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Abstract. The space of maps S3-»G has components which give the topological
quantum number of Yang-Mills theory for the group G. Each component of
the space has further topological invariants. When G = SU(2) we show that
these invariants (the homology groups) are "captured" by the space of
instantons. Using these invariants we show that potentials must exist for which
the massless Dirac equation (in Euclidean 4-space) has arbitrarily many
independent solutions (for fixed instanton number).

§1. Introduction

In non-abelian 4-dimensional gauge theories it is by now well-known that certain
topological aspects play an important role. More specifically the fact that, for a
simple non-abelian compact Lie group G, the third homotopy group π3(G) is
isomorphic to the integers leads to a "topological quantum number" k. The
purpose of this paper is to draw attention to further topological features and to
show how these are related to analytical aspects of the gauge theory.

Our basic observation is that the Euclidean Yang-Mills Lagrangian is defined
on a function space with many components (labelled by the integers) and that each
component has further internal topological invariants. Homotopically the func-
tion space is determined by the asymptotic data and so it can be identified with the
space Ω3(G) of maps S3->G (normalized to preserve base points). The components
of this space give π3(G) and are labelled by integers k, and each component Ωl(G)
is a space with much internal structure extensively studied by topologists.

As usual in order to deal with the asymptotic conditions in R4 we shall work
on the 4-sphere S 4 = JR

4uoo which is the conformal compactification. In this
version the relevant function space is the space of connections (potentials) modulo
gauge transformations. The space of connections is a linear space, with no
topological invariants, but after factoring out by gauge transformations we get a
space ^(G) which is homotopically Ω3(G). These basic facts are described in §2.
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One of the first consequences of the non-triviality of the space Ω3(G) or ^(G) is
the impossibility of fixing a gauge, i.e. there are topological obstructions to
choosing continuously a potential in each gauge-equivalence class. This aspect is
briefly discussed in §2 but for a fuller treatment we refer to the paper of Singer
[18].

In §3 we make a particular study of SU(2)-instantons, the minimum action
solutions of the Euclidean Yang-Mills equations. We show that, for large fc, the
homology of Ώ^(SU(2)) is "contained in" the homology of the space of instantons
of degree k [see Theorem (3.1) for a more precise statement]. Thus the complicated
homology of the function space is faithfully reflected in the global nature of the
instanton space. One noteworthy feature of the homology is that it is all generated
by configurations of k single instantons in the manner of Segal [17]. At this point
we should perhaps point out that a complete construction for all instantons is now
known in terms of linear algebra [6]. However this description, although in
principle very explicit, does not immediately give information on the topology of
the instanton space. An interesting problem for further investigation will be to
connect up our results [Theorem (3.1)] with those of [6].

In §4 we consider the (massless) Dirac equation coupled to instantons (of any
degree k^O). It is well-known that this equation has a fc-dimensional space of
solutions [7]. As we move over the instanton space Mk this gives a vector bundle
with fibre Ck. We investigate the global topological properties of this bundle and in
particular derive results on its Chern classes [Propositions (4.4) and (4.5)]. We
then use these results to prove topologically the existence of connections (not
solutions of the Yang-Mills equations) for which the coupled Dirac equation has
arbitrary large solution space [Theorem (4.6)].

These results for SU(2) can be extended to other groups G and set in a larger
context by considering the family of all Dirac operators parametrized by the space
#(G) of connection classes. This has a generalized index in the sense of [10],
namely the homotopy class of the map <ίί(G)-» J^ given by the Dirac operators
(where 3F is the space of Fredholm operators). This generalized index can be
identified, using results of [3], and leads to Theorem (4.12). This theorem has
cohomological consequences and as a particular application we show [Theorem
(4.14)] how to extend Theorem (4.6) to deal with all representations of SU(2).

In order to preserve the flow of the argument in §4 we defer till §5 the proofs of
a number of technical results, particularly those involving cohomological
calculations.

Finally in §6 we make some brief comparisons with 2-dimensional Yang-Mills
and with the 2-dimensional non-linear σ-model. There are some very interesting
analogies on the topological level.

Since we shall be dealing with infinite-dimensional function spaces care has to
be taken over the topological details. However all our results essentially concern
finite-dimensional subspaces of the function-space. For example statements about
homology are always of this kind. For this reason we shall not be over-pedantic on
this question. In particular we shall use "homotopy equivalence" where it might be
technically more accurate to use the weaker notion of homotopy equivalence on
compact subsets.
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§2. The Space of Connections

We begin by recalling the way in which the "topological quantum number" k
arises for a Yang-Mills theory in Euclidean 4-space. We start with a given gauge
group G which is assumed to be a compact simple Lie group [e.g. SU(2)]. The
gauge potential A(x) is a Lie-algebra valued 1-form on R*. To get a finite Yang-
Mills action we assume that as x-> oo, A(x) becomes a pure gauge. This means that
asymptotically A(x) takes the form

A{x)~g{x)-Hg{x) (2.1)

where g :S3-^G is defined on the "sphere at oo". If we normalize g by requiring
g(so) = ί, where soeS3 is some fixed point, then g is uniquely determined by A. The
homotopy classes of such maps g form the third homotopy group π3(G) and this is
known to be isomorphic to the integers for all G [if G = SU(2) the integer is given
by the degree of the map].

Suppose now that we consider not just a single potential A(x) but a continuous
family A(x,y) in which y runs over some compact parameter space Y. Then
asymptotically, putting a parameter y into (2.1) we have

A(x,y)~g(x,yΓ1dg(x,y) (2.2)

(where d = dx differentiates only the x-variables). In (2.2) g is a map S3 x 7->G or
equivalently a map Y->Ώ3(G), where Ω3(G) is the function space of maps S3->G
taking s0 to 1. The homotopy classes of such maps form an abelian group denoted
by [Y, Ω3(G)]. If Y reduces to a one-point space then we are in our previous
situation and the above group gives just the components of Ώ3(G), in other words
π3(G). If the individual components Ωl(G) were themselves contractible then no
further topological invariants would arise from any choice of Y. However it is well
known in algebraic topology that each component Ωl{G) is far from being
contractible and hence for suitable Y the groups [Y,Ώ3(G)] will give non-trivial
information going beyond the classification by components. For example if Y = Sn

then

For G = SU(m) we have

π4(SU(2)) ̂ π5(SU(2)) ^ Z 2 (integers modulo 2)

π5(SU(m))^Z (integers) for m ^ 3 .

Thus we see that the space of potentials, subject to the asymptotic condition
(2.1), has a rich topological structure.

