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Abstract. We develop a new, unified, method to construct a closed (selfad-
joint in JS?2) extension of a partial differential operator in all the spaces
JS? p(Un) 1 ̂  p ^ oo. Our method is not only an unified approach but it is
also very efficient. We obtain very weak conditions on the potentials.

I. Introduction

In this paper we develop a new method to construct a closed extension (selfadjoint
in the case JS?2) of a partial differential operator in <£p(Rn\ 1 :g p £Ξ oo, and to
study its spectral properties.

M

Let P o be a constant coefficients partial differential operator and let Q = Σ qtQt

i=ί

be a lower order variable coefficients partial differential operator. The basic
object of our method is the formal series expansion for the resolvent of the pertur-
bed operator P o + β:

R(z)= Σ R0(z)(QR0(z)Y.
n = 0

R0(z) being the resolvent of the unperturbed operator Po.
Our strategy is to prove, by an interpolation argument, that the formal series

expansion defines a bounded operator in all the J£p(Un) spaces, 1 ̂  p ^ oo,
denoted Rp(z). Then we prove that Rp(z) is the resolvent of a closed extension
of the perturbed operator Po + Q.

Several methods have been proposed to construct a closed extension (self-
adjoint in JS?2) of a partial differential operator in JS?P, 1 ̂  p <; oo. In jSfp, l^P < °°>
if the potentials q^x) are locally in ifp, the closed extension is defined as the
operator sum of Po and Q. For a general treatment of this method see [3] were
references to original contributions are given.

The method of quadratic forms extensions in J ? 2 has been developed by [2]
(and the references to original contributions quoted there) [5], [6], [7], and [8]. In
J£p, 1 < p < oo, the method of ^-extensions has been created by M. Schechter [3].
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A theory to deal with the case if00 has been created in [9] and [1].
The fact that, for technical reasons, different methods are necessary to construct

a closed extension in different 5£p spaces is unpleasant because the basic object
is the partial differential operator not the S£p space in which it is defined.

Our approach has the interesting new feature that it provides an unified
method to construct a closed extension, selfadjoint in if2, in all 5£p spaces,

We give our conditions in terms of the quantity

Ra(q) = sup j\q(x-y)\Ga(y)dy.
X

Ra is the class functions such that Ra(q) < oo.

Where:

By F we denote the Fourier transform. We assume

A) Assume that qa{x)eRa and that lim j \qa{y)\Ga{y-x)dy = 0 uniformly
K-»oo \y\>R

in x. We are interested in formally symmetric operators.1 This is not a serious
restriction since in most of the applications the operators are formally symmetric.
Our main Theorem is:

Theorem I.I. Let Po be elliptic of degree m, let Qa be of degree la < m, and let
M

P = Po + £ qaQa be formally symmetric. Assume that (A) is satisfied. Then P
α = l

defined on D(P)= {φeC™\Pφe£?p} has a closed extension, denoted Hp, in <£p

for 1 ^ p ^ oo. H is densely defined for 1 ^ p < oo, and H* = H , ,- H — = 1 ,p p p p p
1 :g p < oo. In particular H2 is selfadjoint Moreover the essential spectrum of Hp

is given by σe(Hp)= {P0(k)\keMn}, 1 ^pS oo. If dist(z,σe(Hp) is large enough
the formal series expansion for the resolvent is convergent in norm, i.e.

n = 0

Theorem I.I tells us that if (A) is satisfied P has a closed extension, with the
same essential spectrum, in all the 5£p spaces, 1 ^ p g oo. This result is to be
expected since the operator is the basic object, not the S£p space, but to our know-
ledge this is the first time that such a statement is proved.

Our method is not only a unified approach, but it is also efficient. We obtain
very weak conditions in the potential qa. Condition (A) is much weaker than the
conditions obtained by the previously known methods.

In Theorem II.9 we prove that our method gives in if2 the same result that
the method of quadratic forms extensions, i.e. that H2 = H, H being the self-

My method extends trivially to the case when PQ 4- Q is not formally symmetric
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adjoint extension obtained by quadratic forms methods.
In Theorem 11.10 we prove that the spectrum of Hp, 1 ̂  p ^ oo, is real.
Finally let us mention that we proved the following Theorem in the inter-

polation of compacity2:

Theorem 1.2. Let H be a compact operator from 5£vγ(β^) to ^qi(Ω2) and bounded
from SeP2{Qx) to ^q2(Ω2\ί^p1,p2,q1,q2 ^ oo. Where Ωχ and Ω2 are (possibly
unbounded) subsets ofUn. Then ifq1<ooH is compact from S£Vt(Ω,^ to S£qt(Ω2\
0<t< 1, where

Pt Pi P2 ' 9 f 9 i 4 2

This theorem is interesting in its own right. In a forthcoming paper [10] we
extend the results of this paper to a large class of partial differential operators
introduced in [3]. The method developed in this paper has the advantage over
quadratic forms that the unperturbed operator is not required to be bounded
below (or sectorial). Of course elliptic operators are, up to a sign, bounded below,
but my method extends immediately to situations where the unperturbed operator
is not bounded below, for example to systems of equations.

Π. The Proofs

Let Po denote a constant coefficients elliptic partial differential operator of degree
m:

Po= Σ « A

Dk= -i -—, x = (xχ,..., xn)εRn. We denote also
Xk

P0(to= Σ %w.
\μ\ύm

P0(k) is assumed to be a real valued function on RM.
P0(D) is defined in the set (denoted C") of infinitely differentiable functions of
compact support.

