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Abstract. A new and simpler construction of the family of rational solutions of
the Korteweg-deVries equation is given. This construction is related to a
factorization of the Sturm-Liouville operators into first order operators and a
new deformation problem for the latter. In the final section the spectral
representation for the corresponding complex potentials is discussed.

1.

In [1] special classes of solutions of the Korteweg-deVries equation

=X,u (1.1)
were studied, in particular all those u=u(x, t) which are rational functions of x for
each value of t. It turns out that these solutions are rational functions of ¢ as well
and of very special structure. In this paper we give a new construction of these
solutions with emphasis on their algebraic properties.

To describe the family of rational solutions of (1.1), one does well to introduce
the sequence of associated Korteweg-deVries equations

u=Xu), k=12,.., (1.2)

- 1
u,=3uu, — su

XXX

which are related by
_ 0 oH,
T ox ou
to the sequence of conserved quantities
H,=[P(u,..)dx
associated with (1.1). These X, can be recursively defined by

o 0 1[0\\6H,
Xk+1(“>=(“5;+5;“‘z (5’) )a—u
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as was shown originally by Lenard, see [3]. For the notation used here we refer to
[6,11.

The above nonlinear differentialoperators commute, and so do the flows e(t,X,)
generated by them. We ask for the manifold M of rational functions vanishing at x
= oo invariant under all the flows e(z,X,). It is one of the results of [1] that M
decomposes into denumerably many manifolds M, of dimensions d for d=1,2, ...
and, moreover, each M, constitutes an orbit of the single function

dd+1)
u=

X2

under the flows e() #,X,) (see [1], Section 3, Theorem 2).

In this paper we want to give a representation of M, in terms of a class of
polynomials 6,=0,(t,,,, ...,t,) depending on d variables. These polynomials will
be defined in Section 2 and they allow the representation of all ue M, in the form

0 2
uy(x)= —2(5;> logf,(t, +x,75,...,7,) (1.3)
and this representation is one to one, so that t,7,,...,7, can be viewed as global
coordinates on M. The X, give rise to vector fields I', on M, which are expressible
in terms of the 7;, and in Section 5 we will determine these I',. It turns out that

the 7,,...,7, can be subjected to a group of birational transformations
tf=a;t;+g(ty, .. T-1),  a;%0,

g, being polynomials, without changing the above representation. Moreover, the
parameters t¥ can be introduced so that

_9
ko o’
ie. that
ou
5}:: =Xk(u) .

In other words the 7} can be identified with the t-variable ¢, of X,. This picture was
developed already in [1] but here this representation is made more explicit
through (1.3) and the construction of the polynomials 6,. The representation (1.3)
is an analogue to that of Its and Matveev [4] for the case of solutions of (1.1)
having a fixed period in x and for which the corresponding Hill’s equation has
only finitely many simple eigenvalues. It is conceivable that (1.3) could be obtained
by a limit process from the formula [4], but we did not succeed in this way®.
Similarly one may expect that (1.3) could be obtained as the limit of the N-soliton
potential (see [8]). This is indeed the case as was shown by Ablowitz and Satsuma
[17], who also considered other differential equations. The underlying idea to
study rational solutions of partial differential equations and the corresponding
motion of the poles was pursued by Calogero and the brothers Choodnovsky for a
large variety of equations (see [18, 20]).

1 H. P. McKean, via personal communication, informed us of his success in carrying out this

approach
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We mention that the solutions of the type (1.3) for the case d=2 were
considered by Moses [9,16].

The construction of the 8, as well as the proof of the above statements are
based on a transformation of differential operators L= — D*+u into each other
which is certainly not new (see [2, 11, 12, 21]) and the so-called Miura
transformation [7] for which we give a natural derivation. This derivation is based
on the factorization

L=A4%4; A=D-v,

where u=v'+v% This factorization will play a crucial role in the following
derivation and we will attempt to tie it to isospectral deformations. Similarly as in
Lax’s work [5], where one considers deformations of operators L in the
equivalence class of operators of the form U™ *LU for unitary U, here we consider
deformations of operators A in the equivalence class of operators U, AU ,, where
U,, U, are two unitary operators. If we apply these ideas to formal differential
operators we are led to the modified Korteweg-deVries equation which by u=1v'
+v? is transformed into (1.1). This follows from the fact that any deformation of A
of this kind gives rise to an isospectral deformation of L. The ideas are explained in
Section 3.

On the other hand if L=A4%4 one gets a second differential operator L=A4%
= — D? + i by exchanging the role of 4 and 4* Moreover, L is also isospectrally
deformed under the above deformation. This gives rise to a Bécklund transfor-
mation of u=v'+v? into &i=—v'+v* leaving the X invariant. Applying this
transformation repeatedly we construct the sequence u, of (1.3). This transfor-
mation has also been employed in the construction of N-soliton solutions [11,12].
In Section 4 we show that the u, so obtained actually represent the manifold M.

The above transformation u—ii can be used to introduce a new eigenvalue into
a differential operator without changing the rest of the spectrum (see [12]). We are
dealing with the special case where the eigenvalue 1=0 is repeatedly introduced
into the simple operator L= —D?. Thus the resulting operators turn out to be
reflectionless with continuous spectrum [0, c0) and a multiple eigenvalue at 1=0.
For this interpretation one has to allow the potential 4, to be complex so that the
operator is no longer selfadjoint. In Section 5 we study the spectral properties of
these operators which are quite simple as all eigenfunction representations are
given explicitly in terms of elementary functions.

In [1] the functions u,e M, were described in terms of their poles x;,x,, ..., X,,
n=21(d(d+ 1), which have to satisfy the conditions

M=

(x,—x;)7>=0 for k=12,...n. (1.4)

H# 1
-

J
J

In contrast, here we give preference to the functions

0,= ﬁ(x—xj)
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which are constructed in Section 2. As a consequence of their properties their roots
satisfy (1.4) and all solutions of (1.4) can be so obtained. Thus the 7, ..., 7, can be
viewed as uniformizing variables for the algebraic variety (1.4).

This paper is an extended and edited version of the MRC-report [19] where
most of the results were presented.

The second author wishes to express his thanks for the hospitality of the University of Wisconsin.
We are grateful to C. Conley at whose seminar these results were presented and to H. McKean for
discussions on this subject. We also are indebted to P. Deift for pointing out the relevance of the
factorization of second order operators.

2. Construction of the Polynomials 6,
a) A Recursion Formula

In this section we construct a sequence of polynomials 0,(z,, ..., t,) for k=0,1, ...
of k variables, which will be considered as polynomials of one variable x=1,, the
others figuring as parameters. As such they have the degree n, =1k(k + 1). They are
defined recursively by

0p=1,0,=x=1, (2.1)
and the dfifferential equation
Orr 10— 1= Opy 104 =2k +1)6¢ (2.2)

which leaves an integration constant available. We fix this constant by the nor-
malization that the coefficient of x™~* in 0, is equal to 7, ;. This defines the
polynomials uniquely and at each recursive step one picks up a new integration
constant 7.

