E'] is a bounded operator from

3 to L2(R3). Let M = tf+ £-*[#,£]eHom(»F 2 ,L 2 ) then

£ 1
- iRe( - iτ) - — = - ,Rε( - iτ)M (3.4)

an identity in Uom(W2,L2). It follows that

τ

c

W2,L2 I 1 '

Corollary 6 shows that for |τ| large \\Rε{-h)\\L2)L2^c\τ\~112. This together with
(3.5) proves the absolute convergence of the integral in (3.2), in the space
Hom(VF2,L2), and therefore justifies (3.2).
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Next we deform the contour in (3.2) into the left halfplane. For any β > — ε/2
the integrand has the meromorphic continuation eτ\Gε(τ) — τ~ιE2) to the region
%β. In the following computations we suppress the ε dependence of Gε. By
Proposition 5, Fε(ζ) has only a finite number of poles in the region R e £ ^ β so G(τ)
has only a finite number of poles in <%β. We may decrease β if necessary to insure
that Fε(ζ) has no poles on {\ζ\ ^β}\J8i^β with the possible exception of 0. Then G(τ)
has no poles on d<%β\0 and is continuous from above and below at all points of the
"slit" {(5,0), - β 2 ^ 5 < 0 } in %β.

Identity (3.4) continues to the region <^ε/2 in the form G(τ)-τ~ 1 E 2 = τ~ίG(τ)M
and this implies the analogue of (3.5) for τ e ^ ε / 2

0, , , -U Sjί-HGWII^,

Then Corollary 6 implies that there is a ct so that for τe°Uβ with | τ | > c l 9

G(τ)--
W2,L2

(3.6)

Let 3S be a disc in C with center at the origin and radius less than β2. Estimate (3.6)
justifies the use of Cauchy's theorem to deform the contour (d — ίco, d + ίco) to

EeitH E-E2=^-. j £τ\G(τ) -—dτ+Σ Res(eI( G(τ) τ = τ})

where the finite sum is over all poles of G(τ) in the region ^ \ 0 . The segment from
— β2 to radius (β) on the x-axis requires some comment. It is understood that this
segment is traversed twice. First from left to right with G given the values G(τ — JO),
then the contour goes around the disc 3d and returns on the x axis with G given the
values G(τ + /0). The contour d(<%β\3$) consists of a bounded arc in Reτ^/J 2 and
the part in Reτ</?2. On the first piece the terms of the integrand are continuous
with values in Hom(L2) so that part of the integral converges absolutely in
Hom(L2). On the unbounded part there is a constant c > 0 so that

(3.7)

Since Corollary 6 implies that | |G| |L 2 Li is bounded on d(<%β\3$) it follows that both

- 1 E2

J eτtG(τ)dτ and — j eτt — dτ
2τzi n«ηιn\m\ T

are absolutely convergent in Hom(L2). In addition, the second expression can be
evaluated exactly. It is — E2. Thus

EeitHE= - ί J eτtG(τ)dτ+YJRQs(eτtG(τ);τ = τj) (3.8)

the integral converging absolutely in Hom(L2).
The theorem is proved by studying the terms in (3.8). Partition the poles into

two classes, those on the imaginary axis, iωv iω2, ...,iωι and those with Reτ 7 <0.
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The residue at a pole with negative real part is of the form

Res(G(τ)e«;τ = τj) = pj(t)ey (3.9)

where pj is a polynomial in t with compact operator coefficients and degree (pj) is
one less than the order of the pole. The operators (3.9) decay exponentially as
ί-»oo. For the imaginary poles abserve that the dissipativity of iH implies that

for R e τ > 0 . (3.10)

It follows that the poles ίcoj must be simple,

A
G(τ)= J- h function analytic at ΐω,

τ — icύj J

where Λj is compact. It follows that

Res(eτί G(τ) τ = iωj) = eiω^tAj. (3.11)

