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The Navier-Stokes Equations in Space Dimension Four*

Vladimir Scheffer
Department of Mathematics, Stanford University, Stanford, California 94305, USA

Abstract. Solutions to the Navier-Stokes equations in four space dimensions
are continuous except for a closed set whose three dimensional Hausdorff
measure is finite.

Section 1. Introduction and Notation

In this paper we will prove Theorem 1.1 below. The terminology and notation in
the statement of this theorem are explained in the remainder of this section.

Theorem 1.1. Let v:R4-+R4 be a measurable function such that §\v(x)\2dx< oo and
div(t>) = 0. Then there exists a measurable function u:R4 x (0, oo)-».R4 such that

oo

J jlφc, t)\3dxdt<ao,
o

u is a weak solution to the Navier-Stokes equations of incompressible fluid flow with
initial condition v, and the following property holds: There exists a set
AcR4x(Q,oo) such that

a) Ar\(R4 x [ε, oo)) is compact for every ε>0,
b) the 3-dimensional Hausdorff measure of A is finite, and
c) the restriction of u to the complement of A is a continuous function.

Notation. Hausdorff measure is defined in Section 2 (Definition 2.8). lϊX and Y are
euclidean spaces then C°°(X, Y) is the set of all infinitely differentiable functions
from X into Y, and Q?(X, Y) is the set of all functions in C°°(Z, Y) with compact
support. If / is a C°° function defined on an open subset of R4 x R (R4 should be
thought of as space and R as time) then /)./, D^f, and Dijkf are the partial
derivatives (d/dx^f, (d2/dxidXj)f, and (d3/dxidxjdxk)f with respect to the variables
X 1,x 2,x 3,x 4 of R4. The partial derivative o f / with respect to the R variable of
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4

R4xR is denoted by Dtf (the time derivative). We also set Af=Σ Duf = Duf
4 ί=1

(repeated indices are always summed), div(/)= Σ A/;~ A/i if the

and V(f) = ( D l f , D 2 f , D3f, D4f). Note that the time derivative is not included in the
definitions of A, div, and V. Analogous definitions are made for functions with
domain R4. If v:R4^R4 is square integrable then div(t;) = 0 is interpreted in the
distribution sense. We also set [α,b) = {ί:α^f<b}. Closed and open intervals are
denoted [α, b] and (α, b\ respectively.

Suppose v:R4-+R4 is square integrable with div(u) = 0. A measurable function
00

u:R4 x (0, oo)->JR4 satisfying J JM(X, t)\3dxdt< oo is called a weak solution to the
o

Navier-Stokes equations of incompressible fluid flow with initial condition v when
(1.1) and (1.2) are satisfied:

f $ujίx,t)Diφ(x,t)dxdt = Q if φeC%(R4 x R,R), (1.1)
o

*, 0)dx + j J M;(X, ί)(A0i + J 4>;)(x, ί)dxΛ

= 0 if φeC^(jR4 x K,^4),div(φ)-0. (1.2)

Observe that Holder's inequality, the integrability of |w|3, and the integrability of
\v\2 imply that the integrals in (1.1) and (1.2) make sense.

If aeR4 and 0<r<oo we set B(a,r) = {xeR4:\x — α|gr}. If X is a measure
space and Y is a euclidean space then LP(X, Y) is the Lebesgue Lp space of
functions with domain X and range Y. The Lp norm is denoted II II p. The norm | |
is always euclidean norm. If /is a C°° function defined on an open subset of .R4 x JR
or R4 then V f (see above) will also be denoted Df. In addition, D2f and D3/ will
be the vector valued functions with components Dtjf and Dijkf, respectively
(ΐj,fce{l,2,3,4}). If φeC£(X, Y) (see above) then sρt(φ) is the closure of
{x :ψ(x)Φθ}. If /is a function defined on a subset of K4 x R and 0, k are functions
defined on R4 then we set

(g*k)(x)=$g(y)k(x-y)dy

whenever the integrals make sense. If 0<ί< oo we define Ht: R4-+R by

Ht(x) -(4πί)-2exp(-|x|2/4ί). (1.3)

If t has a complicated form we will write

tf[f] = H f. (1.4)

We also define K:R4- {0}-+R by

K(x)=-(4π2\x\2Γ1. (1.5)



Navier-Stokes Equations 43

An absolute constant is a finite positive constant that does not depend on any
of the parameters in this paper. The symbol C will always denote an absolute
constant, and the value of C may change from one line to the next (e.g. 2C^C).
The symbols C15C2, C3,... will also denote absolute constants, but their values
will not change in the course of the paper.

We fix v satisfying the hypothesis of Theorem 1.1 and set

L = \\v(x)\2dx. (1.6)

See [4], [5] and [6] for theorems on the Navier-Stokes equations in 3-di-
mensional space. This program was inspired by the work of Mandelbrot [3]
and Almgren [1],

Section 2. Preliminary Results Involving Hausdorff Measure

Throughout this section we fix a positive real number D and functions / and fn in
L3(jR4x[0,oo),K4) for ne{l,2,3,...} such that l l/Ji^D and the sequence /„
converges to / weakly in ZA

Definition 2.1. If αejR4, 0<fr<oo, m is an integer satisfying 2"2m^b, and
ne{l,2,3,...} then we set

} f |/n(x, i)l3^il (2.2)
-2- 2 wB(a,2-™) /

Definition 2.2. Whenever 0 < M < oo the following statement will be known as
property P(M): If n1? w2, n3,... is an increasing sequence of positive integers, p and
q are integers, p<g, αe^4, 0<b< oo, and 2~2p ^b then

lim inf B(a, b, q, nk)

\ 3 / 2

From (2.1) and (2.2) we conclude that there exists an absolute constant Cx such
that

β(α, b, m, n) ̂  C^(A(a, b, m, n)) . (2.3)

We use C1 in the following lemma:

Lemma 2.3. For euery positive real number M there exists ε>0 such that the
following holds : If property P(M) is satisfied, αeJR4, 0<b< oo, p is an integer, 2~2p

^b9 and

(2.4)
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then

lim inf B(α, i>, q, n) ̂  ε(M + Cx + 1)23^ (2.5)
«-»oo

/or α/ί integers q satisfying q^p.