For the first few polynomials one finds

0y=1
0,=x
0,=x>+1,

0, =x°451,x> +13x— 573

0,=x0+151,x7 +T1,x° — 351,71, x* + 17503 x — 313 + 1,x> + 1,7,
However, it is by no means obvious that the above differential equations can be
solved within the class of polynomials. That this is the case will be shown below. In

fact we will derive explicit formulae for these polynomials in terms of Wronskian
determinants. For the Wronskian of two functions 4, B we use the notation

[A,B]=A'B—AB' .

b) Factorization
These polynomials are intimately related to potentials u, of the differential
operators —D?+u, obtained by repeated applications of the so-called Crum

2 Prime or D stands for 9/0x
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transformation®. In fact, in this way we will obtain an explicit representation of
these polynomials.
To describe the Crum transformation we consider a second order differential
operator
d

=—-—D2 ‘D:——— 2.3
L tu; D= (23)

and ask for a factorization L — Al = A*A where A is a constant and
A=D—v,A*=—-D—v (2.4)

are first order operators, which are formally adjoint to each other. The following
construction is entirely algebraic and all operators are considered as formal
differential operators without any boundary condition. For any differential
operator P of arbitrary finite order, having possibly complex valued coefficients we
define P* as that operator for which

(P*f)-g (Pg)=-0(19)

for arbitrary C*-functions, with some polynomial Q in f, g and finitely many
derivatives. For example, for P=4 we have

d
(A*f)‘g—ng=—E(f'g).

To construct the most general such factorization we take ¢ %0 as a solution of
the eigenvalue equation

(L—2)¢p=0 (2.5)
and set

A=¢D¢ ™' A*=—¢ " 'D¢. (2.6)
Then one verifies

A*¥A=L—-1. 2.7

Indeed A*A is a second order differential operator, which is formally selfadjoint
having — D? as leading term. Hence 4* 4 is of the form — D2 +¢. From the form of
A it is evident that A¥*4¢ =0, i.e. (—D*+q)p =0, hence by (2.3), (2.5),
¢II
q=—F=u—A4a.
¢
This verifies (2.7) which can of course also be done by direct calculation.
Thus every solution ¢ of (2.5) gives rise to such a factorization. Of course, ¢
and c¢ give rise to the same factorization while two linearly independent solutions
¢, ¢, of (2.5) give actually different factorizations (2.7). Thus for every A we obtain

3 It may be more appropriate to refer to Burchenall and Chaundy [21] who studied such an opera-
tion already in 1923 and called it transference (see §3 of [21]). The construction of so called Lax-pairs
can be found also in this paper in §6, and are called semicommutative operators. Although theirs is
an entirely different motivation from the more recent developments it anticipates a remarkable number
of results, in particular, the connection with hyperelliptic functions
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a one-parameter family of factorizations. These are the most general factorizations
of the form (2.7).

The Crum transformation consists in mapping an operator L=AI + A*4 into
the operator

L=)I+AA* (2.8)

by just exchanging the role of A4 and A*. The operator L is also of second order
and of the form

L=—D*+1i. (2.9)
One readily finds that
N ¢!>I
=u—2—|. 2.10
(qs 10
By the form of L —A=AA* and A*= — ¢~ 'Dé it is clear that
(L—2)¢p~1=0; (2.11)

moreover, if one repeats the process and applies the Crum transformation to L — A
with ¢~ ! in place of ¢ one is led back to L— /.
Such a pair of operators

L—A=A*A, L[—)=AA*

have—with appropriate boundary conditions—very similar spectra—and this fact
makes the operation essential for isospectral deformations. Indeed,

(L—wyp=0
implies
(L—pwAyp=0,

as is easily seen, and therefore 4 maps eigenfunctions of L into those of L, or into
zero. For example, for p=4, = ¢ we have 4¢ =0. This transformation is used to
insert or remove one eigenvalue without changing the rest of the spectrum (see
[12]).

With this motivation in mind we proceed to construct all potentials u, which
can be obtained from u, =0 by applying the above transformation k times with the
special choice A =0. It is clear that we obtain functions u,(x, 7,, ..., 7,) depending on
k parameters. We show that the u, are closely related to the solutions 6, of the
recursion formula (2.2). Here we still assume the existence of these polynomials 6, ;
their construction will be given in c) of this section.

Lemma 1. If 0,(x+7,,7,,...,T,) are solutions of (2.1) and (2.2) then the most general
potential u, obtained by k applications of the Crum transformation to u,=0 with
A=0 is of the form

u,=—2(ogh), k=0,1,2,.... (2.12)
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Moreover, the eigenfunctions ¢ =¢, at the kth step are given by

0
¢k=—"61—‘, L, =(—D>+u)p,=0. (2.13)
k
Proof. For k=0 the definition 6, =1 gives u,=0and —D?¢,=0 gives ¢, =ax+b.
We can assume a0 or even a=1, since ¢, ="> gives nothing new, and thus ¢,=x
+b=0,(x+1,)/0, if b=1,.
In the following we will suppress the translation by 7, and set 7, =0. Thus ¢,
=x=0,/0,.

Now we proceed by induction and assume 0,0, ..., 0, have been found and
Ly=—D*+u=A,_ Af A1 =¢ Do

are defined via (2.12), (2.13). In order to apply the Crum transformation to L, with
A =0 we need a solution ¢ of L,¢p=0. From the above Equation (2.11) we see that
(¢ )~ " is such a solution; however, the Crum transformation applied with this
function leads back to L, _, and gives nothing new. Therefore, we pick a solution ¢
= ¢, of L,¢» =0 which is linearly independent of (¢, _ ;) !, i.e. one whose Wronskian
with (¢,_,)”! is a nonvanishing constant. We normalize ¢, by setting

[di b1 ]=2k+1.

Setting ¢, =0, ,/0, this relation agrees with the recursion formula (2.2).
It remains to verify u,, , = —2(logf,, )" to complete the induction. By (2.10)
we have

U1 =uw,—2loge,)" = —2(logh,)" —2(log¢,)" (2.14)

or u,, ;= —2(logh,¢,) = —2(log0,, )" by (2.13), which completes the proof of
Lemma 1.

We record some identities which follow from the above: Since — ¢ +u,$, =0
we find

" 6// 6// 0/ 0/ 0/ 0// 9/ 2
- E )l
¢k “ 6k+1 6k ek 9k+1 9k ek ek
Oar O 0 Oy _
6k~)—1 ek Gk 9k+1

0.