Consider next, the integral in (3.8). The contour is composed of two parts, the
parabolic arcs in the region Reτrg — β2 and the thermometer shaped contour in
R e τ ^ -β2. On the parabolic arcs | |G(τ)| |L 2 f L 2 is bounded. Then, the estimate (3.7)
for Reτ implies that for ί ^ l the norm in Hom(L2) of the integral over the
parabolic arcs is O(e~ct). This leaves the integral over the thermometer. The
number β was chosen so that Fε has no poles ζ of modulus 0<\ζ\Sβ so the
Laurent expansion

Fβ(0= Σ Bfi
j=-N

converges on a punctured disc of radius larger than β. Inequality (3.10) shows that

for CeIR+, llFe(ζ)llL2 L2Sζ~2 so that AT^2. Let τi->j/iτ be the inverse of the map

ζ\->ζ2 from rεl2 to kεj2 then for \τ\^β2,

G{τ)=-i £ Bj(]/^hy=^+C(τ) (3.12)
j=~2 τ

| | C ( τ ) | | L 2 t L 2 ^ φ Γ 1 / 2 . (3.13)

Use (3.12) to evaluate the integral over the thermometer, shaped contour, 2Γ,

- 1 - f G(τ)eτtdτ=~ f ^eτtdτ+ ^~ f C(τ)eτtdτ.
2πι g- 2πι j - τ 2πi g-

Then first integral on the right is exactly equal to B_2. By (3.13) and Cauchy's
theorem, the circular arc in the C(τ) term can be shrunk to the origin. Then by
(3.13) again

β2

C(τ)eτ-<dτH2c \σ-ll2e~σtdσ
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Summarizing the analysis of (3.8) we have shown that the residues at poles with
negative real part and the integral over the parabolic arcs are both O(e~ct) for c>0.
The residues at imaginary poles are given by (3.11) and the thermometer integral is
B_2 + O(t~1/2). Thus we have shown that

Eεe
itHEε-(β_2+ ΣeiωjtΛ)\ ύc(l + t)-1/2. (3.14)

\ . 7 = 1 / L2,L2

To symmetrize this formula let ω o = 0 and A0 = B_2. A consequence of (3.14) is
that for; = 0,1,...,/

1 τ

strong - lim - J e ~iω^ Eε e
iHt Eε at = Aj9 (3.15)

•* o

and

1 τ

strong-l im- J e-iωtEεe
itHEεdt = 0 (3.16)

if ω + a>j for some j . The mean ergodic theorem asserts that

1 τ

strong - lim — J e " ί ω t eίHt dt = Πω

T o

where 77ω is orthogonal projection onto nullspace (H — iώ). Thus, in the notation
of Theorem 1

ΠB= Σ Πiωj and EεΠiωjEε = Aj. (3.17)
j = o

Now

Σ j
j=o

Thus using (3.17) we see that (3.14) is exactly the estimate (1.8) of Theorem 1.
The invariance of J4?B under eitH is immediate, and, for any ίΞ>0 the

contractions eίtH are unitary on J>fβ. The invariance of J^S = (J^B)
L is a simple

consequence of these facts ([11, Proposition 6]). Alternatively, the estimate (1.8)
implies that

,: as ί^oo, e""φ^U in L2 (\KJ)}

and the invariance is apparent. This completes the proof of Theorem 1. •

§ 4. Genericity of t~ 3 / 2 Decay

In this section (3.8) is analysed more closely. We obtain an asymptotic
expansion for Eεe

itHΠsEε in decreasing negative powers of t. Necessary and
sufficient conditions are given for the scattering solutions to decay locally at a rate
ί"3/2. It turns our that ί"3/2 decay is generic. On the other hand, t~1/2 decay
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occurs at those values of the coupling constant when an eigenvalue or resonance
emerges from the origin, in particular, if nullspace(/ί)Φ{0}.