Proof. We choose ε > 0 such that

M(l + 2(M + G! + l))3/2ε3/2 ̂  ε. (2.6)

There is an increasing sequence nl9n29n39... of positive integers such that

lim inf A(a9 b, p9 n) = lim ^4(α, fc, p, nk). (2.7)
H->OO fc-*oo

Using the Cantor diagonal process and passing to a subsequence, we may assume

lim B(a, 6, m, nk) exists if m ̂  p. (2.8)
k-»oo

It suffices to prove

lim B(a, b, m, nk) ̂ ε(M + Ci + l)23p (2.9)
k-+ao

if m^p. We proceed by induction on m. If m=^p then (2.9) follows from (2.7), (2.8),
(2.3), and (2.4). Now suppose that (2.9) holds for m = p,p+l,...,q-L Then from
(2.8), property P(M), Definition 2.2, (2.7), (2.8), (2.4), and (2.6) we obtain

lim B(a, b, q, nk)
fc-»oo

\3/2 '

^ MI lim inf I A(a, b, p, nk) +
\ k->oo \

= MI lim A(a9 b, p, nk)}
\fc-00 /

\ 3 / 2

\ 3 / 2

2~mε(M + C1

ε3/223p(l + 2(M + C,+ 1))3/2 ̂  Mε23p + ε23p < ε(M + Cί

The lemma has been proved.

Lemma 2.4. There exists an absolute constant C2 with the following property : If
, 0<έ><oo, p is an integer, and 2~2p + 2"^b then

whenever ceR4, |βί-ci|^2-p"1 for /e{l,2,3,4}, and b-

Proof. This follows easily from (2.1).

Definition 2.5. Let p be an integer. We let Z(p) be the collection of all points
(a,b)eR4 x [2~2p+2, oo) which satisfy the following: a = (il 2 ~p, i22~p, i32~p, i^2~p)
where iί9i29i^9i4 are integers, and b—j2~2p where j is an integer satisfying j ^ 4.
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In the following lemma we use the function / given at the start of this section.

Lemma 2.6. Suppose M is a positive real number, property P(M) holds, ε is as in
Lemma 2.3, p is an integer, p^O, (α, b)eZ(p),

lim inL4(α, b, p - 1, n) ̂  C^ ^23p

(see Lemma 2A\ and

-ί for /e{l,2,3,4}, (2.10)

Then \f(c, d)\3 ^ Cε(M + C{ + l)23p for almost every (c, d)e Q.

Proof. From Definition 2.5, Lemma 2.4, and the hypotheses we obtain

lim inL4(c, d, p, n) ̂  C2 Aim MA(a9 b, p - 1, n)\ ^ ε23p

71-> 00 I «-*00

if (c,d)eβ. Hence Lemma 2.3 yields

c, d, q, n)^
n-» oo

iϊq^p and (c, d)e β. Hence (2.2) and the assumption that fn converges to / weakly
in L3 imply

l)23|> (2.11)

if f̂ is an integer, ^^p, and (c,d)eβ. We set
1 for /e{l,2,3,4}5 (2.12)

- .
Let (y,s) e βr. Choose an integer ^ such that q'^p, \ai — yi\ + 2~q'^2~p~1 for

ie{l,2,3,4}, b-2~2p^s-2~q>, and 5 + 2~q '^b. Let q be an integer such that
q ̂  #'• We set

4x R:\x- y\^2~cl,(s+j2-2q)-2-2q^t^s+j2-2«} (2.13)

whenever j is an integer and 1 — 2q ^j rg 2q. We also set

4x R:\x- y\^2-q,\s-t\^2~q}. (2.14)

From g^ g'^p^O we conclude that 1 — 2^ and 2q are integers and satisfy 1 — 2q

<2q. Hence (2.13) and (2.14) yield

J I/I 3 = ̂  / J I/I 3\ where the sum is taken over 1 - 2q ^j ^ 2q . (2. 1 5)
Q" J \Qj }

Using (2.15), (2.13), (2.11) with (c,^)-(y,5+j2~2g), the properties of q', and (2.10)
we obtain

(2.16)
Q"
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For every r>0 we set

R:\y-x\2 + \s-t\2£r2} (2.17)

and we let m be the Lebesgue measure on R4xR. From (2.17) and (2.14) we
conclude B ( y 9 s 9 2 ~ q ) C Q f f . Hence (2.16) and (2.17) yield

(m(B(y9 s9 2-«))Γ Ί J |/|3U Cε(M + C, + 1)23* . (2.18)
\B(y,s,2-i) I

Since |/|3 is an integrable function, (2.17) yields

lim (m(B(y9 s9 2 -«)))- V f |/|3\ = \f(y9 s)|3 (2.19)

for almost every (y9s)eQ'. Now (2.18), (2.19), and the fact that β' is almost all of Q
yield the conclusion of the lemma.

In the lemma below we use Definition 2.5 and the number D that was fixed at
the start of this section.

Lemma 2.7. There exists an absolute constant C3 which satisfies the following : Ifp is
an integer then

£ lim inL4(α, b9p-!9n)^ C32
6pD .

(a,b)eZ(p) «-*oo

Proof. For each (α, fc)eZ(p) (see Definition 2.5) we define φa b:R
4 x [0, oo)— »K by

φα>6(x,0 = (lx-α| + 2-"+1)-5 if b~2~2^

Φa b(x> 0 = 0 otherwise .

We have

Σ Φa.l
<C25p.

(a, b)eZ(p)

From (2.1) we obtain

) -Hence

(a,b)eZ(p)

The conclusion follows from the inequality lim inf (an) + lim inf (bn) ̂  lim inf (an
n->oo n->oo n->oo

+ U
Definition 2.8. For any nonempty subset B of jR4 x .R we define

and (c,ί/)eJ3}.

Let A be a subset of R4 x #. For every δ >0 we define φδ(A) to be the infimum of all
numbers of the form

where y4^ is a nonempty subset of R4 x K, ^4 C (J ^4ί5 and diam^^δ. Observe that
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φδ(A)^φn(A) if δ^η. This allows us to define H3(A)= Kmφδ(A). The number
<5-*0

H3(A) is called the 3 -dimensional Hausdorff measure of A. There is an extensive
treatment of Hausdorff measure in [2].

Lemma 2.9. Suppose p is an integer, p^O, M is a positive real number, property
P(M) holds, and ε is as in Lemma 2.3. Then there exists a set Ap such that

1) ApcR4 x [3(2 ~2p\ oo ) and Ap is compact,
2) φάA^Cs-^Difδ^S1^-*,
3) |/(x,ί)|3^Cβ(M + C1 + l)23p for almost every (χ,ί) that satisfies the con-

ditions (x, t)eR4 x [3(2 ~2p), oo) and (x, t)φAp.