This can also be written as the identity
[9;<+ 1 Ok] + [H;a 8k+ 1] =0,

which can also be derived from (2.1) and (2.2) directly. This relation is of second
order but has the advantage of relating 0,, 6, ,, and not only 6,_,,0,,0, . ,.
Finally, we remark, if we set 4, =D —v, we have

_ %
b

v, (2.15)
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Then we obtain
U, =0, +v}
Uy = —V,+ V7. (2.16)
Indeed, by (2.15) and (2.13)

1"

/ 2_ Tk __
vk+vk—$——uk
k

and

I\’
’ 2 _ ’ _ k _
— U, U= — 20, +u,= —2(—) +u =u
k

by (2.14).

¢) Explicit Representation of the 0,

The factorization of L, gives rise to the formulae

L, =A4fA,=A,_Af_, for k=12 .. (2.17)
and
LA =4 Ly (2.18)

relating L,, L,_,. In order to get a direct relation between L, and L,= —D? we
introduce the operator

T,=A,_1A;_,... A4,
of order k. Then (2.18) yields

L T,=T,L, (2.19)
and (2.17) leads to the factorizations of (L), (L,)*:

[E=TiT,;  (L)=TTE.

It is interesting—and this was discovered by Crum [2]—that the operator T,
can be expressed in terms of Wronskians: We define the Wronskian of k functions

Wi, Pgy -err Py S
W=Wpy, vy, ... p)=det(D' " "yp)  (,j=1,2,...,k).
For abbreviation we also set
W) =W, wa, - Wi X)
with another smooth function y. Then one has Jacobi’s identity
Wi Wos I =W ()W, for k=1,2,.... (2.20)

This is readily verified. The left-hand side is a linear differential operator of order
k+11n y which clearly vanishes for y =y, p,,...,, as well as for y =1, , ;. Thus, if
we assume that the y,,v,,...,9,,, are linearly independent, the left-hand side
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must be a multiple of W, (y). Comparing the highest coefficient one obtains
(2.20).
We apply the above definitions to a system v, satisfying y,=0, p, =x and

vi=y,_y, Jj=12,...k. (2.21)
Then one verifies, for y=1 and setting W, =1 that

W () =(—1YW,_, for k=1,2,.... (2.22)
To prove this we write

VVk(l)= W(wla w21 RS} wka 1)=(_’ l)kW(]'a wla ey w1¢)

and since , =x the last expression reduces by (2.21) to

W)= (= W5, 95 - wi) = (= D W, 95y o 9= ) = (= D Wy
proving (2.22).

Thus setting y=1 in (2.20) and using (2.22) we find

Wer i, Wo 1=W32 for k=1,2,... (2.23)
and

Wo=1LW, =yp,.

Thus with yp, =x we see that 0, and W, differ only by a multiplicative factor:

0=, (2.24)
which one determines to be

k
p=163"1.52  2k—1)'= [] 2k—2j+1).
j=1

But this factor is unessential for the following. The choice p, = x and (2.21) leads to

x2i-1 2

Y=ot Z %-i iy (2.25)

Equivalently one can define the y; by the generating function

Y ;5% P =sinh(sx) (Z 0,87 )cosh(sx),
j=1

where ¢,,05, ... are arbitrary parameters.

With this choice of y,,p,,... the Wronskians W, are polynomials of x
=9,,0,,...,0, With rational coefficients. It remains to compare these parameters
03 ..., 0 With the 7,,..., 7, in 0,. For this purpose we have to take account of the
normalization of the 6,. If §,,, is a solution of (2.2), so is 6,,,+c6,_,. The
normalization of the 6, ., can be expressed by

Ors 1= 1 T 7101



10 M. Adler and J. Moser
where ékH =044 1lep,, -, A similar formula holds for W, , and W,
=Wistlgus s oo SINCE Yy g =Py g+ 4, We have by (2.22),

Weir= Vi/k+ 1 F O i W, w0 1)
=Wy (= Doy Wiy
Comparing the last two equations and (2.24) we conclude

U
Tev1 ™= Hl(_l)kaH
k1

or
=00, @=12-32.5%.  (2k—3)%.(2k—1)(— 1)1,

We summarize :

Lemma 2. The 0,(t,,7,,...,7,) are polynomials of the k variables with rational
coefficients. Moreover, they have the homogeneity property

0(Aty, Aty o AT I =00, (T, T, o T)

Le. if we assign t; the weight 2j—1 then 0, are “isobaric” of degree n,=k(k+1)/2.
It suffices to prove the additional remark.
If we replace x, t;, 0, by x*=Ax, t¥=1%"1,, 0;f = 1"0, one verifies that (2.1),
(2.2) and the normalization condition are preserved, hence by uniqueness 0
=0,(t*). This proves the statement.

d) Parametrization

Remark 1. The parameters 7,,75,... were introduced by a rather arbitrary
normalization condition. One can free oneself from this arbitrariness by replacing
the ; by

 J—
F=a1,+ 9T T Tim 1),

where g; are polynomials with rational coefficients and a;+0 is a rational number.
Moreover, we require that g; be isobaric of degree j which amounts to requiring
that the transformation 7,7} commutes with 1,-A% 7'z, In fact, the above
birational transformations form a group and we will reserve the freedom to pick
an appropriate such transformation (see Section 4).

In the following we need another property of these polynomials.
Lemma 3. For fixed d=1 let

O x+7,Ts 0 T)=X"+0,X"""+...+0,, n=n,.

Then the g ; are isobaric polynomials in t,,...,t, of degree j. Moreover
Oy =0T+ 4Ty, st;_y) for j=12,...d,

where o;#0 and q is a polynomial, isobaric of degree 2j—1.

Corollary. This lemma implies that the above relation can be solved for 1,,1,,...,7,
and 1, ...,t, expressed as isobaric polynomials with a nonvanishing linear term, of
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01,03,05,...,0,,_,. Hence t,,7,,...,7, are in birational, isobaric equivalence with
04,03, ...,0,5 1.

Proof. It is obvious from the above proposition that the o; are isobaric
polynomials in t,, ..., 7, and we just have to verify that o;#0. Of course, o; =0 (d)
depends on d, and we simply compute it.

Clearly o; is the coefficient of 7;x"~2/*! in §=0, and therefore we have

n—2j+1

i0=ocjx for 7,=0,..,7,=0

ot;
while
f=x" for 7,=0,..,7,=0.