In order to deal rigorously with this asymptotic condition it is convenient to
pass to the 4-sphere S 4 = JR4UOO. This is a sensible procedure for the Yang-Mills
equations since they are conformally invariant and S4 is conformally flat. We shall
therefore reformulate our discussion in terms of S4, and it is now convenient to use
differential-geometric language in which the potential is regarded as defining a
connection A in a. principle fibre bundle P with group G. The integer k now
appears as labelling the isomorphism class of P over S4. The asymptotic behaviour
of the Euclidean potential has gone into constructing P.
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To get further than the integer invariant k we now consider isomorphism
classes of bundles P with connection A. For technical reasons, related to the
normalization of g imposed after (2.1), we shall actually pick a base point ooeS4

and each P will be assumed to have a base point p^ over oo. Moreover
isomorphisms will be required to take base point to base point. With this
convention the set of isomorphism classes of all (P, A) will be denoted by #(G). The
topology of A induces a topology on ^(G), so that #(G) becomes a topological
space. This space can also be described more explicitly as follows. First of all #(G)
has a component #Λ(G), for each integer k, corresponding to the class of P. For a
given Pk let stfk denote the space of all connections A on Pk, and let ^k denote the
group of all (base-point preserving) automorphisms of Pk. An element of &k is thus
a gauge transformation which is the identity at the base point of S4, i.e. at oo.
Clearly $k acts on sdk and (£k(G) = jtfk/

(£k. The topology on ^k(G) is inherited from
that of stfk and is quite well-behaved in view of the following facts :

i) $0k is a linear space,
ii) <§k acts freely on s$k [i.e. g(A) = A=>g = l'],

iii) local slices exist for the action of @k on s/k (i.e. subspaces of s$k meeting
^-orbits in one point).

i) is clear. To prove ii) assume g(A) = A for some ge&k and Aes4k. Then g
preserves the parallel transport defined by A and, since g is the identity at GO,
parallel transport makes it the identity everywhere. The local slices in iii) are
essentially given by the transverse gauge. More precisely for Aes$k the orbit of ^k

through A is given infinitesimally by all dA(φ\ where φ is a section of the adjoint
bundle of Pk (with fibre the Lie algebra of G) vanishing at oo, and dA is the
covariant derivative defined by the connection A. An infinitesimal slice is therefore
given by solutions of the adjoint equation dA

i(/ψ) = 0. Standard analytic arguments
involving Sobolev spaces then show that this infinitesimal slice generates a local
slice. For further detail on this point we refer to [18].

Properties ii) and iii) imply that stfk^jtfk/$k = c£k(G) is a principal fibre bundle
with group &k.

The relation of the space ^(G), constructed on S4, to our earlier discussion in
K4, is clarified by the following:

Proposition (2.3). The space #(G) is homotopίcally equivalent to Ω3(G).

The proof of (2.3) is quite routine. We first deform ^(G) into the subspace
^(G)^ of connection classes which are flat near coeS4. For any such connection A
we pick a flat section α of P with oc(co) = pao and any section β of P over P 4 which
agrees with α on the fixed radial direction s0 (such β exist because # 4 retracts onto
the radial line). On a small 3-sphere around oo, α and β now differ by a map
g :£ 3->G with g(so)=l. By assigning g to A we get a map (£(G)ao-+Ω3(G) and it is
easy to check that this is a homotopy equivalence.

Further insight into (2.3) can be gained if we use "classifying spaces". We recall
that if K is any topological group, it has associated to it a space BK, called its
classifying space, which is well-defined up to homotopy. It can be constructed as
the base space of any principal X-bundle (called the universal bundle) with
contractible total space. It is inverse to 'the loop space construction in the sense
that B[Ω(κy]~K0 and Ω(BK)~K. Here Ω(K), the function space of based maps
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S1-^K is itself a topological group using multiplication of values, and Ko is the
identity component of K.

As a first instance of these ideas consider the fibre bundle j^k-^^k(G) with
group &k. Since $£k is a linear space it is contractible and hence (€k(G)^Bc§k. For
fc = 0, P0 = S4xG, hence <̂ 0 = Ω4(G)~Ω(Ω3(G)) and so B$0~BΩ(Ω3{G))~Ω3{G).
This gives the equivalence $0~Ωl(G) for the k = 0 components in (2.3). The
equivalence for other k is an automatic consequence because the homotopy type of
both ^k(G) and Ω^(G) is actually independent of k. For Ω3(G) this follows at once
from the fact that it is a topological group. For ^(G) we can define a composition
law which plays the same role for homotopy. This is the "connected sum"
operation defined most conveniently on ^(G)^ by cutting out small balls at oo and
glueing the complements together.

If we use the classifying space BG of G we can also describe explicitly the
inverse map Ω3(G)-*#(G). Using the equivalence ΩBG~G and the induced
equivalence Ω\BG)~Ω3{G) it is sufficient to describe a map Ω\BG)-^^(G). For
this we pick, once and for all, a standard connection ξ for the universal G-bundle
QG over BG and a point of QG over the base-point of BG. Then for any (based)
map / : S 4 ->JBG we form the pull-back connection /*(£) for the induced G-bundle
/*(QG) over S4. Assigning to / the class of f*(ξ) defines the required map

This map can be thought of in more concrete terms if we introduce a compact
parameter space Y and consider the induced homomorphism

where [7, ] denotes the homotopy classes of maps, which here form abelian
groups.

By the "universal" property of BG the group \Y,Ω\BG)~\ classifies, up to
isomorphism, G-bundles Q over S 4 x Y with a section q over oo x Y. If we choose
any partial connection A (using only the ^-directions) for such a Q we get a family
(<2y, Ay) of bundles with connection over S4, parametrized by ye Y. The class of this
family is the corresponding element of \_Y^{G)~\.

Since the Yang-Mills Lagrangian if depends only on the isomorphism class of
the pair (P, A) it is really a function on the space ^(G). In fact the base points we
have used so far do not affect 5£ and so if, as a function on #(G) has a further
group in variance. Since the base point p can be altered by operating with G we see
that G acts on ^(G) and if is invariant under this action. The reason why we do
not proceed to form the quotient space %?(G)/G is that the action of G is not free.
First of all the (finite) centre C of G gives an automorphism (not preserving base-
points) of any (P, A). Hence C acts trivially on #(G) and so the action of G on #(G)
factors through the adjoint group ad(G) = G/C = G. More generally if geG leaves
fixed the class of (P, A) in ^(G) then g centralizes the holonomy group of A
at oo. Thus G acts freely on the subspace of #(G) representing irreducible
connections, i.e. connections for which the holonomy group is the whole of G. In
particular when G = SU(2) the reducible connections occur only for k = 0, hence G
acts freely on ^k{G) for all fc Φ 0. The quotient space ^k(G)/G can then be identified
with the classifying space of the group <&'k oϊall automorphisms of Pk. Note that yk

contains ^k as a normal subgroup with ad(G) as quotient group. Certainly Ψk is
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not contractible and hence the fibration sίk-+stfjyk can have no section. In other
words we cannot continuously "fix the gauge". This observation is due to Singer
[18] who has extended it to cover k = 0 and other G. The non-triviality of the
earlier fibration jtfk-><stfk/yk = Ήk(G) can be interpreted as saying that we cannot fix
the gauge even up to an ambiguity in G.