Proof. For each point (α, fe)eZ(p) (see Definition 2.5) we set

for ie{l,2,3,4}, (2.20)

From Definition 2.5 we obtain

u{β(α, 6) :(a, £)eZ(p)} = £4 x [3(2 - 2^ oo) . (2.21)

We set

Y(p) = {(a, b)εZ(p) :lim inL4(α, 6, p - 1, n) ̂  C J 1ε23^} , (2.22)

(2.23)

From (2.22) and Lemma 2.7 we obtain

(cardinality(7(p)))C ~ 1ε23p = Σ C2 1&*P (2.24)
(a,b)eY(p)

^ Σ limmϊA(a,b,p—l,ri)
(a,b)eY(ρ) n^ °°

(a,b)eZ(p) n->oo

We conclude from (2.24) that Y(p) is a finite set. Combining this with (2.20) and
(2.23) we obtain that Ap is compact. This fact and (2.21) yield part 1). From (2.20)
and p^O we conclude (see Definition 2.8)

. (2.25)

Combining (2.24) and (2.25) we obtain

(4/3)π(2- 1 diam(β(α, fc)))3 ̂ CE~ID. (2.26)
(α, b)eY(p)

Now the countability of Z(p), (2.23), (2.25), and (2.26) yield part 2) of the lemma.
From (2.21) and (2.23) we obtain

(2.27)

Take (α,b)eZ(p) such that (α,b)£Y(p). Then (2.22) yields
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Hence Lemma 2.6 and (2.20) yield

for almost every (x9t)eQ(a,b) (2.28)

if (α,6)eZ(p)- Γ(p). Finally, (2.27), (2.28), and the countability of Z(p) yield part 3)
of the lemma.

Section 3. Estimates on Vector Fields

Throughout this section we fix a positive real number ζ and a C°° function
w:R4-^R4 such that div(w) = 0, j |w|2<oo, and J|Z)w|2<oo.

Lemma 3.1. jH3^C({|Dw|2)(j|w|2)1/2.

Proof. The Schwarz inequality and the case π = 4, p = 2, q = 4 of [7, Line 9, p. 127]
yield

fM3=jM>|^(f|^

Lemma 3.2. IfaεR4, t>0, and ί1 / 2^r<oo ίften fsee (1.3);

/ For every ie {0, 1, 2, . . . } we define ht:R
4-^R as follows : If i > 0 then ft.(x) = 1

for every xe£(0,2lr)-£(0,2I'~1r) and Λ f(x) = 0 otherwise. We set Λ0(x)=l if
xeβ(0,r) and /z0(x) = 0 otherwise. For every / we use Young's inequality to obtain

ί |
j=0 \B(α,2 ί + 1r)

B(α,2J+

+ c Σ I M3(2JrΓs251 IIH,M?

(2Jr)- 5 2 s ΊlίΓΛll 3

/ = 0 \B(α,2J+ 1ι )
|w|3

(3.1)
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We define a measure m on R4 by m(E) = J (|x — a\ -f r)~5dx. Minkowski's inequality
E

and (3.1) yield

(3.2)

i = 0

i = 0

From ί1/2 ̂ r we obtain £ 25ί/3 II H ffι.|| j g C. This inequality and (3.2) complete the
i = 0

proof of the lemma.

Definition 3.3. We define f:R4-+R4 by /f(x) = (w^ * H^xJD^x). We obtain

l l / l l 2 ^ l l w * H j l Λ l l D w l l 2 ^ l l w l l J l H j ! 2 l l D w l l 2 < o o . (3.3)

It is elementary that every φGCJ(K4,K4) has an orthogonal decomposition
(consisting of a divergence free vector field and a gradient vector field) φ = φ' + φ"
in the Hubert space L2(R4,R4) where [see (1.5)] φ" = (ydiv(φ))*K = dίv(φ)*ΫK [so
that Δφ" = Vdϊv(φ)']. We conclude

Hence we can use (3.3) to construct geL2(R4,R4) such that (3.4) and (3.5) hold:

Sg φ=Sf-(φ-((rdiv(φ))*K)) if φεC%(R4,R4). (3.5)

Lemma 3.4. // αe#4, C 1 / 2^r<oo, φeC^(R4,R\ and spt(φ)cB(a,r) then

Proof. We define J:R4-^R by

J(x)^(|x-α| + r)-5. (3.6)

Let ε>0 such that 4e<r and 4ε<r~1. We construct C°° functions α', j5'5 y7 with
domain R4 and range [0, 1] such that the following conditions are satisfied :
α'(x)=l if xe£(0,fi), α'(x) = 0 if x^ΰ(0,2ε), fillDα'll^+β^lDVII^^C, β'(x)=l if
xeB(0,r), j8;(x) = 0 if x^B(0,2r), r\\Dβf\\OQ + r2\\D2βf\\00 + r3\\D3β'\\oo^C, y'(x) = l if
xeB^ε'1), /(x) = 0 if x^O^ε'1), ε " 1 l l D / l l 0 0 + ε " 2 l l D V I I 0 o + ε"" 3 l l l>Vl l 0 0 ^C.
We define functions α, j8, y, δ with domain R4 and range [0, 1] as follows: α = α',
β = β'-af, y = y'-β', δ = l-yr. We have

(3.7)

(3.8)
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Since A K(x) = 0 for every x φ 0, we have A (βK) (x) = 0 for every x e B(0, r) - B(0, 2ε).
We conclude

\\A(βK)\\^C. (3.9)

We use Definition 3.3, div(w)=0, the Schwarz inequality, Young's inequality, and
(3.8) to obtain

+ l ! w l l 2 l l D 2 ( / . l l 0 0 ) ε 2 . (3.10)

We use Definition 3.3, div(w) = 0, spt(φ)cB(a,r), spt(β)CB(Q,2r), and the genera-
lized Holder inequality to estimate

ί
(«,3

From Lemma 3.2 we obtain

J |w*
r)

|3(|x-α| + r)-5rfx). (3.12)

We also have

J |w|3^Cr5(j|w(x)|3(|x-α +rΓ5dx). (3.13)

Now [7, Proposition 3, p. 59], spt(0)CB(α,r), spt(jS)cJ5(0,2r), Young's inequality,
and (3.9) yield

llDf/(wfcZ)fc^^

l^^c/ f N^^llDφlL
\B(α,r) /

5^)1/3. (3.14)

Combining (3.11), (3.12), (3.13), and (3.14) we obtain

^^ (3.15)
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From Definition 3.3 and the hypothesis div(w) = 0 we obtain

\$ftDjίdiv(wφ)*yK)\

= \$(Wj*Hζ)WίDijk(Wkφ*γK)\

= |J (Wj*Hζ)Wi(wkφ*Dijk(γK))\ . (3.16)

Now (3.8), spt(φ) C B(a, r), and Holder's inequality yield

\(Wkφ*Dijk(γK))(x)\

= \$(wkφ)(y)(Dijk(γK))(x-y)dy\

£C\\φ\\J ί \W(y)\dy\(\x-a\+r5

\B<α,r)

J
\B(β,r) B(a,r)

B(fl,ι ) /

Q^n-al + rΓ'dynx-al + rr5. (3.17)

Combining (3.16), (3.17), and (3.6) we obtain

^ Cll φ I I «/ 3/3(J |W(y)|3 J(y)dy)ll3($ |(w*Hζ)(x)| \W(x)\J(x)dx) . (3.18)