Hence if we differentiate (2.2) with respect to 7;, 3/0t; denoted by a dot, 6/0x by a
prime, we find

(Gd-i-l d+10:i 1)+(9d+1 94+ 19&-1)=2(2d+1)9déa-
For 1, =12=...=rd=0 this gives
{(Ogs =2+ D)=y Jod+ D+ gy — (g~ 2+ D}oefd—1)
=2(2d + o (d)

or since ny,; —ny_, =2d+1
(d—j+Dofd+1)+(d+jefd—1)=(2d+ ad).

This recursion formula for «(d), together with o (d) =1 for d=j (by normalization)
and a(d)=0 for d>j, determines o (d) uniquely. In fact one finds explicitly

u(d)= <d+’) (‘2“)4:0 for j=1,2,....d
j

which proves the lemma.
This lemma has the following consequence: The polynomials 6,(x+1,,
T4, ...,T,) are uniquely determined by the choise of the t,,...,7; Indeed, if

O (X477 nT)=0x+1,%,...,7,)

for all x then the coefficients ¢ (t) =0 (1) agree, which implies by the above lemma
that 7, =1,. This remark implies that the representation (1.3) of ue M, is one to
one.

Remark 2. For t,=13=...=1,_,=0 one can easily compute 0, explicitly and find
for d=3
2d—1
Bd:x”d‘4{x4"'6 +Qd— 1), x> 3~ 573 T T 5}

This formula contains as special cases those of [ 1], Propositions 2 and 3, Section 5.

e) Representation T,

We conclude this section with an explicit representation of T, due to Crum [2].
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Lemma 4. The mapping
12 Tix=A Ay Aoy
can be represented in the form

Hx=LV‘;‘§(l for k=1,2,....

[’
Proof. This formula clearly holds for k=1 and we verify it by induction. It suffices
to check

W(X) _ k+ 1(X)
W VVk+1 k+1X

Indeed, with 4, =¢, Doy ;5 =W, /W,

B _ g Mo W), RO W
A =¢, D
cw, =M w )T e

A T,

Using (2.20) the right-hand side becomes

Wi 100 Wi _ Wt 1(0)

¢k 2 - 5
Wk+1 I/Vk'*-l

as we wanted to show.

3. A Deformation Problem for First Order Differential Operators

In [5] Lax related the Korteweg-deVries equation—as well as its higher
analogues—to the isospectral deformation of the operator

L=—-D*+u, (3.1)

where u=u(x) is a C*-function. We will describe an analogue problem for the first
order operator

A=D—v (3.2)

with v=uv(x).

For motivation of the following we consider at first a bounded linear operator
A in a Hilbert space and call 4 equivalent to A4, if there exist two unitary operators
U,, U, such that

UTAU,=A,. (3.3)

Clearly the invariants of this equivalence relation are the spectral invariants of
A*A and of AA*.

We ask for deformations A(t) of A,=A(0) which remain in the same
equivalence class. Assuming that U,=U(t), U,=U,(t) are defined through
differential equations

U=BU;; U)=I; j=1,2
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with skew Hermitian B;, we obtain by differentiation of (3.3)

U7 (A—B,A+AB,)U,=0
or

A=B,A—AB,. (3.4)
We apply this consideration to A=D —v, v=uv(x,t) and choose
B;=D*+b;D + Db;

as skew Hermitian operator. We now consider (3.4) as a formal relation for
differential operators. The left-hand side of (3.4) is a multiplication operator,
namely multiplication by —v, and b,, b, have to be so determined that in B, 4
— AB, the coefficients of D*, D3, D?, D vanish. The first two coefficients vanish
automatically while the other two are

+30 +2(b,—b,)
— 30"+ b, —3by, —2(b, —b,)v.

Setting these expressions equal to zero yields two linear equations for b,, b, with
the solution

b,=—3(—v+v¥)+c

b,=—30w+v})+c
with an arbitrary integration constant c¢. This constant reflects the trivial solution
of (3.4) with B;=2cD, v,=2cv,. Therefore we set ¢=0 and obtain from (3.4) a
partial differential equation for v which is computed to be

v,=%v"—30v?0. (3.5)

This is the so-called modified Korteweg-deVries equation which was used by
Miura [7] in his derivation of the conservation laws for the KdV equation. For
this purpose he showed that the function

u=0v2+v (3.6)
satisfies
u,=5u" —3uu’, (3.7)

if v is a solution of (3.5). This remarkable fact has a natural explanation in the
following observation:
If u=v'+v? then the operator (3.1) can be factored as

L=A%4, (3.8)
where

A¥*=—~D—v
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is the formal adjoint of 4. Moreover, the deformation equation (3.4) gives rise to a
deformation equation for L

L=A*A+A*A=— A*B,A+B,A*A+ A*B,A— A*AB,=[B,,L]; (3.9)

here we used that B = — B, B;= B (v). This is precisely the deformation problem
L=[B,L]; B=B(u)=D?+(b(u)D + Db(1)) (3.10)

studied by Lax [5], which leads to (3.7) and B,(v)=B(v' +v?), provided the
arbitrary constant is normalized appropriately. This shows then that any solutions
v of (3.5) give rise to a solution u of (3.7) via (3.6). This appears as a consequence of
the factorization (3.8).

If instead we consider the operator

L=AA*=—-D+i
with @i = —v'+v?, then clearly we find analogously to (3.9)
L=[B,]

and B, (v)=B(#i)= B(—v'+v?), where B(f) again denotes the third order operator
obtained by Lax. Moreover, ii= — 1’ +v? is automatically a solution of (3.7). The
duality map u—# which takes solutions of (3.7) again into solutions of the same
equation, a so-called Bicklund transformation, is here related to the deformation
of two products AA4*, A*A, i.e. to exchanging 4 and A*.

These considerations can be generalized to the higher Korteweg-deVries
operators X ; by considering real skew Hermitian operators B,, B, of degree 2j — 1.

J
This leads for each j=1,2,... to two skew symmetric differential operators

Rt
B,(v)=D*""+ Y (b, D* 1 4+D>*"1p, )
s=1

j-1
B,0)=D¥"'+ Y (b, D¥ 1 4+D* 1p, ), (3.10)
1

s=

where b, , b, , are polynomials of v,v/,... and such that B;A—A4B, is a
multiplication operator. One can make B,, B, unique by requiring B,, B, to be
isobaric of weight 2j— 1 where D and v are assigned the weight 1, hence v = D%
the weight s+1. The proof of uniqueness can easily be given by comparing
coefficients of D* in (3.4) and will be omitted.

We will show now that these operators B,, B, are closely related to the
operator occurring in the Lax formalism. We recall (see, e.g. [5, 6]) that for each j
=1,2,... there exists a unique skew symmetric differential operator

ji—1

B=Bu)=D*"'+ ) (B,D* " '+D* 1B (3.11)
s=1

with f, being polynomials of u,#/, ... such that [ B, L]=BL— LB is a multiplication

operator and B is isobaric of weight 2j— 1, if u is assigned the weight 2 and D the
weight 1. The relation of B,, B, of (3.10) to the operator B is expressed by:
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Theorem 1. The unique isobaric differential operators B,, B, for which BjA— AB, is
a multiplication operator are given by

B,(v)=B(—v +v?)
B,(v)=B(v +v?).