Consider the integral over the thermometer shaped part of the contour

-^\G(τ)e«dτ. (4.1)
2,711 g-

Since the expansion (3.12) converges uniformly on |τ|:gβ2 we may integrate term
by term to obtain

B-2+ Σ ^ K - ί τ y ' V c ί τ . (4.2)

Since j^—1 the circular part of the contour may be shrunk to the origin. In
addition, if j is even then the integrand is analytic in the disc |τ| ̂  β2 so the integral
vanishes. For; odd and τe [-β 2 ,0], ( - i(τ + iθ))j/2 = -(i(τ- iθ))jί2 and the integral
in (4.2) is equal to

-2eίπ/* J σjl2e~σtdt= -It 2 eίπ/4 J σj/2e~σdσ.
o o

Let

(i \
Γ\J-+l)9 (4.3)

\2 )

then it follows that the integral (4.1) has the asymptotic expansion

00

in the sense that for any N there is a c>0 so that

<cΓN~312.
L2,L2

Since the contribution of the rest of d{ββ\@) to the integral in (3.8) is 0(e~ct) this
proves the following result.

Theorem 2. Let H and Vbe as in Theorem ί, Fε(ζ) be the meromorphic continuation of
Rε(ζ2) to Reζ> — ε, Bpj^. —2 be the coefficients of the Laurent expansion of Fε at
ζ = 0, and Uj be given by (4.3). Then for any integer N>0 there is a constant c so that
for allt>0

(4 4)

L2,L2

A particularly important role is played by the case N = 0,

3 ' 2 . (4.5)
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This shows that it is B__ i which determines whether the scattering solutions decay
with rate t~1/2 or Γ3/2. There is ί"3/2 decay if and only if J5_ 1 =0. For "most"
potentials Fε(ζ) is analytic in a neighborhood of ζ = 0 so, in particular, β_ x = 0. In
this way we show that generically there is t ~3/2 decay. The following proposition is
needed in the proof and gives a simple criterion for the regularity of Fε{ζ) at the
origin.

Proposition 7. Suppose that eερVeL2, that Fε(ζ) is the meromorphίc continuation of
Rε(ζ2) to Re£> — ε, and that K(ζ) is the compact operator with kernel (2.8). Then
Fε(ζ) has a pole at ζ=0 if and only if I — K(0) is not invertible.

Proof Identity (2.9) when analytically continued reads

1. (4.6)

If [H-K(O)]" 1 exists then [I + KtC)]"1 is analytic on a neighborhood of ζ = 0.
Since F°(ζ) is analytic on R e ( > - ε it follows that Fε(ζ) is regular at ζ = 0.

Conversely, if I + K(0) is not invertible then [I + K(ζ)~]~x has a pole at ζ = 0.
Consider the Laurent expansion

with K_N + 0. Then

so to show that Fε has a pole at £ = 0 it suffices to show that F^(0)K_N + 0. Thus it
suffices to show that nullspace(F°(0)) = {0}. Now Fε°(0) has kernel e~ερ{y)(4n\y
- x l ) " 1 ^ " 6 ^ so far ψeL2

where φ = e~ερψ, and φeCco(β.3)C]L2 is the Fourier transform of φ. It follows that
if F°ε(0)ψ = 0 then φ = 0 so ψ = eερφ = 0 so nullspace (F°(0)) = {0} and the proof is
complete. •

Example. Dolph, McLeod, and Thoe [2, p. 332] construct examples of continuous
real potentials V with compact support for which / + K(0) is not invertible but
nullspace(#) = {0}. By Proposition 7, Fe(ζ) has a pole at ζ = 0 and the zero
nullspace implies that B_2 = 0. It follows that B_ί+0 so these examples exhibit
ί~1/2 decay. Notice that the nontrivial "if part of Proposition 7 used here.