Furthermore, the generalized Holder inequality, Lemma 3.2, and (3.6) yield

^(J |(w*Hζ)(x)|3 J(x)rfx)1/3(| |w(x)|3 J(x)dx)1

ίίx)1/3

(3.19)

Combining (3.18), (3.19), and (3.6) we obtain

|| ftD](div(wφ)*γK)\ ZC\\φ\\ xr\\ |w(x)|3(|x - α| + r)~ 5dx) . (3.20)

We use div(w) = 0, the Schwarz inequality, Definition 3.3, (3.8), and Young's
inequality to estimate

l l D w l l 2 I
(3.21)
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Now we use (3.7), (3.10), (3.15), (3.20), (3.21), (3.3), I l w l l 2 < o o , IIZ)wl l 2 <oo,
l l H ζ l l 1 < o o , φeC^(R4',R\ and the fact that ε can be made arbitrarily small to
conclude

5dx). (3.22)

Using Definition 3.3, div.(w) = 0, spt(φ)CB(a,r), Holder's inequality, (3.12), and
(3.6) we find

lί/ W^Hίίv^

|w|2D j0|g(l/2)(r J |w*Hζl|w|2\ l l D φ l l ^
\B(a,r) }

J |w*Hζ |
3W3/ f | w | 3 3

B(a,r) I \B(a,r)

dx). (3.23)

Finally (3.5) (with φ replaced by wφ), (3.22), and (3.23) imply the conclusion of
Lemma 3.4.

For every πe{l,2, 3, ...} we set rn = nζ1/2 and construct a C°° function
<^:#4-^[0,l] such that φn(x) = ί if xeB(0,rJ2), φn(x) = 0 if xφB(0,rnl and

JI^Cr"1. Lemma 3.4 (with α = 0) yields

M l w l l 3 . (3.24)

From Lemma 3.1, I l w l l 2 < o o , and H D w l l 2 < o o we conclude I l w l l 3 < o o . We also
have geL2(R4,R4) (see Definition 3.3) and weL2(R4,R4). Hence we can take the
limit as π-»oo in (3.24) and conclude

k w ;=0. (3.25)

Lemma 3.5. Suppose αejR4, p is an integer, t is a real number, ζ^t^
α:,R4->[0, 1] is a C°° function, α(x) = 1 if xeB(a,2-p'1\ α(x) = 0 if xφB(a,2~p\ and

2. Then

If gi(xMx)Ht(x - a}a(x}dx\ ^ C(f |w(x)|3(|x - α|

Proof. We define k by the properties
1, k is an integer. (3.26)

The hypotheses imply p^k. For every integer; satisfying p^j^k we construct α^
as follows: We set αp = α; if p<j^k we choose a C°° function α^JR4-^^, 1] such
that α/x) = l if xEB(a,2~j-1\ α/x) = 0 if xφB(a,2~j), llDαJ.|i0 0^2-/ '+ 2. We define
φj .R4-*Ras follows:

φj(x) = Ht(x - a) (α/x) -uj+1 (x)) if p ̂  j < k
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From (3.26) and the hypotheses we conclude 2~j+1 ^2~/c+1^(2ί)1/2>C1/2 if
p-^j^k. We also have spt(φj)cB(a9 2~J'+1). The last two statements and Lemma
3.4 yield

If όfί(x)wί(x)/ίί(x - a)u(x)dx\

^ Σ \SgjίΦι(χ)ΦWdx\

^ Σ C(llD^.H[ϋ + 2^1llφ jllα))2-5^5(ί|W(x)|3(|x-α| + 2-^1)-5^). (3.27)

We have

0 < Ht(x) ^ Cί1/2(|x| + 1 1/2Γ 5, \D(Ht)(x)\ £ Cί1/2(|x| + tί/2Γ6 . (3.28)

We also have

0-B(α,2- ' -2) if j<k9

From (3.26), (3.28), and (3.29) we conclude

0<Ht(x-a)^C25j~k if xespt(α7.-α j+1) and j<k,

Q<Ht(x-a)^C24k if xespt(a fc),

\D(Ht)(x-a)\^C26j-k if xGSpt(αJ-α7 +1) and j<fc ,

|D(#ί)(x-α)|^C25k if xespt(αk).

From (3.30) and the properties of α^ we obtain

llDφ.| | 0 0 + 2^1ilφJ.|l00^C26^/c if p^j^k. (3.31)

Now (3.27), (3.31), and (3.26) yield

|f ^f.(x)w.(x)Hί(x - ά)ct(x)dx\

J=P
k

^ C(f |w(x)|3(|x - α| H- ί1/2)' 5dx).

The lemma has been proved.

Lemma 3.6. // 0<ί<oo, /eC00^4,^), f |/|2<oo, and f |£>/|2<oo then

\ \ f - ( f * H t ) \ \ 2 Z C t U 2 \ \ D f \ \ 2 .

Proof. Define g :R4 x (0, oo)->/? by g(x, s) = (f*Hs)(x). The relation £)tίj( = Jg yields

= fβ«(/"H.
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Hence Minkowski's integral inequality and Young's inequality yield

($\(f*Ht)(x)-f(x)\2dx)U2

/ t 2 \ l

= Π (£,/*/>,#,)(*)& d*l
\ o

2 \ l / 2

Section 4. Estimates on Approximate Solutions

Throughout this section we fix positive real numbers ζ and d such that (see
Section 1)

l^l. (4.1)

Definition 4Λ. We use induction to define functions iΓ1, v°9 v1, v2, ... such that

^L, div(t;k) = 0. (4.2)

We set v~1=υ (see Section 1). Suppose that /c^O and υk~ΐeL2(R4,R4) has been
defined so that (4.3) holds :

l lϋ k " 1 l l l^L,d iv( ty k " 1 ) = 0. (4.3)

We will define vk with the aid of several auxiliary functions. Let
uk:R4x[kd,ao)->R4 be given by uk(x,kd) = vk~l(x\ uk(x,kd + t) = (vk-ί*Ht)(x) if
ί>0. Let w f cijR4->-R4 be given by wk(x) = uk(x, kd + d). The relationship
Dt(uk) = A(uk) implies

kd + d \

l\Duk(x,ή\2dxdt . (4.4)
/

Similarly, the relationship Dt(Diu
k) = A(Diu

k) implies

(kd + d \

| |D.wk | | |=f|D.uk(x,ί)|2dχ-2 J j|D(D^)(%,5)|2^rfs (4.5)
\ ί /

for all te(kd,kd + d). Averaging (4.5) over t and summing over i we obtain

/kd + d \

llDwMl^ίΓ1 j \\Du\x, t)\2dxdΐ }. (4.6)
\ kd I

From (4.3), (4.4), (4.6), and the definition of wk we conclude that wk satisfies

(4.7)
1L, (4.8)

wkeCx(R4,R4) and div(w't)=0. (4.9)
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Hence we can replace w by wk in Section 3 and construct functions fk and gk

corresponding to / and g in Definition 3.3. We set

vk = wk-(d)(gk). (4.10)