Proof. For a given v we set A=D—v
L=A*A=—D*+u, u=v+v?
L=AA*=—-D*+iI, ii=—v+v?

and construct the isobaric differential operators B= B(u), }§=B(ﬁ) of the form
(3.11) for which [B, L], [B,L] are multiplication operators. We define B,(v)
=B(—v' +v*)=B(@), B,(v)=B('+v*)=B(u) and note that B,, B, are clearly
isobaric. Next we verify that Q= B, 4 — AB, is a multiplication operator. For this
purpose we show first that the operators
A*Q+0*A=X(u)
QA*+ AQ* =X (u) (3.12)
are both multiplication operators. Indeed, since B¥ = — B, for i=1,2 we have
A*Q+Q*A=A%B,A—AB,)+(A*Bf —B¥A*)A=[B,, A*A]=[B,, L]
which by construction is a multiplication operator. Similarly
QA*+A4Q*=[B,,AA*]=[B,L].

From the above two relations (3.12) we conclude that
Q=q,D"+q, D' +..., 0=r<2j

is actually a multiplication operator. Otherwise, we would have r=1, ¢,%0.
Computing the highest order terms in (3.12) we find

A¥Q+ Q¥ A=(—1+(=1))g, D" ' +....

Hence, if r = 1 we must have r even. For even r we compute the terms of next order
as

A*Q+Q*A={(r—1)q}, —2(vq, +q,)} D"+ ...
QA*+AQ* = {(r+1)qy, —2(vq, +q,)} D"+ ...

and for r= 2 we conclude that the coefficients of D" must vanish, hence ¢} =0, 1.e.
q, is independent of x. On the other hand, Q is isobaric of weight 2j—141=2j,ie.
q, 1s of weight 2j—t>0, hence ¢, =0. The last equation implies that g, =0 also.
consequently that r=0, ie. Q is a multiplication operator. By the uniqueness
of B,, B, the theorem is proven.

For fixed j we introduce the multiplication operators

[B(u), L1=X (u), —(B,(v)4—ABy(v))=7Yv)



16 M. Adler and J. Moser

and accordingly arrive from IL=[B,L], A=B,A—AB, at the differential
equations

ou

E =X j(u)
v

The first is the family of higher order Korteweg-deVries equations while the Y,(v)
are generalizations of the modified Korteweg-deVries equation.

As a consequence of Theorem 1 we note that the transformations u=v'+v?, il
= —1v'+v? take one equation into the other, ie. we have the transformation
formulae

{X '+ =(D+20)Y(v)

X (—v' +0*)=(—D+20)Y|v). (3.13)

Clearly, by its derivation X, Y; are isobaric of weight 2j+ 1, 2j respectively.
Finally, we need that

Y(—v)=— Y{v) (3.14)

J

is odd. This follows at once from the fact that the adjoint of
Q)=B,;A—AB,=—Y,v)

on one hand, as a multiplication operator, agrees with Q, on the other hand is
Q*(v)=A*Bf —B3A*= — A*B, + B, A*,

and since A*(v)=—-D—v=—A4(—v), and B,(v)=B,(—v) by Theorem 1, we
conclude that

Q*w)=—Q(—v).
Hence Q(v)= — Q(—v), proving (3.14).

Finally we conclude from (3.13): Since the X; commute, i.e. X X, =X, X also
the Y; commute.

The above facts are—at least for j=2-—not new but we wanted to derive them
in generality to show the natural implication of the factorization process and also
wished to make the following proof selfcontained.

We mention in passing that the X (u) and the Y,(v) can be defined recursively.
According to Lenard (see [3]) the X; satisfy

X (w=wD+Du—3D*Z; where c¢X=DZ,

defines Z , where the c; are constants. With X, (u) =’ this recursion formula can be
used to define the X (u) and they turn out to be the same as defined above if the
constants ¢;¥0 are chosen appropriately. This follows from the formulae in [6].

Formally, the recursion formula can be written as

X,.1=c;RX; where R=u+DuD™'—3iD*. (3.15)
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It is easy to derive an analogous recursion formula for the Y(v) if one uses
(3.13). One finds

Y =¢S8Y, Y, =v, (3.16)
where

S()=2v*+2v'D"'v—1D*.
This expression S was determined so that the identity

(2v+ D)S(v)=R(v' + v*)(2v+ D)

holds, which makes evident that (3.15) goes into (3.16) under the transformation u
=v'+v% The recursion formula (3.16) is due to Olver [10]. Incidentally, one can
use the evenness of S to derive (3.14) inductively.

In the following we will not need this recursion formula, however, and work
with Theorem 1, (3.13) and (3.14).

4. The Invariant Manifold M,
In this section we show that the potentials
u;= —2D*(logh,) (4.0)

constructed with the polynomials 8, of Section 2 define the manifold M, of the
introduction. We recall that M, was defined as the orbit of exp() X ;) through

the element u=d(d + 1)x~ 2 which is a connected d-dimensional maélifold. Since for
T, =1,=...=1,=0 we have 0,=x", u,=2n,x"? it will suffice to show that the d-
dimensional family of functions (4.0) also are left invariant under the flows
exp(} ¢, X ;). This is the content of the following theorem.

Theorem 2. There is a unique choice of rational functions y, (t,, ..., t;) and differential
operators

i 0

I, = Vi s

k jgl ki 517]-
such that for d=0,1,2, ...

X (u)=T\u, (4.1)

and

0, 0,
Y(v)=Tw, where v,=-%"1_ -2 (4.2)
Osv1 O
(Since u,, v, depend only on finitely many variables the sum breaks off.)
In other words, if the t; satisfy

dt

d_t:='ykj(’[2"“3‘[j)7 ]éda



18 M. Adler and J. Moser

then u=uy(x+1,,1,,...,7,) solves the equation
Ou
oty

Proof. We proceed by induction on d. For d =0 we have u, =0 and therefore X (u,)
=0. Assume next that y,;=y,,(t,, ...,7;) for j=1,2,...,d have been determined
such that (4.1) holds. Then we conclude from (3.13) and u,=v,+v? with

V4= o/ ba> b= d+1/0d’[‘0:rk|7k a+1=0
(2v,+ D)Y,(v) =X (uy) =I'Pu,=(2v,+ D)[v,

=X (u).

or

(2v,+ D) Y (vy) — I'Pv,)=0.
Since p=¢, ? is a solution of (2v,+ D)y =0 we conclude that

Y(vg)— v, =ce * (4.3)

with ¢ being a rational function of 7,,...,7,, ;. On the other hand v, depends on
7,,% and in

ov, 0v,

—Fkvd+Yk at1g (4.4)
d

Io,= Z'J"k, T Vea+1 .