Theorem 3. (1) If z\-^Vz is a holomorphic function on a connected open set
with values in L2(IR3, e2ερ(x)dx) and Vzo = 0for some z0eΩ then for all but a discrete
set ofz the meromorphic continuation ofEε(ζ2 — Ho — Vz)~x Eε does not have a pole at
ζ = 0. In particular ifHg = H0+gV with V as in Theorem 2 and gelSt, then, for all but
a discrete set of values of g, \\Eεe

itHΠsEε\\L2tL2 = O(Γ3/2).
(2) If e~ερ VeL2 and Fε(ζ) is regular at ς = 0 then there is a neighborhood of Vin

L2{1St3,e2ερ{x)dx) and aδ>0 such that for all V in this neighborhood, the analytic
continuation of Eε(ζ2 — H0 — V)~1Eε is regular for \ζ\<δ.
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Proof of(ί). Let Kz have kernel

4π\y-x\

Then z\->Kz(y, x) is holomorphic on Ω with values in L2(IR3 x IR3) so the map z
\-*Kz is holomorphic on Ω with values in the compact operators on L2. By
Proposition?, Eε{ζ2-H0-Vzy

1Eε is regular at ζ = 0 if and only if I + Kz(0) is
invertible. Since 14- KZo(O) = I is invertible, the analytic Fredholm theorem implies
that the inverse exists for all but a discrete set of z.

Proof of (2). Let K(ζ) be as in Proposition 7 and K'(ζ) the analogous operator with
V instead of V.

Then there is a constant cί > 0 so that

IIXίOJ-X'ίOίllHUbe^^idt^cJIK- Π L 2 ( R 3 i β 2 β β d x )

In addition, for \ζ\<ε/2 there is a constant c 2 > 0 so that

Thus, there is a neighborhood of Fin L2(1R3, e2ερdx) and a δ > 0 so that for V in
the neighborhood and |£| < δ,

\\κ\ζ) - x(0)| |L 2 > L 21| [/+κ(oy] \\L2ιL2

The Neumann series expansion implies that for such V, [/ + X ' (Q]" 1 i s holomor-
phic for |C| < δ. By (4.6), Fe(ζ) is regular for these ζ. D

Example. Suppose that I m F ^ O and Hg = H0+gVhas a real eigenvalue ω(g) with
ω(g)->0 as g decreases to g0. Then Fεtg(ζ) = Eε(ζ2-HO-gV)~1 Eε has a pole at
iω(g). It follows from Part2 of Theorem 3 that Eε(ζ2-H0-g0V)~ίEε has a pole
at C = 05 for, if it were regular then FEfg(ζ) would be regular for |£ |<δ and \g — go\
small. If Fis not very oscillatory then there will be no negative eigenvalues oίHg so
that ω(g) emerges from the continuous spectrum (— oo, 0] at the threshold value g0

of the coupling constant, and we have show that Fε^g has a pole at ζ = 0 for such
values of g. The same argument shows that there is a pole at ζ = 0 if there are,

possibly complex, sequences gn^g0

 a n d τ

n~*® s u c n t n a t τ« ^s a P°^e °f ^ε,gn- ^
n

Section 5 we interpret such poles as resonances so the above remarks are
summarized by the statement:

Fεtgo has a pole at ζ = Ofor those values of g0 at which an eigenvalue or resonance
emerges from the origin.

The above example only demonstrates that there is a pole at ζ = 0. It is
conceivable that the Laurent expansion at the pole has £ _ 2 φ 0 and B_1=0 so
that there would be ί~3/2 decay. By a more careful analysis of the dissipative case
we can show that this is not possible so that when Fε has a pole at ζ = 0, the local
decay is at a rate t~1/2. Thus at threshold values of the coupling constant
scattering solutions decay at this show rate. The analysis also shows that B_ί is a
finite rank operator so that by imposing a finite number of conditions on the initial
data w(0), t~3/2 decay can be recovered.
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Theorem 4. Suppose that V is as in Theorem 1, Fε(ζ) is the meromorphic continuation
of Eε(ζ2 — H0 — V)~1Eε, and, B} for j = — 2 are the coefficients of the Laurent
expansion of Fε at ζ = 0. If Fε has a pole at ζ = 0 then B_x is a nonzero operator of
finite rank.