In order to complete the inductive definition, we must show that (4.2) holds. Using
(3.4), (3.3), (4.7), and (4.6) we obtain

kd + d

J $\Duk(x,t)\2dxdt . (4.11)
kd I

From (4.10), (3.25), (4.4), (4.11), and (4.1) we obtain

/kd + d \

= \\vk-1\\2

2-2( f $\Duk(x,t)\2dxdt }+d2\\gk\\2

2

\ kd )

kd + d

^\\υk-ι\\l- J \\Du\x, t)\2dxdt. (4.12)
fcd

From (4.12) and (4.3) we conclude

(4.13)

If φeC™(R4,R) then (V άw(Vφ))*K = V(Δφ*K) = Vφ. Hence (3.5) yields \gk Vφ
= 0. We conclude div(0*) = 0. Combining this with (4.9), (4.10), and (4.13) we obtain
that (4.2) holds. The definition of the vk is complete.

We define u:R4 x [0, oo)— »jR4 (this is not the u in Theorem 1.1) by

u(x,t) = uk(x,t) if kd^t<kd + d. (4.14)

From (4.2) and (4.12) we conclude

]$\Du(x,i)\2dxdt^L. (4.15)
o

If ί ̂  kd then the property J|wfc(x, ή\2dx^ \\vk~ 1 \\2 follows in the same way as (4.4).
Hence (4.2) yields

for all ί^O. (4.16)

The argument in the proof of Lemma 3.1, (4.15), and (4.16) yield

φc, t)\2dx)($\u(x, t)\2dx)1/2dt^CL3/2 . (4.17)
/

Definition 4.2. In Lemmas 4.3 and 4.4 we fix ae jR4, 0 < fo < oo, and integers p and f̂
satisfying p< q, 2~2p^b, and d^2~2p~2. We construct C00 functions α:#4-^[0, 1]
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and j8:JR->[0, 1] such that α(x) = l if xeB(a,2~p-ί\ α(x) = 0 if xφB(a, 2~p\
^2p+2, \\D2oΛ\00^C22p, β(t)=l if t^b-2~2p-2, β(t) = 0 if t^b-2~2p + d, and
\\(d/dt)β\\00^C22p. We define φ:R4 x [(),&]->£ by [see (1.4)]

φ(x,ί)-(H[b-ί + 2-2^])(x-αW^(ί). (4.18)

Wehave(D ίψ-hJφ)(x,ί) = Oi f |x-α|<2~ ί ?~1 and fr-2~2p~2<£<i>. From this we
conclude

(4.19)

We also have

l lφl l o o ^C2 4 «. (4.20)

Lemma 4.3. i/fee{0, 1,2, ...},b-2~2p^kd + d^b and ζ^2~2q (see Definition 4. 2)
then

- f |tίk(x, /
+ d

f jK*,

Ted + d \

J {iDφc, t)\2dxdt .
kd I

Proof. From Definition 4.1 and (4.10) we obtain

f \uk+ l(x, kd + d)\2φ(x, kd + d)dx

yk(x)wk(x)φ(x, kd + d)dx) -+- d2(j \gk(x)\2φ(x, kd + d)dx). (4.21)

Using (4.20), (4.11), and (4.14) we find

ι|2 0(x, kd + d)dx) ^ Cd2 II gk II 2(24g)
'fcd + d \

j j"|Dw(x,i)|2rfxrfi (4.22)
fed /

The hypotheses on p, q, and k imply

The hypothesis of Lemma 4.3 implies

Now (4.18), Definition 4.2, (4.23), (4.24), and Lemma 3.5 yield [see (1.4)]

- β(kd + d)| J gff (x)wf (

(4.25)
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For every te(kd,kd + d) we define }ΐ:R4-+R4 by

tf(xHι/(x,ί) = φc,ί). (4.26)

From Definition 4.1 and the semigroup property Ha*Hb = Ha + b (see [8, Corollary
1.28, p. 16]) we obtain

w*(x) = U

k(x9 kd + d} = (vk-ί* Hd)(x)

ί])(x). (4.27)

The hypotheses of Lemma 4.3 and (4.1) yield the following for kd<t<kd + d:

(kd + d-t)ίl2<dl/2^ζίl2^(2-2q)ll2^(b~(kd + d} + 2-2q)1/2. (4.28)

Now (4.27), (4.28), and the proof of Lemma 3.2 yield

2q)ί/2Γ5dx) (4.29)

iΐkd<t<kd + d. From (4.1) and the hypotheses C ̂  2 ~ 2g, kd + d^bwe obtain d ̂  ζ
<^2~2q and d^b-kd. This implies d<,(l/2)(b-kd + 2~2q\ which in turn implies

whenever kd<t<kd + d. We conclude

(b-t + 2~2q)1/2>(b-(kd + d) + 2-2q}1/2^(l/2)ll2(b-t + 2-2q)112 (4.30)

iϊkd<t<kd + d. Now (4.30) implies

2g)1/2)-5rfx) (4.31)

if kd<t<kd + d. Using (4.29) and (4.31), averaging over ί, and using (4.26) we
obtain

fkd + d \
1 f $\u(x,t)\3(\x-a\ + (b-t + 2-2q)1/2Γ5dxdt . (4.32)

\ kd I

Finally, (4.21), (4.22), (4.25), and (4.32) yield the conclusion of the lemma.

Lemma 4.4. If b-2~2q^s^b and ζ^2~2q (see Definition 4.2) then

|ιφc, s)\2φ(x, s)dx) + J ί \Du(x, OI2Φfe t)dxdt

j |φc, t)\2dxdt] .
B(a,2~P) I
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Proof. We define integers k' and k" by the relations

(k'-l)d<b-2-2p^kd,k"d + d^s<(k" + l}d + d. (4.33)

From (4.33) and b — 2~2 pΞ>0 we obtain fc'^0. From Definition 4.2 we obtain
p^3d. Hence (4.33) and the hypotheses yield

Since fc'^0 we conclude 0^/c' <fc". From (4.14) we obtain

|ιφc, fc"d + d}\2φ(x, k"

/ *;=(1/2)lS-(

/ k "
= 0/2) Σ <

\k = k'

k"

- J |w"(x, fa/ + d)\2φ(x, kd + d)dx)

(4.34)

Taking the inner product of the relation Dt(uk) = A(uk) with ukφ (see Definition 4.1)
and using (4.14), Definition 4.2, and (4.19) we obtain the following whenever