Ta+1 +1

the coefficient 7, 4, can be uniquely determined so that ¢=0, if I'} is replaced
by I', in (4.3). Indeed, v,=¢,/d,=0,,,/0,,,—0,/0, where 0, is independent of
t=1,,, while d,, /dt=0,_,. Hence, by (2.2)

v, (Gd

0% 4

2

)I —(2d+1) Ou

0g+1
and the coefficient of y, 4, in (4.4)is —(2d+ 1)d; 2; thus we have from (4.3)
N0~ Ty} =2d+ 1)y, 4y +c.
Thus, if we set y, 4, = —(2d+1)" "¢ we obtain
Y(v) =T,

=—Q2d+1)¢p; *

0d+1

as claimed in (4.2). This determines 7, 44 1 =74+ 1(T2, ---» Ty 1) Uniquely.
Using that Y,(—v)= —Y(v) we conclude from (3.13)
Xy, ) =X (=, +v})=(—20,+D)Y(—v,)
=(2v,—D)Y,(v,)
=(2uv,— D),
=07 —v) =Ty,
which completes the induction and the proof.

Lemma 5. The y,;=7, (1) are polynomials of ©,, 75, ... with rational coefficients. If we
assign t,, the weight 2m— 1 the y,; are isobaric of weight 2(j— k). In particular, they
depend on v, with |[j—k]<j—1 only. Moreover, y,, is a nonvanishing constant.
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Proof. First we express the differential equation u, =X, (1) via u= —2(logf)” in
terms of

0=0,=x"+0,x""'+..+0,

with n=n,. This expresses the differential equation in terms of the o; which finally
are transferred to the ; via the corollary of Lemma 3 of Section 2.
From

9’ oH,
we conclude that
1 6H,
-2 Y /
(00 06)= 2 Su’

an integration constant being eliminated by the isobaric property. The right-hand
side depends on u,u/, ..., and we observe that by (4.0)

D™u=0"""2P (0,0,...)
with P,, being a polynomial in 6,0, .... Since 0H,/du is isobaric of degree 2k we
find that

02k 1 ég__ — Q(B 6/ )

is a polynomial in 6,6, .... Thus the differential equation takes the form
0%=2(00'— 0'0)=0(6,9', ...).

In this equation we compare coefficients of x. The term of highest power in x
containing 4; is

x(Zk—Z)nxn—jxn— 1(n——(n—j))d'j=x2""_j_ 1jd.j

2kn—j—1

i.e. comparing the coefficients of x we find

j6;= Y a,6,+a;,

m<j
where a,,a,, ...,a; are polynomials in the . Thus we find

6;=bjoy,...,0,)

with polynomials b;. Finally using the corollary of Lemma 3 we express these
differential equations in terms of 7,,7,,... in the form

=0T, T o)
One readily checks the homogeneity of the y,; to be given by

VAT, AT, )=y,
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by using an argument like in the proof of Lemma 2, and observing the isobaric
property of X,. In particular, y,;=0 for j<k and y,, is a constant.
To evaluate this constant we use the fact that

2
ud=12" for 1,=13=...=1,=0
X
and for d=k

X, =cx~ D
with a rational constant ¢, 0 as one computes from (3.15). Thus we have for 7,
=1y=...=7,=0

k

ou ou
0FX == 9, .=y,
=X =1, j;l arj Vi a7, Vi

as y,;=0 for j<k. Hence y,,#0 as was claimed.
Thus the differential equations induced by X, are given by I',, or equivalently
by

T =7 (T2: T35 s Tj— 1)

with isobaric polynomials y, ;. Obviously the equations can be solved recursively as
polynomials in ¢ In fact, more is true: There exists an isobaric birational
transformation 7;— 7} such that for all k=1 we have

0

kT A%
ot
i.e. the above differential equation reduces to
I tF =0y,

and ¢} can be interpreted as the time variable for the flow X,. This is a simple
consequence of the fact that the X, — and hence the I',—commute. We recall that
the 7, were introduced by an artificial normalization and these parameters are
actually defined only up to the group of birational transformations which
commute with 7,—1*~ 'z, Now we make the unique choice of the parameters so
that they are adapted to the KdV flows.

Theorem 3. There exists a unique birational transformation
TF=a;7;+ 9T T3 n Tj— 1)
with g; being isobaric polynomials
2j-3 j—
910, A2tay AT, )= 22 g (T, T )
with rational coefficients and a rational number a;#0 such that

0

Tk



Polynomials Connected with the Korteweg-deVries Equation 21
Corollary. If u=u,t,,7,,...,7,) is expressed in terms of t* as u=u*(t% ..., %) then
the function

u=ui(tf+x,7%,...,7%)
is a solution of ou/0tf =X, u.

Proof. We proceed by induction as follows: Changing the notation of the ; also
we assume that for some k=1 we have*

rj=atj+yj,(a
I =70,

K’

up to terms 9, for m>k, which will be suppressed. For k=1 this is trivially the
case and for k>1 we will construct a transformation

(oo =8
=0T+ 9Ty o T 1)

(4.5)

such that

Fj=6t;+0-6t;

=0,
up to terms d_, with m>k. This is obviously sufficient for the proof, if we also
verify that the gk and g, have the required properties.

To carry out this induction step it is convenient to break up (4.5) into k steps
and effectively make a second induction. First we achieve by tf=a,1, that I',

=90,z = 0,y by setting a, =y, ', a rational number. Assume now that we already
achieved’

=0 for s<j<k.

Then for s<j<k, using the commuting of the X,, hence I',, we compute
O=I"jl"s—I"SI"J.=—?—32;—SJ.56rk

hence yg, depends on 1,,1,, ..., 7, only. Therefore we construct a transformation
=14+ 9(ty .7

so that
I'y=0,, for s<jsk

and
dg
I' =0, < 0 %,
s s+ <5T5 +ysk) Tk

4 We abbreviate /0t by 0,
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while I',, 1=m<s—1, maintains its inductively assumed form. Thus, if we
determine the polynomial g such that
dg

'67+ysk=0

N

then we have effectively replaced y, by 0. The choice of g is unique if we require it
to be isobaric. After finitely many steps we achieve

Fj=at;7 léjék:

up to terms d, with m> k. This completes the induction argument. The isobaric
character of the g; follows readily from that of the 7, ;. This completes the proof of
Theorem 3.