§3. SU(2)-Instantons

In §2 we saw that the Yang-Mills Lagrangian i f is essentially a function on the
space ^(G) which is in addition G-invariant, and that ^(G)^Ω3(G) is an interesting
topological space. By analogy with other examples in the calculus of variations
and with finite-dimensional Morse theory we might expect an intimate relation
between the homology of the function space #(G) and that of the critical point set
of if, i.e. the space of solutions of the Yang-Mills equations. In particular we
might expect the absolute minimum of i f to carry a substantial part of the
homology of ^(G). The purpose of this section is to prove a precise theorem of this
type for the case when G = SU(2).

We recall that the absolute minimum of if is given by the self-dual solutions of
Yang-Mills equations if fc>0, and by the anti-self-dual solutions if fc<0 (see [15]
or [8]). We will concentrate on the case fc > 0. Let Mk C slk denote the space of self-
dual connections (instantons) for G = SU(2). Then as shown in [8] the quotient
space M'k = J(kiyk is a manifold of dimension 8/c— 3: this is the "moduli space of
instantons" of degree k. If we divide Jtk by the smaller group ^ f c we get a larger
manifold Mk which has dimension 8k and is fibered over M'k with fibre ad(G)
= SU(2)/{± 1} = SO(3). A point of Mk represents, up to isomorphism, a bundle Pk

with self-dual connection and a given point p^ over oo. In terms of the
corresponding vector bundle, with fibre C2, the point p^ gives a preferred basis at
oo.

Our main result is then:

Theorem (3.1). For G = SU(2) the inclusion MkC^k induces a map in homology

which, for k^>q, is a projection onto a direct summand.

In simple terms this theorem asserts that, as k increases, more and more of the
homology of the function space ^k is contained in the space of instantons Mk.
Note that Hq(^k) is independent of k (since # f c ~ # 0 ) whereas dimMΛ = 8fc so that
Mk is a space which is growing with k and the same is true of Hq(Mk).

Before proceeding to the proof of (3.1) we shall make a number of comments
and conjectures. First of all, as mentioned in §1, a complete construction for Mk

(for all G) is now known in terms of linear algebra [6]. However this explicit
construction does not immediately give geometric or topological information
about Mk. For example it is not yet known whether Mk is always connected.
Theorem (3.1), which uses an earlier incomplete but easier construction, should be
regarded as a partial and provisional result. One might conjecture that a similar
result should hold for all G and that Hq(Mk)->Hqί$k) might actually become an
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isomorphism for k > q. One would also hope for explicit bounds for k as a function
of q to replace the asymptotic statement. Finally one might hope for the
corresponding (stronger) statements with homotopy replacing homology.

As just indicated the proof of (3.1) uses a construction for SU(2)-instantons
due to 't Hooft and others (see [15] or [8]). This construction starts from a
configuration of k distinct points in R4 each with an assigned positive weight. For
our purposes the weights play no role and so we shall set them all equal to unity.
Then the 't Hooft construction defines a map

θk:Ck(R*)-*Mk,

where Ck(R4) is the configuration space. By definition Ck(R4) is the quotient of
Ck(R4\ the space of ordered /c-tuples of distinct points, by the action of the
symmetric group Σk. Clearly Ck(R4)cR4k and this defines its topology. The action
of Σk is free and Ck{R4) has the quotient topology. Before proceeding further it is
perhaps useful to point out that the 't Hooft construction in JR4, as extended by
Jackiw et al. [15] to the conformal compactification S4, associates to (fc+1)
distinct points of S4 a self-dual connection on S4 up to isomorphism. However this
construction has no base point at oo and so yields only a map

When one of the (fc+1) points is fixed at oo we then get a preferred base point and
so recover the 't Hooft construction. In other words the diagram

Ck(R4) >Mk

i i

commutes.
There are various ways to describe the 't Hooft construction (and its conformal

extension). It can be described explicitly by giving the Yang-Mills potential in R4

as a function of k points al9...9ak. This description starts from the auxiliary
function (or "super-potential")

(see [15]). In the algebraic geometric translation of [11] the construction uses k+1
lines of complex projective 3-space. Finally in differential-geometric terms it can be
described as follows [8, §6]. We take the SU(2)-connection on R4 which is the pull-
back of the standard SU(2)-connection ξk on quaternionic projective fc-space Pk(H)
by the map

u^(U(u-aιΓ\...Λu-aky
1). (3.2)

Here u,aί,...iak are all viewed as quaternions. Note that when u = aί we can
eliminate the apparent infinity by multiplying by the quaternionic scalar (u — α ), a
process which is admissible for projective coordinates. The point u = oo goes into
the standard point (1,0,..., 0) and the differential of 3.2 at u = oo is independent of
the α , which is why we get our base point at oo.
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The configuration spaces Ck(R4) and more generally Ck(Rn) play an interesting
and important role in algebraic topology and are intimately related to the function
spaces Ωl{Sn) of (based) mappings Sn-^Sn of degree fc. More specifically there is a
map

which can be defined (up to homotopy) in a variety of ways. The simplest
definition is to view fc points in Rn as fc "electrically charged" particles and to
associate to them the corresponding "electric field" E which is a function on Rn

taking values in JR"U oo. Since E->0 at GO it extends to a map E of Sn = Rnu GO to Sn.
It takes the base-point oo of the argument Sn into the base-point 0 of the domain
Sn, and it is easily checked to have degree fc. In this construction it is immaterial
(up to homotopy) what law of force or potential one takes as long as it is linear and
the field of a single charge has the properties:

i) £->0 at oo,
ii) £-»oo at the source,

iii) E is spherically symmetric.

Thus we could take the potential to be logr, - or - — T (if n>3). More

drastically we could take a field which has one of these potentials for r<ε/2 and is
identically zero for r > ε, where ε is some specified constant. For fc charged particles
(av ..., ak) we could even allow ε to depend continuously on the configuration and
be so chosen that the regions of the fc fields are disjoint, i.e. taking 2ε<sup|α ί —α7-|.

If n = 1, 2 or 4 so that JR" can be identified with one of the basic fields R, C or H,
the Segal map can be defined by the function

k Λ

Σ
iΞΊ u-at

where (u — a^~x is the inverse in the appropriate field. This corresponds to the logr
potential, combined with conjugation.

The topological significance of the maps φ\ is made clear by the following
striking theorem of Segal [17].

Theorem (3.3). The map φn

k : Ck(Rn)-+Ωn

k(Sn) induces isomorphisms in q-dimensional
homology provided k^>q.