\ιf(χ9 kd + d)\2φ(x, kd + d)dx)

-(l/2)($\uk(x,kd)\2φ(x,kd)dx)
kd + d

= - ί $\Dtf(x,t)\2φ(x,t)dxdt
kd

/kd + d

+ (1/2) j l\ιfi(x9t)\2(
\ fcd

/cd + d

g- I $\Du(x,t)\2φ(x,t)dxdt
kd

( kd + d \

j j \u(x,t)\2dxdt ) . (4.35)
fcd B(a, 2~P) /

From (4.34), (4.35), Lemma 4.3, the hypothesis of Lemma 4.4, and (4.33) we
conclude

\u(x9 K'd + d)\2φ(x, k"d + d)dx)

-(l/2)($\u(x,kd)\2φ(x,kd)dx)
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b

\b-2-ip

+ CdL\\Hζ\\2(24q)( J $\Du(x,t)\2dxdt
\b-2~2

k"d + d

- ί $\Du(x,t)\2φ(x,t)dxdt
k'd

/ k"d + d \

+ C(26p)ί f j \u(x,i)\2dxdt\. (4.36)
\b-2~2P B(a,2~P) I

Using (4.33), (4.14), Definition 4.1, and the argument that produced (4.35) we
obtain

(l/2}(l\u(x,s)\2φ(x,s)dx)

- (1/2)(J \u(x9 k"d + d)\2φ(x, k'd + d)dx)
s

= - j $\Du(x9t)\2φ(x9t)dxdt
k"d + d

+ (1/2)

S

k"d + d

+ C(26p)( } J |w(x,ί)|2dxdί). (4.37)
\k"d + d B(a,2~P) I

From Definition 4.2 and (4.33) we obtain β(f) = Q if ίgfc'd. Hence (4.18) yields

φ(x9t) = 0 if ί^W. (4.38)

Combining (4.36), (4.15), (4.37), (4.38), (4.33), and the hypothesis s ̂  b we obtain the
conclusion of the lemma.

Lemma 4.5. // /EC°°(#4,R4), αeR4, and 0<r<oo then

ί I/I3

\B(a,2r) J

Proof. Let φ ;jR4-*[0,1] be a C°° function such that ψ(x) = l if xeB(a, r\ ψ(x) = Qiϊ
xφB(a, 2r), and IIDtp II ̂  ̂  Cr~ *. Applying the argument in Lemma 3.1 to ψf we find

ί I/I3;
B(β,r)

ί
B(a,2r) JJ\ \B(a,2r]

B(α,2r) l\B(a,2r)
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Definition 4.6. If αe.R4, 0<fo< oo, ra is an integer, and 2~2m^b we set

/ b

A(a,b,m) = 2ml J J|t/(x, ί)|3(|x —α| + 2

f \u(x,t)\3dxdt\.

Theorem 4.7. // ae R4, 0 < b < oo, αrcd p, g are integers satisfying p<q,2~2p ^b, and
q then

B(a, b, q) ̂  C(A(a, b, p)} + Cd3/2L3 I I Hζ II l(26q)

m = p

Proof. It is easy to see that Definition 4.6 yields

b

(4.39)
m~ p

From Holder's inequality and Definition 4.6 we obtain

B(a,2-P)

b \ l / 3

J J (i)3^xJί
l-2^ B(a,2~P) /

, b, p))2/3 ̂  C(4(α, b, p))2/3 . (4.40)

From (4.1), p<q, ana ζ^2~2q we obtain d^2~2p~2. Hence α, b, p, ^ satisfy the
properties required in Definition 4.2. Therefore we can define φ as in Definition 4.2
and use ζ^2~2q, Lemma 4.4, (4.39), and (4.40) to conclude

|φ, s}\2φ(x, s)dx) + } J |Dtι(x, ί)l20(^, t)dxdt

,p))2^ (4.41)

^b. We set

Z = 2 - M(α, ft, p) + (*Σ 2 - mB(α, b, m)] + dL2 II Hζ I I 2(24«) + (A(α, b, p))2/3 . (4.42)

We consider two cases: q>p+l and q = p + l. Assume that q>p+l holds.
Definition 4.2 yields

24q^Cφ(x,t) if xeJ3(α,2~g + 1) and b-2~2q^t^b. (4.43)
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From (4.41), (4.42), (4.43), and φ^Q we obtain

J \u(x,s)\2dx^C(2~4(1)Z if b-2-2q^s^b, (4.44)
β(α,2-9+ 1)

b

J j \Du(x,t)\2dxdt^C(2-4q)Z. (4.45)
Z>-2- 2 ? £(α,2-<?+ 1)

Since u is C°° except at the points (x,kd) for /c = 0, 1,2, ... , Lemma 4.5 yields

B(a, 2

+ C/ j |/>φ;,s)|2ώcV j \u(x,s)\2dx}112 (4.46)
\β(α,2-«+ 1) / \ β ( α » 2 - 9 + 1 ) /

for almost every se(b — 2~2q,b). Now Definition 4.6, (4.44), (4.45), and (4.46) yield

2 - 6qB(a, b, q) ̂  C(2 ' 6g)Z3/2 . (4.47)

From (4.42) we obtain

m = p

+ C(A(a,b,p)). (4.48)

Then (4.47) and (4.48) imply the conclusion of Theorem 4.7 in the case q>p+l.
Now we assume q = p + i. We have

B(a, b, q) = B(a, fe, p + 1) ̂  C(B(a, b, p)) ̂  C(A(a, b, p)) .

The proof of Theorem 4.7 is complete.

Theorem 4.8. Let φeC%(R4 x R,R4) such that div(φ) = Q. Let N be a positive real
number such that \Dφ(x,t) — Dφ(x9s)\£N\t — s\ for all xeR4 and s,teR. Let T be a
positive real number such that φ(x, f) = 0 whenever xeR4 and t^T. Then

00

f ̂ (xj^iίx, 0)dx + J f ufa t)(Dtφt + Δφi)(x, ήdxdt
o

Proof. We define k' by the properties

kfd + d, k' is an integer . (4.49)

Observe that we have /c'Ξ^O. Now let /ce{0, 1,2, ...,/e'}. We use Definition 4.1, the
semigroup property Ha*Hb = Ha + b (see [8, Corollary 1.28, p. 16]) and (4.14) to
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write the following whenever fed < ί < fed + d :

) = (vk~ l *Hd)(x)

= (uk^(H{kd + d - ί]))(x, ή = (uf(H\_kd + d - ί]))(x, ί) . (4.50)

From (4.50) and Ha*Hb = Ha + b we conclude

(wj*#ζ)(x) = ((Uj*(H[kd + d- ί]))*Jίζ)(x, ί)