As mentioned in the introduction the family of rational functions u,=
—2(logf,)" defines an embedding of the manifold M, of [1] and the 7,,7,,...,7,

can be viewed as parameters on this manifold. Therefore the roots x;,x,, ..., X,
n=n, of 0,:

0,= [] (x—x))
j=1
i.e. the poles of
U =23 (x—x;)72
j=1

satisfy, by the derivations in [1], the algebraic Equations (1.4). This fact could also
be verified directly.

5. A Nonselfadjoint Eigenvalue Problem
The potential
u,= —2(logb,)"

decay like cx~? at oo but may have a real singularity, at a zero of 6,(x,t,,...,1,).
We will show

Lemma 6. For real values of t, ..., t, the polynomials 0, d=1 possess a real root.

We postpone the proof. We can avoid such singularities by admitting complex
values of 7,,1,,...,7, and choosing them so that no zero of 0,(x, 7) lies on the real
x-axis, which is obviously possible. With such a complex potential we consider the
operator

L,=—D?+u, (5.1)

in a dense domain in L?(— co, + 0). Clearly this operator which depends on the
parameters 1,, ..., 7, is not selfadjoint and this gives rise to some anomalies to be
described below. For studies of the inverse problem for such nonselfadjoint
differential operators we refer to the work of Marcenko [13]. The main properties
we wish to point out are that the potentials u, are all reflectionless and have a
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multiple eigenvalue at A=0 for (L,)*. This is reflected in a higher order pole of the
resolvent at 1=0.

We begin with describing the solutions of the eigenvalue equation

Lip=—5%¢; (5.2)
thus k=i"'s would be the usual wave number. Using Lemma 4 and (2.19) we see
that

o W)
P 9= Toe™ ==

together with 1p(x, —s) are solutions of (5.2). Here e™**y(x, s) is a rational function
of s and x, in fact a polynomial of degree d in s as is clear from the last expression.
Its asymptotic behavior for x— oo is the same as for 7, =... =1,=0 as follows from
the representation

P(x,8)=Ay_Ay_,... Ape™
and A;=D—v;=D+0(1/x). Hence
e Y(x,5)=s'+0(x"1) for |x|—00;5%0. (5.3)

Hence, for s=0 the functions v, =y(x, s), w_ =y(x, —s) are linearly independent
solutions of (5.2) and their Wronskian is the same as that of s%e®, (—s)%e™**:
[y, w_J=(—1)y2s"1, (5.4)

For 1, =...=1,=0 the potential reduces to u,=d(d+1)x~ 2 and the functions
w(x, s) are proportional to the Bessel function

w(x,ik):al/gkadH,z(kx); a=(—1)%k?.

It is well known that the Bessel functions for half integer subscripts are elementary
functions. The potentials u, share this property with d(d+ 1)x~ 2.
The Jost function is given by

f(x, k)y=(ik) " “p(x, k)~ ™ for x—o0.

This function is a rational multiple of €™, hence the reflection coefficient vanishes.
Moreover, y(x, k) is an entire function of k, but f(x, k) has a pole of order d at the
origin since, by (2.22), (2.24)

Wi(1) |/ Hq 0,4
p(x, 0)= ——= = (—1)* = (—1y +0.
W, W, Hq—1q 0,
To get the solutions for s=0 we consider the Taylor expansion
Yix,s)= Y P (x)="Te™
Jj=0

with

J
quzij,(;i!). (5.5)
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Since (L+s*)yp=0 for L= L, we conclude that
L&, ,+®,=0, j=0 and L&,=Ld, =0. (5.6)

It turns out that the functions @,; are linearly independent since they have the
asymptotic behavior

—d

Dyi~e; x4 for x—o0 (5.7)

and ¢ ,#0. However, &, ®,,...,0,, , are linearly dependent on
Dy, D,,...,P,,_,. In fact, we have the identities

k—2

Dy 1+ Y 0 P,;=0 for 2=<k=d (5.8)
i=0
and ¢, =0. Here g,,0;,...,0, are the parameters entering the definition W,

through (2.25). Indeed, since

AV
— =

T Wi W, vy, Wa 1)
vanishes for y =1, we conclude from (2.25) and (5.5) immediately the validity of
(5.8). Thus—by (5.6)—the equation

Li¢=0
has as solutions ¢ =@, P,, ..., P,,_, and, by (5.7),
@,,e L (— o0, +00) for 0=L2i<d-—1.

This remark can be used to prove Lemma 6: Assume that 0, has no real root. If
d =3 then the null space of L in L*(— oo, + c0)is at least 2 dimensional while that of
L is at most one-dimensional, since we are in the limit-point case. Therefore, for real
7, when the operator L has a selfadjoint extension, this is impossible if u, has no
singularity. Hence 6, must have a real zero for d = 3. For d =1, 2 this is evident which
proves Lemma 6.

Thus the existence of generalized eigenfunctions of L for A=0 given by (5.6) are
a reflection of the nonselfadjoint character of L since u, is complex.

For completeness we describe a basis for the solutions of L) =0, since
Dy, P,,...,P,,_, provide only half of such a basis. For this purpose we use the
formula (2.25) to also define y; for j>d setting ;=0 for j>d. Then we have

L?)Wkw:(‘Dz)dwk»rd:(“ 1)d1Pk
and hence by (2.19) with T=T,

Ldka+d= TL?)wk+d:(‘ 1Ty, =0
fork=1,2,...,d. Hence ¢ =Ty, , 4 k=1, ...,d are solutions of L?¢=0. This proves
Lemma 7. The null space of L* is spanned by

2i

(D2i=T(éi)—'>~ci,dx2i‘d (i=0,....d—1)
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and

Yi=Tp ) ~b X717 (k=1,...,4d).

One can, of course, not expect the usual orthogonality relations as in the
selfadjoint case. For example one has for all d =1 for the eigenfunction ®,e L? the
identity

+

[ ®2dx=0.

— 00

More generally, we show
Lemma 8. For i+j<d, i,j =0 one has

+ oo

| @,®,,dx=0
and for 2j<d—1
+ o0
f @, p(x,ik)dx=0;  (k real).

Proof. By (5.5) one finds by integration by parts

x2i ij
@qujzf:T((’zW)T((zﬂ!)

x2i x2j d
== (T*T)| |+
oo TG
where R is a rational function of x. Since T*T=L&=(—D?*" and j<d the
first term on the right-hand side vanishes. From (5.7) we conclude that R(x)
=0(x?*+ 272410 for |x|— oo, hence

+ o0

§ D59, dx=R(x)

+ oo

=0.

The second relation uses the same argument.