In order to apply this theorem we need to relate the Segal map φk to the
't Hooft map θk. First of all we introduce a map

λ:Ω\S4)^ (3.4)

by assigning to any based map f:S4->S4' the pull-back /*(<!; J of the standard
SU(2)-connection ξί over S4 (the fc= 1 instanton). This map can also be described
as a composition

%. (3.5)
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The second map is the one explained in § 2 (and is a homotopy equivalence) while
the first is induced by the map j : 54->BSU(2) which classifies the standard bundle
on S4. More explicitly, using the fact that SU(2) is the group of quaternions of unit
norm, we can take BSU(2) = Po0(H) and; as the natural inclusion P1(ίf)->P00(Jfί).
Since the standard SU(2)-connection ξ on P^H) restricts precisely to give ξλ on
P^H), we have (//)*(£) = /*(£i) showing that the maps (3.4) and (3.5) do indeed
coincide.

Letting λk denote the restricting of the map λ to the /c-th components, we have
the following connection between the Segal and 't Hooft maps:

Lemma (3.6). We have a homotopy commutative diagram

Ω*(S4)

Ck(R4)-

where ik is the inclusion map.

Proof. In more concrete terms we have to show the following. If
α = (α1, ...,ak)eCk{R4\ let φOί:S

4->S4 be the Segal map and let fa:S
4-+Pk(H) be the

map (3.2) used in the 't Hooft construction. Then we have to show that, up to a
standard homotopy, the connections φ*(ξι) and /α*(£k) are naturally isomorphic.
But this follows at once from the commutative diagram

Pk(H)-Pk_2(H)cPk(H)

where Pk_2(H) is the subspace given by wo= ]Γ w = 0, ε is the homotopy

equivalence given by ι = 1

and we take φΛ in the form

i=ί

Lemma (3.6), combined with the Segal Theorem (3.3), already shows that for
q, that part ofHq(%) which is in the image of λk comes from Hq(Mk). In order to

refine this to get Theorem (3.1) we need a well-known result connecting Ω3(S3)
with Ω\S4\ namely

Lemma (3.7). Ω3(S3) is homotopically a direct summand of Ω4(S4). More precisely
the suspension map Ω3(S3)^Ω4(S4) is homotopically a right inverse to the map
Ω4(S4)^Ω4(BSυ(2))~Ω3(S3) of (3.5).

Proof For any G there is a natural map of its suspension SG into BG and the
composition

G-+Ω{SG)-+Ω{BG)
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gives the natural homotopy equivalence G~ΩBG. Taking G = SU(2) = S3 gives

S3->β(S4)->Ω(BSU(2)).

Now apply Ω3, i.e. take maps of S3 into the sequence, and the Lemma follows.

Remark. As the proof shows this Lemma uses the accidental fact that the sphere S3

coincides with the Lie group SU(2). It is therefore closely tied to the particular

dimensionality of our spaces, and the fact that JR4 = H is the field of quaternions.

As we have already noted the homotopy equivalence

Ω4(BG)~Ω3(G)~<£(G)

of (2.3) coincides with the second m a p in (3.5). Hence (3.7) tells us that

Ω3(S3)-+Ω4(S4) is a right homotopy inverse to λ:Ω4(S4)-^^. Now it is an easy

property of the Segal maps φ\ that they commute with suspension, i.e. that we

have homotopy commutative diagrams

Ck(Rn)—- • Ωn

k(Sn)

where σ is suspension and i is induced by the inclusion RnCRn+ ί. Combining this

diagram for n = 3 with that of (3.6) and the result of (3.7) we get finally a homotopy

commutative diagram:

Ck(R3) >Ω3(S3)

X M ^ / I
Ck(R4) >Ωt(S4).

In particular, the top part of the diagram shows that the map φl:Ck(R3)-+Ωl(S3)

factors homotopically through Mk. By Segal's theorem (3.3), φ\ induces isomor-

phisms in Hq provided k > q. It follows that

is projection onto a direct summand, which proves Theorem (3.1).

Segal's theorem (3.3) asserts that we have isomorphisms in Hq for k^ko(q). The

same lower bound ko(q) then works in Theorem (3.1). For q = l, Hx is the

abelianized fundamental group %γ and

since the covering space Ck(R3) of ordered k-tuples is easily seen to be simply-

connected. Hence, for fe^2, H^ is of order 2 and so /co(l) = 2, i.e.
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is projection onto a direct summand for fc^2. Similar explicit results for Hq (q^l)
depend on calculating the homology of the configuration space Ck(R3). Some
results in this direction will be given in the next section.

A significant feature of Segal's theorem (3.3) is that we cannot replace
homology by homotopy. This is clear by looking at fundamental groups, since (for

In fact the whole point of theorems of this type is precisely that the fundamental
group is essentially killed but that homology is preserved. Now we have shown
that Mk lies between Ck{R3) and Ωl(S3\ but at present we do not know which
space it resembles most. It seems more likely that Mk has a small fundamental
group and resembles Ωl(S3). This is compatible with the slight evidence so far
available since dimension counts show that the 't Hooft solutions fail to fill up Mk

for fc^3, whereas Hartshorne [14] has shown that they give all of Mk for fe^2.
Note that fe = 3 is precisely the value at which Σk becomes larger then Z 2 .

§ 4. The Dirac Operator

In this section we shall study the (massless) Dirac operator on S4, coupled to a
gauge field, and we shall show that the analysis of this operator is intimately
related to the topology of the space ^(G) of (classes of) connections studied in § 2.
We shall deal in detail with the case when G = SU(2), using the results of § 3, but the
general discussion will apply to any G.

We recall first that the Dirac operator on S4 acts on spinor fields interchanging
positive and negative (helicity). We denote by D the Dirac operator on positive
spinors: its adjoint D* is then the Dirac operator on negative spinors. More
generally, if P is a principal G-bundle on <S4 with connection A and if ρ: G-> U(n) is
a unitary representation of G, we can extend D to an operator DA acting on
positive V-valued spinors, where Fis the C"-bundle associated to P by ρ. This is D
"coupled to A".

We shall be particularly interested in the null space JίA = Jί(DA), i.e. the space
of solutions of the equation DAu = 0. Since DA is elliptic and S 4 is compact the
space JίA has a finite dimension say rA. Replacing DA by its adjoint D^ gives
similarly a space J^(DA) with finite dimension say sA. We now recall that by
definition, the index of the elliptic operator DA is given by

index DA = dim Jί{DA) - dim ^(D*) = rA-sA. (4.1)

The significance of the index is that it is invariant under perturbation. Thus
index DA depends only on the isomorphism class of the bundle P and hence on the
integer fc, which classifies P as in § 2. In fact the index theorem of [9] shows that

index DΛ = ρ(k)9 (4.2)

where ρ(k) is a certain multiple of k depending on the homomorphism ρ: for details
see [8].
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If A is a Yang-Mills minimum, i.e. AeJίk{G) in the notation of §2, then as
shown in [8] we have a "vanishing theorem", namely for fcΞ^O.