Proof Let K(ζ) be the operator with kernel (2.9), then (4.6) implies Fε(ζ) [/+ £(£)]
= F°(0). Expanding in a Laurent series about ζ = 0 and equating the ζ " 1 terms
yields

It follows that range β_ 1[7 + K(0)]CrangeE_2. If 77 is orthogonal projection on
nullspace(770 + F) then (3.17) implies that B_2 — EJJEε so range B_2 is finite
dimensional. Since range [7 + 7C(O)] has finite codimension it follows that range
B_1'\s finite dimensional.

It remains to show that if B_t = 0 then Fε is regular at C = 0. By (4.7) if B_x =0

then B_2—— (0) = 0. From the explicit expressions for B_2 and K(ζ) it follows that

B_2-—-(0) = (4π)~ίEεIIVEε. Since Eε has dense range and trivial nullspace, this

operator vanishes if and only if 77F=0. Now, as operators defined on ^(77O),

7777O = 77(77O + V) - ΠV= - ΠV.

Thus, 77 V vanishes if and only if ΠHo = 0. Since HO has dense range this is
equivalent to 77 = 0. Summarizing the above computations we have shown that

Thus, if B _ x = 0 it follows that B _ 2 = 0, and consequently that Fε is regular at ζ = 0.
The proof of Theorem 4 is complete. D

The next result, suggested by H. Brezis, shows that if V^O then F(ζ) is regular
at ζ = 0 and we have ί~3/2 decay.

Theorem 5. Suppose, in addition to the hypothesis of Theorem ί, that V is real valued
and F^O. Then B_1=0.

Proof It suffices (using Proposition 7) to show that 7 — K(0) is invertible. By
Fredholm's theorem it suffices to show that weL2(IR3) and u = K(0)u imply w = 0. If

weL2(IR3) and u = K{0)u then w= -— *(e~ερu) satisfies (A + F)w = 0. In addition, it
4πr

is not difficult to show that w is a continuous function on IR3 with lim w(x) = 0.

Using the maximum principle for the Laplace operator we show that w = 0.
Suppose, on the contrary, that maxw = w(xo)>0. Near xo we have Aw= — Fw = 0.
It follows from the maximum principle that w(x) = w(x0) for x near x 0 so the closed
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set {x:w(x) = w(x0)} is also open. Therefore, we must have w(x) = w(x0) for all
xelR3. Since vφc)->Ό as |x|-*oo this provides a contradiction. In the same manner
one shows that wrgO so, in total, w = 0. Then 0 = Aw= — e~ερu so u = 0 and the
proof is complete. •

§ 5. Resonances and Poles of the Resolvent

Consider again the identity (3.8) which holds for all t >0. The proof of Theorem 1
shows that integral over the parabolic arcs on d^/β is O(e~ct) for any c<β2. Thus

EeitHE=ΣeiωjtEΠiωjE+ΣPM)eτjt+^ ί eτtG(τ)dτ + O(ect). (5.1)
o Zπι &

Recall that β was chosen to be any number so that the modulus of each nonzero
pole of Gε is at least β2.

For Theorem 1, we considered the limit ί->oo where the exponentially
decaying terms are neglibigle. However, for moderate sized time there is no reason
to discard any of the terms.

The point is not that the other terms are small but simply that for times neither
very large nor very small, one will observe motions with time dependence
jpowβΓgReτ̂  jfaQ connection between such behavior and the poles of the analytic
continuation of the resolvent (or of matrix elements of the resolvent) is an
established part of the lore of theoretical physics (see [3, Chapter 8]). They occur
in different contexts as unstable or virtual particles and are often called reso-
nances. The emphasis on moderate sized time agrees with the interpretation of
resonances given by Simon in [15].
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