We discuss briefly the spectral representation and the Green’s function which
can all be explicitly given. We simply present the relevant formulae:

If Imk >0 and A=k? then the equation

(Ly—2)p=he L*(— o, + ©)

has the solution

+ o
(x)= [ Gx,y,k)h(y)dy,
where the Green’s function is given by

Y, ()p_(y)
_ 2ik2d+ 1

p_(X)w,(y)
kAT

for x>y
G(x, y, k)=

for x<y.
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Here we write p (X), p_(x) as abbreviations for (x, ik), y(x, —ik) and use that
p, —0 for x— + o0, and y_—0 for x— — oo. Thus k***1G(x, y, k) is a polynomial
in k, and at k=0 the Green’s function has a pole of order 2d +1 in k.

We turn to the spectral representation of a complex valued function h(x).

Theorem 4. If T) (Ix|*+ D}h(x)|dx < 00 and he C'(— o0, + o) then
(k)= _f° hoow, (dx; a_(k)= _fo hCow (0
for k=0 implies
h(x)=~— j (k™2 a (kyp () +a_(k)p . (x))} gk - (5.9)

Here { }

Remark. Tt is necessary to take the regular part of the integrand to ensure
convergence of the integrand. One could also interpret this integral as the “part
fini” in the sense of Hadamard or as regularization of a singular integral as is
standard in the theory of distributions [14]. In our case it means that one
subtracts from a,p_+a_1p_ the first 2d terms of the Taylor expansion

denotes the regular part at k=0 of the function in the parentheses.

reg

2d—-1 d—1

Z pvk"_—_—_ Z pZakza
v=0 a=0

since our function is even. In the present case it is easy to calculate p,, using the
Taylor expansmn of 1(x,s)=) s'®;. One finds

pZa = _j PZm(xo J’)h(Y)dy

2a

Po (e, y)=2=1) Y (= 1)@y, ()P (y).

j=0

In the case that a, (k), a_(k) vanishes of order 2d at the origin the above result
followsin part from the Fourier transform. For this formal argument we assume
heCi*l so that T*heC. . Applying the Fourier theorem to T*h we have: If

comp comp*
a(k)= j (T*h)e™dx = f hy(x, ik)dx,

then the Fourier theorem gives

0

L ; 1 ‘ .
%] — —ikx g1, —ikx ikx
T*h 5 —-{o a(k)e ™ **dk 5 (j)(a+e +a_e™)dk,

where a (k)=a(k), a_(k)=a(— k) for k=0. Using the identity L% =T*T we find
k?det*x = L > = TH*p(x, ik)

and the above identity takes the form

T"‘(h~L [ k=" a,p_+a_ 1p+)dk)=
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provided that a_,a_ vanishes of order 2d at the origin. Next we observe that the
null space of T* is spanned by @,; (j=0,1,...,d—1). Indeed this null space has
dimension d as T* is a differential operator of order d and since L§ = T*T we have

* % x* d x*J
Ty =T T((zjn):L"((zj)!):O'

Therefore we can write the last relation as

1 ® d—1
h—o— [ (k™2 a,p_+a_p,)), dk= ) c;®y.
2mi ¢ i=0
It remains to show that the ¢; vanish.
For this purpose we proceed differently. We first assume that he C,,,..
We apply the Cauchy integral formula to the function

wix, k)= _joo G(x, y, h(y)dy+Q(k™1), (5.10)

where Q is an odd polynomial in k™! satisfying Q =0(|k|™ %) at oo and which will
be chosen presently. Since w(x, k) is analytic in Imk>0 we have

| wix, k)kdk =0

Cs
for any closed curve C; in the upper half plane. We choose C; as a semicircle
centered at id; 6 >0 together with the diameter. One verifies from the asymptotic
properties of y,,p_ and using integration by parts that

w(x, k) ~ -h— as |k|—- oo,

and this holds independently of the choice of Q. Therefore the integral taken over
the upper semicircle tends to

kdk }
— h(x) j—}—(T = — nlh(x)
as the radius tends to infinity. Therefore we have
+ o0 +id © +id
nih(x)= |  wix,kkdk= [ (w(x,k)—w(x, —k))kdk. (5.11)
— o0 +id 0+id

Next we let § tend to zero. It is here that we have to take account of the
singularity of G(x, y,k) at k=0. The contribution to the integrand of (5.11) is

+ oo

k _[ (G(x, y, k)— G(x, y, —k))hdy

1 X 0 X 0
=~W(w+ [ w_hdy+vy_ [ hdy+yp_ _I w+hdy+w+fw_hdy>

1 + o0 + w0
:—W[% § w_hdy+w_ | vy, hdy|.
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In order to avoid the singularity at the origin we take the regular part of this
d—1
expression. For this purpose we denote by p(k)= ) p,,k** the first terms in the
=0
Taylor expansion of the parentheses [ ] so that the regular part of the above
expression is equal to

+ o0

1
k | (G(x,y,k)—G(x,y, — k)h(y)dy + 5 k™ 2p(k).
Thus if we set

0=k~ plh

this is indeed an odd polynomial in k™! satisfying Q=0(k|™>) and the last
expression agrees with k(w(x, k) — w(x, —k)). This expression is regular at k=0 with
this choice of Q and for §—0 Equation (5.11) becomes

o]

1
mih(x) = == | {kz"[w’L [ p_hdy+y_ f szdy” dk
0

reg

which proves (5.9) under the assumption he C,,,..
For the proof of the full statement one needs standard estimates for the
integrand in (5.9) which we forego. But we wish to point out that for

. od—1
h:quj, ]<T

we have by Lemma 8 a (k)=0=a_(k). Thus these h can clearly not be represented
in the form (5.9). This is due to the fact that &,; decays at best like x~¢ and
therefore violates the assumption of Theorem 4.

Corollary to Theorem 4. If h, i are two functions satisfying the assumption of
Theorem 4 and if a (k) are analogously defined as a (k) then one has the “Parseval
equation”

T h(x)fz(x)dx_ T{k 2a,a_+a_b,)}e,dk. (5.12)

This follows easily by exchanging order of integration from Theorem 4.

The above relations (5.9), (5.12) are simple generalizations of the Fourier
transform and the Parseval relation into which they go over for d=0. To get the
analogue of the real form of the Fourier transform we set

c(x,ky=Tcoskx; s(x,k)y=Tsinkx
so that

po=c+is, Y_=c—is.
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Accordingly we set

k)= j h(x)c(x, kydx, k)= TO h(x)s(x, k)dx
and obtain from (5.9)

h(x)=— | {k™2%atc + Bs)}qdk

O 8

Q|-

and for two functions h,ﬁ
+ oo -
| hhdx=

— 0

LT k20 B)},egdk.

Bl I

Thus with respect to this basis the spectral density matrix is

1 (dk 0
= TKE\0  dk

which is to be taken in the regularized sense [14].
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