Ά*iPl) = 0. (4.3)

Thus sA = 0 and so rA = ρ(k) is constant for all AeJik(G). Dividing by the group C3k

of gauge equivalences we then get a vector bundle JV over the quotient space
Mk(G\ with fibre CQ{k\ As we shall see shortly, for G = SU(2), this vector bundle JV
is topologically non-trivial. In other words, not only does the topological invariant
k describe the number of independent solutions of the Dirac equation coupled to
instantons, but the global variation of these solutions over the space of instantons
is related to other topological invariants of the space ^(G).

We now take G = SU(2) and ρ:SU(2)->E/(2) the inclusion. In this case ρ(k) = k
in (4.2) (see [8]). Moreover if we use only the 'tHooft connections defined by
configurations of k points av ...,ak of K4 one can show explicitly that the solutions
of the corresponding Dirac equation have a natural basis ev ...,%, each e{ being
correlated with a point at (a proof will be given in § 5). In terms of the bundle N this
can be reformulated as follows:

Proposition (4.4). Let Ck(R3)^>Mk be the map given by the 'tHooft construction as
in § 2. Then the pull-back of N to Ck(R3) is isomorphic to the vector bundle
associated to the standard k-dimensional representation σk ofπ1(Ck{R3)) = Σk.

Note. In (4.4) JV is naturally (the complexification of) a real vector bundle and the
isomorphism is over the reals. The real structure of JV arises because spinors with
values in C 2 have a real structure, corresponding to the fact that the representation
C2®C2 of SU(2)xSU(2) comes from the real representation
SU(2)xSU(2)->SO(4)on#4

The standard topological invariants of a vector bundle are its characteristic
classes, namely the Chern classes c^H2^ , Z) in integral cohomology and (for real
bundles) the Stiefel-Whitney classes w^HX ,Z 2) in mod 2 cohomology. Using
(4.4) the characteristic classes of JV can be calculated algebraically from the
cohomology of the symmetric group. The simplest to calculate is w1. Since a class
in H1( , Z2) is given by a homomorphism πx ->Z2 it follows that w^σ^ is given by
the sign homomorphism Σk-+{ ± 1} (or Z2). It follows from (4.4) that vv̂ JV), pulled
back to Ck(R3) gives the generator of H1(Ck(R3\Z2) for fc^2. For higher-
dimensional classes we find in particular the following results which will be proved
in §5:

Proposition (4.5). Let p be an odd prime, then the bundle on Ck(R3) associated to σk

has the following non-zero classes modp:

i) cp_ 1 φ θ modp in Cp(R3), and more generally,
ϋ) <W-i)φOmodp in Cnp(R3) for all n^ί,

iii) c^.^moάp in Cnp{R3) \^n<p.
On the other hand if t<p—\ we have
iv) ct = 0modp in Cnp(R3) for l^

Propositions (4.4) and (4.5) show that the bundle JV of null-spaces of the Dirac
operator is highly non-trivial as asserted earlier.
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So far we have only used instanton connections, since for these we have the
vanishing theorem (4.3). In fact (4.3) does not hold for all connections. More
precisely we shall prove

Theorem (4.6). In each component ^Λ(SU(2)) there exist connections Afar which the
space of solutions of the Dirac equation DAu = 0 (and its adjoint) has arbitrarily
large dimension.

It may well be possible, given sufficient ingenuity, to exhibit explicit con-
nections for which the Dirac equation has many solutions. Our proof will be quite
different in that topological considerations alone force the existence of such
connections. Rather surprisingly we shall use the topological non-triviality of the
bundles N (over Mk) to prove Theorem (4.6). Thus the global behaviour of the
solutions of the Dirac equation coupled to instantons will force the existence of
other connections A which are very far removed from being instantons in that the
null-spaces J^(D^) are large instead of being zero. The explanation of this
apparent paradox is that to prove (4.6) for a given integer k we make use of the
bundles N over MtC% for larger values I Since ^k^% we can homotopically
transport Mι to ^ Λ , where it will not be related to Mk. Essentially the connections
A of (4.6) will be found on this transported copy Mf of Mz. If we carry out the
transportation carefully then the Yang-Mills action on Mf will be approximately
21 — k (when normalized so that the action of a basic instanton is equal to 1). Thus to
obtain the connections A of (4.6) we have to consider arbitrarily large values of the
action.

As an example if k = 0, so that M o is one point, we can take 1 = 2. Transporting
to ^ 0 the closed path on M 2 which arises from interchanging the two points in a
configuration of C2(R3) we can use the non-vanishing of w2 to deduce that (4.3)
must fail for some A on our path.

In dealing with the family of all DA we have therefore to face the fact that the
null-spaces J^(DA) have dimensions which jump. We cannot therefore make these
null-spaces into a vector bundle to obtain cohomological invariants. There is
however a standard way to get round this problem which we now digress to
explain.

First of all in dealing with differential operators (which are unbounded
operators on the Hubert space L2) it is standard to turn them into bounded
operators by altering the norms (i.e. using Sobolev spaces). In this way elliptic
differential operators become bounded Fredholm operators T on a Hubert space
if, i.e. they satisfy

ii)
in) T{H) is closed in H.
The space of all Fredholm operators, denoted by J^, has a metric topology

given by the operator norm. For any Te 3F its index is [by i) and ii)] well-defined
and one can show that 3F has one component J ^ for each value of the index. More
generally the homotopy type of J* is completely known. There is a natural
equivalence

^-ZxBU, (4.7)
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where BU = \imBU(n) is the limit of the classifying spaces of the unitary groups
n >

U(n). This result is (in a slightly different version) proved in the Appendix to [2].
As a consequence of (4.7) the cohomology of each component of #" can be
identified with the polynomial ring in the universal Chern classes c1 ? c2, Hence
if Ty is a continuous family of elliptic differential operators parametrized by ye Y,
we get a map Y—> J^ and hence we can define Chern classes in the cohomology of
Y If we have Jf(T*) = 0 for all ye Ythen these Chern classes coincide with those of
the vector bundle formed by the null spaces Jί(T^. Similar results hold for real
operators, O(n) replacing U(ή) and the mod 2 classes wt replace the cv

In our case after factoring out by the gauge equivalences we have the Dirac
family parametrized by #, hence a map ^ - ^ and classes w , c{ in the cohomology
of each component ^k. Moreover on restricting to MkC% we recover the classes
arising earlier from the bundle N. The classes are essentially independent of k in
view of the following easy Lemma (proved in § 5).