= (κι/*(fί[fedH-d-ί + C]))(x,ί) (4.51)

if kd<t<kd + d. We set

ί + C] if fcd<α<fcd + d, (4.52)

- f ] if kd<t<kd + d. (4.53)

Using (4.50), (4.51), (4.52), and (4.53) we obtain

J (w7

fc*Hζ)(x)w^(x)D7.φ.(x, fed + d)dx

= J (Wj*fί;)(x, tKufH'Mx, ΰDjφfa kd + rf)dx (4.54)

if kd < t < kd + d. Averaging (4.54) over ί we obtain

j (w5*Hζ)(x)w?(x)DJ.φ;(x, kd + d)dx
/kd + d \

= d~l\ ί iiv^i^^^^i^O^Ai^W + ̂ xdi . (4.55)
\ kd 1

From Definition 4.1, (4.10), (3.5), the assumption div(φ) = 0, Definition 3.3,
integration by parts, and (4.9) we obtain

= J wj(x)ψ4(x, fed + d)dx - d(j ̂ (x^^x, fed + d)dx)

- J uj(x, fed + d)φi(x, kd -f d)dx - d(J ff(x)φt(x9 kd + d)dx)

= J w£(x, fed + d)φt(x9 kd + d)dx

- d(j (yή*Hζ)(x)Dj^(x)φi(x9 kd + d)dx)

= j uj(x, fed + d)φ .(x, fed + d)dx

+ d(J (w7

fc*Hζ)(x)w^(x)D ̂ .(x, fed + d)dx) . (4.56)

From (4.55) and (4.56) we obtain

- J w*(x, fed + d)φt(x9 kd + d)dx
kd + d

ί J(Mj.*H;)(x,ί)(M;*H;')(x,t)^, (^^ + ̂ xΛ- (4-57)
kd
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Taking the inner product of the relation Dt(uk) = A(uk) with φ and using (4.14) we
obtain

kd + d

= j1 f u
kd

kd + d

= j Jiφ,0(AΦ; + MO(*>^xdί. (4.58)

kd

Summing (4.57) and (4.58) over all fee {0, 1,2,..., fc'} and using u°(x, 0) = υ(x), (4.49),
and the assumption on T we obtain

I k' kd + d \

= Σ ί ί(«J*/ίί)(x,ί)(«ί*ίίΓ)(^ί)^1(Λ>ω + d)dxΛ
\ f c = 0 fcd /

+ j j w,.(x, ί)(D(ψ, + Δφύ(x, t)dxdt . (4.59)
o

The Schwarz inequality, Young's inequality, (4.52), (4.53), and (4.16) yield the
following if kd < t < kd + d :

(4.60)

From (4.60) and the assumption on N we obtain

kd
J(M, * H XX, ί)(M; * H;')(X, ί)ΰ , 0i(^ ̂ ^ + d)dxdt

- j K"j*H3(x>0("ί*#Γ)(*>0#/Wx, ^CLNd2. (4.61)

Suppose kd<t<kd+d. The Schwarz inequality, the argument in (4.60), Lemma
3.6, (4.52), (4.53), the estimates kd + d-t<d, kd + d-t + ζ<d + ζ, and (4.16) yield

«J*H;XX, ί)("(*H;')(χ, t)- «/*,
g ί \(uj * H;)(X, ί)((Ml. * π;')(χ, t) - M^X, t))\dx

+ jKίu^H Xx, ί)-w/x, t))«, (x,

^ C(d + ζ)ll2 + C(d + ζγl2L(\\Du(x, t)\2dx) . (4.62)
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From (4.62) we obtain

kd + d

kd

kd + d

kd

'kd + d \

J l\Du(x,t)\2dxdt\. (4.63)

Combining (4.61) and (4.63), summing over ke {0,1,2,..., fc'}, and using (4.49), the
assumption on T, and (4.15) we obtain

Σ ί ί(MJ*H;Xx,ίXui*H^Xx,ί)D^i(x,fai + ίi)dxΛ
/

- j f M <x, ί)Mf(x, O^ Φ^,
0

+ c(k

ll^^ (4.64)

Finally, (4.59) and (4.64) yield the conclusion of Theorem 4.8.

00

Lemma 4.9. IfφeC%(R4 x R9R) then J ^ui(x9t)Diφ(x9t)dxdt = 0.
o

Proof. This follows from (4.2), the definition of i/, and (4.14).

Lemma 4.10. // 0 < η < oo, αe R4, αwd 0 ̂  ί' ̂  ί" < oo ί/zβn

|(M*jff>,r)-(M*H,)(α,OI^C(d + (r-0)(L1/2i7"2 + ̂

Proof. Define k' and fc" by

kd ̂ t'< k'd + d, k'd ̂  ί/r < k'd + d, fe; and k" are integers . (4.65)

We clearly have 0^/c'^/c". From (4.14) and Definition 4.1 we obtain

(u * Hη)(a, k'd) = (uk> * Hη}(a, kd) = (vk' ~ 1 * Hη}(d) . (4.66)

If kd<t' then (4.65), (4.14), Definition 4.1, and the semigroup property Ha + b

= Ha*Hb yield

(u * Hη)(a, t') = (uk> * fgfo 0 - ((ί;fe''1 * H[t - kfd]) * H.Xfl)

if W<ί / . (4.67)
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Now (4.66), (4.67), the Schwarz inequality, (4.2), and (4.65) yield

\(u*Hη)(a,t')-(u*Hn}(a,k'd}\

f - k'd + η] - H[ί/])Xα)|

2. (4.68)

A similar computation yields

|(M * Hη)(a, ί") - (u * Hη)(a, k"d)\ ^CLil2dη~2. (4.69)

Now we fix an integer k satisfying fc^O. The arguments that yielded (4.66), (4.67),
and (4.68) also yield

KM" * Hn)(a, kd) - (uk * Hη)(a, kd + d)\

= \(υk~ ! *H,Xa)-(u*- l*H[_d + η])(a)\^CLίl2dη~2. (4.70)

From Definition 4.1 [in particular (4.10)] we obtain

(uk + 1 * Hη)(a, kd + d)- (uk * Hη)(a, kd + d)

= (vk*Hη}(a)-(W

k*Hη}(ά)=-d(gk*Hn)(a). (4.71)

We fix «e{l, 2,3,4} and define ψ:R4-+R4 by φn(x) = Hη(a-x), φt(x) = 0 if z'
Then approximation of φ by functions with compact support, (3.5), Definition 3.3,
(4.7), (4.8), integration by parts, (4.9), (1.5), Young's inequality, (1.3), and (4.7) yield