Lemma (4.8). The map ^k-^^k given by the family of Dirac operators is (up to
homotopy) independent of k, when we identify ^k^% and J \ ~ # o

Having extended our characteristic classes from Mk to the whole of Ck we shall
now use them to prove Theorem (4.6). As a simple illustration of the method we
shall first prove the partial result indicated earlier, namely the existence of
connections in ^ 0 for which the Dirac equation has non-zero solutions. Assume
the contrary then J^(DA) = 0 for all Ae%. Hence the (real) Dirac family ^ - ^
has the characteristic classes of the 0-dimensional vector bundle and so in
particular w 1 = 0 . But in M 2 C ^ 2 we have already seen that w1ή=0, giving the
required contradiction. The proof moreover shows that any circle of connections
in # 0 , on which the generator of Hι(^0, Z 2) is non-zero, must contain a connection
A for which the Dirac equation has non-trivial solutions.

For the more general case we need to consider the closed subspace £Fr>s of J ^
consisting of operators Twith dim Jί{T)^r (and hence dim J^(T*)^:s = r~ k. We
suppose fc^O, then a result of Koschorke [16] asserts that J ^ ' 5 has codimension
2rs and represents the cohomology class &r's given by the determinant

cr c r + 1 .

Cr-1 Cr

Cr-s+ί

If now Ty is a family of elliptic operators of index k with dim Jί{Ty) < r for all ye Y,
the image of the map Y-> <Fk does not meet #" r ' s and so the class β£r's goes to zero
in the cohomology of Y If on the other hand we can compute the Chern classes for
this family and show that £ P ' s φ 0 we can then argue that the image of Ymust meet
J^ ' 5 , i.e. dim^(Tyj^r for some ye Y

The strategy of proof of Theorem (4.6) is now clear. We shall use
Propositions (4.4) and (4.5) to prove that ^ r ' s=t=0 for suitable values of r,s. Given
any k ̂  0 and any r > k we pick a prime p > r and consider the class ΘCV ~ι'p ~1 ~k for
the family of Dirac operators. By Lemma (4.8) it is immaterial whether we consider
this in the cohomology of ^k or in the cohomology of any other component c€v We
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take l = np with n = p—ί — k, so that 1 ̂ n < p . We now calculate the pull-back of
grp-i,p-i-k t 0 Cnp(R3) using (4.4) and (4.5). Reducing modulo p and using iv) we
get

grp- i,P-1 -kΞ^_ jp-1 -kφo mod/? by iii).

This completes the proof of Theorem (4.6) for fc^O. For fc<0 we replace D by D*
and apply the same argument.

In view of Theorem (4.6) it is clear that we should consider the stratification of
the space ^k by the dimension of the null-space of the Dirac operator. Denoting by
^r's the subspace of A of index r — s = k for which dim J^(DA)^r we have

Theorem (4.6) tells us that this descending chain never terminates. Moreover the
method of proof clearly shows that this stratification has topological significance.

We return now to the case of a general group G, and a representation
Q\G^U(n). Again the family of Dirac operators gives a map

^ ( G ) ^ # - (4.9)

which gives us Chern classes in the cohomology of ^(G). For G = SU(2) we
exploited the connection with configuration spaces in order to study the map (4.9)
and evaluate its Chern classes. In general this elementary approach is not
available. However, determining the homotopy class of (4.9) is a special case of the
generalized index theorem of [10]. In fact the case of the Dirac operators is very
basic and was used in [3] in relation to the Bott periodicity theorems. We recall
that for the unitary groups Bott's theorem gives a homotopy equivalence

Ω(U)~ZxBU. (4.10)

Applying Ω2 then gives the further equivalence

Ω3{U)~ZxBU. (4.11)

The main result of [3] can now be formulated as follows:

Theorem (4.12). The map ̂ {G)-^^ given by the family of Dirac operators is
homotopically equivalent to the map Ω3(G)-+Ω3(U) induced by the map
ρ: G ^ U(n)-+ U9 where we identify Ω3(G) with <g{G) as in (2.2) and Ω3(U) with ^ by
(4.11) and (4.7).

If for example G—U(n) with n large then Ω3(G) will approximate Ω3(U) in
homotopy and homology (up to a suitable dimension) and so the low Chern
classes of the Dirac family will be non-zero even in the real cohomology of #(G).
They are then comparatively easy to detect as differential forms. The situation of
SU(2) was more difficult and subtle because there the Chern classes were of finite
order and had to be computed in the cohomology mod p.

As an application of Theorem (4.12) let us take G = SU(2) again but now we
take ρ:SU(2)->[/(m+l) to be the m-th symmetric power representation σm.
Cohomological calculations using (4.12), which will be carried out in §5, lead to
the following:



112 M. F. Atiyah and J. D. S. Jones

00

Proposition (4.13). Letfm(t)=l + ]Γ cfί
f be the formal power series giving the Chern

ι = l

classes of the Dirac family for G = SU(2) and ρ = σm. For m = l put fi{t) = f(t).
Then fm is determined from f by the formula:

If we pull back to the configuration space Cnp and work with modp
cohomology then (4.4) and (4.5) tell us that the first non-vanishing coefficient in
f(i) (excluding the constant term 1) is cp_ v From (4.13) it then follows that the first
possible non-vanishing coefficient in fm(t) occurs in the same dimension and is λm

times the corresponding coefficient of f(t) where

... +mp

= m + 2(m—l) + 3(m — 2)+ ... +m modp

φ θ modp, if p > r a .

It follows that, for p>m, the Dirac family for ρ = σm gives rise to Chern classes
which satisfy i) and iv) of (4.5). As will be shown in § 5 these then imply ii) and iii) of
4.5. The same argument as before then proves:

Theorem (4.14). Theorem (4.6) also holds for G = SU(2) and all representations
ρ = σm.

Finally we should point out that the results in [2] also enable us to refine (4.12)
by its real analogue. For this we need ρ:G-+Sp(rc) to be symplectic [e.g. if
G = SU(2), ρ = σm with m odd] and we use the real version of (4.11), namely

ί2 3 (Sp)~Zx£O,

where Sp and 0 denote the unions of the finite-dimensional symplectic and
orthogonal groups under inclusion.

§ 5. Deferred Proofs

In this section we give the technical proofs of results stated and used in the
previous section. We begin by discussing the solutions of the Dirac equation for
the SU(2)-connection associated to a configuration of k points α l 5 ...,α fc of R4. We
have to show that there is a natural basis eί,...,ek of the solutions with e{

corresponding to av This can be verified explicitly in a variety of ways. In the
algebro-geometric interpretation given in [11], instantons correspond to certain
algebraic vector bundles E over complex projective 3-space P3. The instantons
associated to points α l 5 ...,ak (and ak+1 = oo) give a bundle E, such that the twist
E(l) has a section s vanishing on the lines Av...9Ak+ί defined by the av Moreover
the solutions of the Dirac equation correspond to the sheaf cohomology group
H1(P3, E(— 1)). This cohomology group can be computed from the exact sequences
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where Θ is the sheaf of holomorphic functions, Γ = Λ 1uA2u ... vAk+1 is the curve
made up of the projective lines Ai9 JΓ is its ideal sheaf and s is defined by the
section s. Taking cohomology and using the fact that all the sheaves &(k) on P 3

have zero H1 and H2, we find

H\P3, E(- l))^H\P39 Λ ) = Coker {H°(P3, Θ)-^H°(Γ, ΘΓ)}.

This shows that if 1(P 3,E(— 1)) is naturally the quotient of the (fe + l)-dimensional
vector space having one basis vector eί for each line Ai by the one-dimensional
space spanned by Σet. If we fix Ak+1 (corresponding to ak+1 = GO) this shows that
el9..., ek give a natural basis. In the first instance all vector spaces are complex but
E has a real structure which makes all the above isomorphisms compatible with
complex conjugation. Thus ev ...,ek also give a basis for the real solutions of the
Dirac equation.

Note that in these calculations we have for simplicity (and in conformity with
§3) normalized out the "weights" λv ...9λk attached to the points aί9 ...9ak.

We come next to the proof of Proposition 4.5, which involves the cohomology
of the configuration space Ck = Ck(R3). Since this space is the quotient of the space
Ck = Ck(R3) of ordered configurations by the symmetric group Σk we first need
information about the integral cohomology of Ck as a module over Σk. Results
along these lines can be found in [12] but we shall give direct proofs.

Lemma (5.1). i) H*Ck is torsion free.
ii) The Poincarέ polynomial of H*Ck is (1 + ί2)(l + 2 ί 2 ) . . . (1 +(fe- l)ί2).

(Recall the Poincarέ polynomial of a graded abelian group A is £ aίtl where

a^rsίnkAi.) i = °

Proof Following Arnol'd [1] consider the map Ck-^Ck_1 defined by taking the
first fe — 1 points of the ordered configuration. This is a fibration, where the fibre
over the point (x1? ...,xk_1) is R3 — {xl9 ...,xk_1}. This fibre, F, has the homotopy
type of a bouquet of fe — 1 two-dimensional spheres. It follows by induction that
H2i~1Ck_1=0 and so the spectral sequence of this fibration is concentrated in
even dimensions and therefore collapses. We deduce that H*Ck is isomorphic as a
group to H*F®H*Ck_v By induction it follows that H*Ck is torsion free. If we
write pF(t) and pt(ή for the Poincare polynomials of H*F and H*Ct it also follows
that pk{t) = pF{t)pk_ί(t). Now pF(t) = (l+(k— l)ί2) and the proof of ii) is completed
by induction.

We will describe the structure of H*Ck as a Zfe-module in terms of a basic Σy
module Mk. By definition Mk is the highest cohomology group of Ck9

Let α be a partition of the integer fe, that is α = (felJ...,fcr) where the fet are
integers such that k1 + ... +kr = k. Then define Mα to be Mkί (x)... ®M fcr, Σa to be
Σkι x ... x Σkr and ia\Σa-^Σk to be the inclusion. Then Mα is a Σα-module and we
may form the induced Z^-module iΛjMa.

Lemma (5.2). As a Σk-module H*Ck^Q)ia^Ma where α runs through all partitions
a

(fe1? ...,feκ) ofk. The grading |α| of the term iaMa is 2(k — r).
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Proof. Let K denote the set {1,2,..., k} and, for any subset S of K, let E(S) denote
the space of embeddings S->R3. Then E(K) = Ck. For any partition σ of K into
disjoint subsets (X l 5...,X r) put E(σ) = ΠE(Ki). Then there is an obvious map
λσ:E(K)^>E(σ). If we pick an ordering of the Kt we can define a map
μσ:E(σ)-+E(K) by identifying the ϊ-th copy of R3, occurring in E(σ\ with the strip
ί—l<yi<iin the R3 occurring in E(K)(y1,y2,y3 being the standard coordinates).
The composition λσμσ is homotopic to the identity and so the cohomology of E(σ)
appears as a direct summand of that of E(K). If τ = (J 1 ? . . . , Js) is another partition
of K the non-empty intersections KtnJj define a partition στ. There is a map
Λ,σ τ : £(σ)->£(στ) defined on each factor -E(K ) using the partition of Kt given by the
non-empty intersections K(nJ.. Similarly, if we pick an ordering of the Kt there is
a map μστ:E(στ)^E(τ) whose component in the factor E(Jj) is defined using the
partition of Jj given by the non-empty intersections KtnJp with the induced
ordering. The commutative diagram

E(σ) ^

E(στ)^-*E(τ)

shows that λτμσ factors through E(στ). Consider now the case r = s. Then by 5.1 the
top-dimensional cohomology of E(σ) and E(τ) is in dimension |σ| = 2(fc — r), while
that of E(στ) is in dimension |στ|. If σ φ τ then στ is a strict refinement of σ and so
|στ|<|σ|. Hence λτμσ induces the zero homomorphism on H | σ | . It follows that

\~* 1 * (A^\ H\σ\(Ί7(π\\ v ΪJ*ί T7ί VW {$. Ί\

σ σ

is an embedding onto direct a summand. But from (5.1), we can compute the ranks

of these groups:

£(σ)) = (fcx - 1)! (k2 -1)!... (kr-1)!.

The fact that every permutation has a unique expression as a product of cycles
leads to the identity:

k\=Σ(k1-l)\(k2-l)\...(kr-l)\
σ

from which we deduce that (5.3) is an isomorphism. Finally we consider the action
of the symmetric group Σk on the terms in (5.3). Σk acts on the partitions σ of K
with orbits corresponding to the partitions α of the integer fe, and isotropy groups
ΣΛ. Thus the left-hand side of (5.3) is just φ i α (Mα) and so the proof of our
Lemma is complete. α

Lemma (5.2) enables us to compute the cohomology of Σk with H*(Ck) as
coefficient module. Recall first that
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and hence, for s>0, it is annihilated by a power of the order of Σa. In particular if
k = p is an odd prime, and if α is not the trivial partition /c, the order of ΣΛ is prime
to p and so

Hs(ΣkJJMa))p = 0 (5.4)

where ( )p denotes localization at p. From (5.2) we see that only the top-
dimensional cohomology group ϋ 2 ^ " 1 ^ ^ ) corresponds to the trivial partition
and hence

Hs(Σp,H
t(Cp))p = 0 for 0 < ί < 2 / ? - 2 , s > 0 . (5.5)

For s = 0 the groups Hs(Σp,H\Cp)) vanish for odd t and are torsion-free for
even ί. The Hochschild-Serre spectral sequence for the covering Cp->Cp then
shows that we have an exact sequence

and hence

H2p~2(Σp)p maps isomorphically to the torsion subgroup of H2p~2(Cp)p.