= \$g*(X)φj(x)dX\ = \\fk(x)(φi-((Dί div(φ))*K))(x)dx\

= I J(w* * ίίζXx)Dχ(xX^ - ((D( div(φ)) *

= I ί (w* * Hζ)(x)w?(x)(DJ.φί - ((Dy div(0

^Cllw"*/ί ζ | | 2 | |w' I l l^- 5 / 2 ^cllw' t l l 2 l l/ί ζ l l 1 l lw ! ΊI^- 5 / 2 gCLί 7 - 5 / 2 . (4.72)

Now (4.71) and (4.72) yield

\(uk+ l*Hη)(a,kd + d)-(uk*Hη)(a, kd + d)\^CLdη~512 . (4.73)

From (4.70), (4.73), and (4.14) we obtain

\(u*Hη)(a,kd)-(u*Hη)(a,(k+l)d)\^CLll2dη-2 + CLdη-5<2. (4.74)

From (4.68), (4.69), and (4.74) we obtain

|(M*H,Xα,f ")-(«*#>, 01

^CLll2dη-2 + (k"~k')(CLll2dη-2 + CLdη-512). (4.75)

The conclusion of Lemma 4.10 follows from (4.75) and the inequality (k" — k')d
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Lemma 4.11. IfQ<η<co, αeK4, 0^ί< oo, and δ>0 then

(u*Hn}(a,t)-(llδ}(] (u*HJ(a,s)ds}

Proof. This follows immediately from Lemma 4.10.

Section 5. Passage to the Limit

Definition 5.1. We choose infinite sequences C 1 ? C 2 , C3, ... and d1,d2,d3, ... of

positive real numbers satisfying dn^ζn, dnL\\H^n\\l^!9 \imζn = Q, and
n-> oo

l imdjl/fζ II 2=0. For each n we define the function (u, n) : R4 x [0, oo)-*,R4 by (w,n)
H— >• oo

= u where u is the function obtained as in Section 4 using ζ = ζn and d = dn

[Definition 4.1 and (4.14)]. From (4.17) we obtain

]$\(u,n)(x,t)\3dxdt^CL3/2. (5.1)
o

Hence, by passing to a subsequence, we may assume that there is a function
ueL3(R4 x [0, oo),K4) such that

u is the weak limit of (M, n) in L3 . (5.2)

Lemma 5.2. Let 0< T< oo. Then

r
lim J j |(M,n)(x,ί)-φ,ί
«-*oo 0 B(0,Γ)

Proo/ Suppose ε>0 is given. Let η be a positive real number such that
Let δ be a positive real number such that δ(Lll2η~2 + Lη~5l2}T5l2^ε. Define
fn :R

4 x [0, oo)^^4 and / :R4 x [0, oo)-+K4 by

Then (5.1) implies that the sequence fn is equicontinuous. From (5.2) we conclude
lim/π(α,ί) = /(α,ί) for all (α,ί). Therefore /„ converges to / uniformly on the
n->ao

compact set 5(0, Γ) x [0, T], and hence

l i m j J \fn(x9t)-f(x9t)\2dxdt = 0. (5.3)
n-^oo 0 β(0,Γ)
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If n is a positive integer then Minkowski's inequality, Lemmas 3.6, 4.11, (4.15), and
the choice of η and δ yield

T \ l / 2

J |(ιι,nXx,ί)-/π(x9ί)|2dxΛ
05(0, Γ) /

l/2

l/2

+ f J |((ι/,π)*^)(x,ί)-/M
OB(0,T)

l/2

o

f J
OB(0,T)

l . (5.4)

Since limdn = Q, we can choose a positive integer N such that dn(L1/2η~2

+ Lη~5/2)T5f2^ε ifn^N. We may assume [using (5.3)] that

2 V / 2 <

Hence (5.4) implies

/Γ \ l / 2

if π^N. (5.5)
0 B(0, T)

From (5.2) we conclude that the restriction of u to £(0, T) x (0,T) is the weak limit
in L2 of the restrictions of the (M, n) to 5(0, T) x (0, T). Hence (5.5) and the fact that
the unit ball of L2 is weakly closed imply

T \ l / 2

j j \u(x,t)-(u,N)(x,t)\2dxdt) ^Cε. (5.6)
OB(0,T) /

Now (5.5) and (5.6) imply the conclusion of the lemma.

Theorem 5.3. The function u is a weak solution to the Navier-Stokes equations of
incompressible fluid flow with initial condition v.

Proof. From Definition 5.1 we obtain weL3(#4 x [0, oo), #4). Let φeC£(R4 x #, R).
Then Lemma 4.9 and (5.2) yield (1.1). Now let φeC%(R4 x R, R4) with div(0) = 0.
Let N be as in Theorem 4.8 and let T be a positive real number such that
spt(φ)n(R4 x [0, oo))CB(0, T) x [0, T]. Then Lemma 5.2, Theorem 4.8, lim dπ = 0,

and lim CB = 0 imply (1.2).
«->• oo

We can now finish the proof of Theorem 1.1. We set fn = (u,n) and f = u
(Definition 5.1). Then (5.1) and (5.2) imply that there exists a positive real number
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D such that the conditions in the first paragraph of Section 2 are satisfied. From
Definitions 5.1, 4.6, and Theorem 4.7 we conclude that there exists 0<M< oo such
that property P(M) holds (see Definitions 2.2 and 2.1). Let ε>0 correspond to M
as in Lemma 2.3. Then Lemma 2.9 implies that there exist sets Ap satisfying 1), 2),
and 3) of Lemma 2.9. From parts 1), 3) of that lemma, the fact / = u, Theorem 5.3,
and the argument at the end of Section 2 in [5], we conclude that the restriction of
u to OR4 x (3(2 ~2p\ oo)) — Ap is equal almost everywhere to a continuous function.
Hence, by modifying u on a set of Lebesgue measure zero and setting

we can conclude that the restriction of u to (R4 x (0, oo)) — A is continuous. This
proves part c) of Theorem 1.1. From part 1) of Lemma 2.9 we conclude that part a)
of Theorem 1.1 holds. Let p^O be an integer and let δ >0 be given. There exists an
integer q such that p^q and 51/22~q^δ. From

An(R4x(3(2~2pl oo))

C(Aqu(R4 x (0, 3(2-2«)]))nCR4 x (3(2 -**), oo))cA g,

Definition 2.8, and part 2) of Lemma 2.9 we conclude

φό(An(R4 x (3(2- 2"), oo))) g φδ(Aq) ^Cε^D.

Hence Definition 2.8 yields H3(Aπ(R4 x(3(2~2p\ oo^gOΓ1/). Since H3 is a
Borel measure, we can use ,4 C #4 x (0, oo) to conclude H3(A)^Cs~lD. This proves
part b) of Theorem 1.1. From Theorem 5.3 and the fact uεL3(R4 x [0, oo),#4) (see
Definition 5.1) we obtain the remaining conclusions of Theorem 1.1.
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