(5.6)

Now Zp is the p-Sylow subgroup of Σp and hence detects its p-primary
cohomology. In fact H*(Zp) is generated freely by a class u of order p in H2 and
H*(Σp)p can be identified with the subring generated by up~1. Moreover the total
Chern class of the standard representation σp, restricted to Zp, becomes

Combined with (5.6) this shows

φp) = 0 in (H2t(Σp))p for ί < p - l , (5.7)
p) = 0 in (H(Σp))p

cp_1(σp) gives a generator of the torsion subgroup (Zp) of H2p~2(Cp(R3))p.

(5.8)

Passing from integral to modp cohomology (5.7) and (5.8) give the n= 1 case of
(4.5). To deal with larger values of n we use the map

corresponding to the map λσ (for ordered sets) where σ is the partition of {1,..., np}
given by n blocks of p integers. On fundamental groups this induces the inclusion

\^ p) np '

Since the standard representation σnp restricts to σp® ... ®σp its total Chern class
c(σnp) restricts to c(σp)® ... ®c(σp) in H*((Σp)

n). For the corresponding bundles
Vnp9 Vp on Cnp, Cp the same formula holds. Hence cn(p_1}(Vnp) restricted to (Cp)

n

contains the class cp_ί{Vp)® ... ®cp_1(Vp).
Reducing modulo p this shows that i) implies ii) in (4.5). Similarly cn

p_1(Vnp)
restricted to (Cp)

n contains the term n\cp_1(Vp)® ... ®cp_1(Vp) and so for n<p
this is non-zero modp, proving iii).
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It remains to prove iv) for 1 <n<p. But ίorn<p,Zn

p is a p-Sylow subgroup of
Σnp and hence the p-primary part of c(σnp) is determined by its restriction to Z£,
namely by c(σp)® ... ®c(σp) in H*((Zp)

n). Since c(σ p )=l — up~1 the first non-zero
class in the tensor product is cp_ί and so iv) is established.

Next we come to the proof of Lemma (4.8). Since both %? and #" have
homotopy composition laws it is enough to prove that the map ^ - ^ given by the
Dirac family is compatible with these compositions. Actually it is convenient to
use the direct sum operation which clearly gives a commutative diagram

In addition we have a homotopy commutative diagram

where α is again the direct sum, β is composition and γ is induced by the inclusion
SU(2)^SU(4). If we replace <#(G) by its homotopy equivalent Ω3(G) the homotopy
oc~yβ arises from the well-known (rotation) homotopy between A®B and ,42?© 1
as maps from SU(2) x SU(2) into SU(4).

Putting together our two diagrams we conclude that <^(SU(2))->#' is com-
patible with composition.

Finally we come to the proof of Proposition (4.13). Using Theorem (4.12) we
see that we have to compare the two maps

Ω3(SU(2))->β3([/)~ZxBl/

given by σm and σ1. Taking Y to be any compact subspace of Ω3(SU(2)) it is
convenient first to relate the two elements um and u in K(Y) given by the maps
Y^ZxBU. The element u is related to the 2-dimensional bundle ξ on SAxY
[defined by Y->ί23(SU(2))~Ω4(£SU(2))] by

where β2 is the (iterated) Bott periodicity isomorphism

K{Y)^K{S4x 7,00x7).

Similarly um is given by

Using these two formulae we propose now to express um directly in terms of u. For
this we introduce the Adams operations ψm (see [2]) which are expressible in terms
of the σm by a polynomial formula:

xpm = mσm + composite terms.
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Since composite terms vanish on a suspension this gives

ψmβ = mσmβ.

But ψmβ = mβψm and since the algebra of operations in X-theory is torsion-free [2]
we can cancel by m and deduce

βψm = σmβ.

Iterating this once gives

σ

mβ2 = mβ2ψm or β~2σmβ2 = mψm.

Returning now to our formula for um we put η = ξ — 2 = β2(u) and expand

Thus

um = β-2{σm(η) + 2σm-1(η)+ ... + mσ1(η)}

= mψm(u) + 2(m - l)ιpm~1 (w) + ... + mψx(u).

Taking Chern classes now gives the required formula for fm(t) in terms of f(t) in
(4.13): we need only recall that the effect of xpm is to replace t by mt and that the
Chern polynomial takes sums into products.

§6. Comments and Comparisons

The main theme of this paper has been to demonstrate the intimate relation
between the analysis of the Yang-Mills theory (in 4 dimensions) and the topology
of the associated function space. It may be helpful, therefore, to compare our
situation with that in some other Lagrangian theories.

The best understood case is that of Yang-Mills theory in 2 dimensions. This
has been studied in detail, for all closed surfaces, from the point of view of Morse
theory [5]. In particular when the base manifold is the 2-sphere we get (see [4]) a
Morse picture which is quite analogous to the classical case of geodesies on G.
Moreover the Dirac operator can now be interpreted in terms of the Cauchy-
Riemann operator d and the stratification by the dimension of its null-space is
closely related to the picture of the Morse flow. The analogy with geodesies is tied
to the fact that both function spaces have here the same homotopy type, namely
Ω(G). In both cases the function space is therefore connected (for simple G), unlike
Yang-Mills over S4. Also critical points of arbitrary Morse index exist, i.e. the
Euler equations have solutions which are not minima of the Lagrangian.

Another case which has been extensively studied is the "non-linear σ model" in
which the Lagrangian is the "Energy" of a map f :S2^>S2. Solutions of the Euler
equations are called harmonic maps and it is known [13] that the only solutions
are absolute minima of the Lagrangian and are given by holomorphic maps / (if
degree / is positive) or anti-holomorphic maps (if degree / is negative). The
function space [if we normalize /(oo) = 0 say] is Ω2(S2) and has components given
by the integer degree as in 4-dimensional Yang-Mills. Moreover we have the Segal
map
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which assigns to a configuration of points a1,...,akeR2 = C the rational function

Here Mk denotes the space of all rational functions / which satisfy /(oo) = 0 and
have precisely k poles (counting multiplicities). Arguing precisely as in §3 we
deduce that, for kpq, Mk^>Ωl(S2) induces epimorphism in g-dimensional ho-
mology. Note that, even though Mk is a very simple space to describe, its actual
homology groups do not appear to be known. The analogy with our topological
discussion of Yang-Mills over S4 is quite striking. This analogy has also suggested
that higher critical points of the Yang-Mills functional on S4 may not exist, i.e.
that all solutions of the Yang-Mills equations are either self-dual (if k ̂  0) or anti-
self-dual (if k ̂  0). As yet this question remains open.

For this non-linear σ model the only analogue of the Dirac operator is
associated to a £/(l)-gauge theory and has no topological features analogous to §4.
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