For J£?p, 1 ̂  p < oo, ifp is densely defined and closable. We denote its closure
by POtp. Po is closable in if °° but it is not densely defined. The domain of its
closure is too small. For this reason we consider the weak extension in Jδf °° instead
of the closure, i.e. we define

P = P*

P0oo is obviously closed and is an extension of Po.
For a linear operator H in a Banach space B we define the resolvent set ρ(H)

and the spectrum σ(H) in the usual way. We denote by σd{H) the discrete spectrum

See Remark II.8.
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of if, i.e. the set of isolated eigenvalues of finite multiplicity. Finally:

Definition ILL The essential spectrum σe(H) of a linear operator H is the comple-
ment (in the spectrum) of the discrete spectrum, i.e. σe(H) = σ(H)\σd(H). We have:

Lemma 11.2.

°(PoJ = °e(Po,P) = {P0(k)\k^n}. 1 ̂  P S vo.

Proof. For p < oo this is a classical result. The case p = oo follows as in [9].
Q.E.D.

We denote by R0(z) the following operator

(R0(z)f)(x) = f Γ 1 ! f j(x - y)/(y)^, for zeC\{P0(fe)|fc6R»}.

Lemma Π.3. ,R0(z) is a bounded operator on JS?P, and R0(z) = (z - POfP)'ί, for

1

fP)'ί

°°

^ ι , I..4-., \k -̂  oo, F —-— εif 1 . Then .RΛ(z) is aProo/ Since Dμ

= \k\μ+n

bounded operator on if v. The rest of the Lemma follows as in [1]. Q.E.D.
The perturbation, Q, is the following operator

M

The βα are constant coefficients partial differential operators of degree, /α, smaller
than m. Let P denote the perturbed operator

We are interested in operators which are formally symmetric, i.e. such that

This is not a serious restriction. In fact in most of the applications the operators
are formally symmetric.

The basic object of our method is the formal series expansion for the resolvent
of the perturbed operator

oo oo

m= Σ * o ( W = Σ (RoQTRo
n=0 n=0

The strategy of our method is to prove that the formal series expansion defines
a bounded operator in 5£v, 1 ̂  p ^ oo, denoted Rp(z). Then we prove that Rp(z)
is a resolvent, i.e.

Finally we prove that Hp is a closed extension of the perturbed operator P defined
on the set of functions φeC™ such that Pφe£?p. We give our conditions in terms
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of the following quantity:

-Rα is the class of functions such that Rx(q) < oo. Where:

*-P0(kh

c
Since \Dμ(Qa(k)/Po(k))\ ^ , M+m_la(,\k\ -^ oo,Gα6jSf1.

We split the proof of Theorem 1.1 in several Lemmas.

Lemma II.4. Let (Λ) be satisfied. If disφ,{P0(k)\keUn}) is large enough the
series expansion for the resolvent converges in norm to the resolvent of a closed
operator Hp in J?p, l^p^co.Hpisa closed extension of P.

Proof As in Lemma III.2 of [1] we prove that Q is P0Λ compact. Hence Hι =
po,i + Q i s closed in D(H1) = D(P01). Moreover QR0{z) is bounded in 5£ι

and if dist(z,{P0(/c)|/celRM}) is large enough | |βϋo(z)| | < 1 as operator in if1.
Then

Rγ(z) = R0(z)(l - QR,)-1 = f R0(z)(QR0(z))n.
n = 0

The series being absolutely convergent. This proves the Lemma in Ĵ f1. Since
P is formally symmetric R0(z)Q = (QR0(z))*> i.e. R0(z)Q is a contraction in JS?00.
Hence the formal series is absolutely convergent to a bounded operator in if00

*„(*) = Σ (Ro(zWRo(z) = (1 - R0Q)~ ̂ o

R^ is clearly injective. Moreover R^ satisfies the resolvent equation since R^z) =
R*(z) and Rχ(z) is a resolvent. Then R^ is the resolvent of a closed operator,
H^9 i.e. R^iz) = (z- HJ'1. Let us prove that H^ is an extension of P in if00.

Let φeC% and PφeS£™. Denote φ = (z - P)φ. Then RJz)ψ = £ (RoQ)nRoιl/ =

Σ (RoQTΦ ~ Σ (RoQTΦ = Φ τ h e n ΦεD(PJ a n d p J = ^Φ^This proves the
«=0 n=ί

Lemma in if00. By the previous argument the operator (R0Q)nR0 = R0(QR0)
n

is bounded as an operator in if1 and in J^00. Then by the Riesz Thorin inter-
polation theorem,is also bounded in JSfp, 1 <p< oo. For the same reason the
formal series expansion converges in norm to a bounded operator, denoted
Rp{z\ in $£v, 1 < p < oo.

Since Rp satisfies the resolvent equation in if1 and Jδf °° it satisfies the resolvent
equation in S£v 1 < p < oo, by interpolation.

Assume Rp(z)φ = 0. Then

o=#oe v = v -RJ=- ROΦ = o.
Then φ = 0 and Kp is injective.
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Then Rp{z) is the resolvent of a closed operator Hp

Rp(z) = (z-Hp)~K

We prove that Hp is an extension of P in 5£v 1 < p < oo as we did for J£?°°.

Q.E.D.

Lemma Π.5. The operators Hp are densely defined and

H H. f ^ l f o r
p p p p

Proof. Denote Dp = Range Rp for 1 ^ p < oo. Let φeS£p and let d = dist(φ,Dp).
Then by the Hahn-Banach Theorem there exists a \\ιe!£p' such that {ψ,φ) = d
and (ι^,χ) = 0 for all χeDp. But if χeDpχ = Rpω for some ωe^p. Then (^,χ) =
(^,jRp(z)w) = (JRp,(z)^,ω) = O for all ωeJ5?p. Hence JRp,(z)^ = 0 => ^ = 0. Then
d = dist (/>, Dp) = (v>, 0) = 0, and Dp is dense in &p

9 for 1 ^ p < oo. Since #*(z) =
JRp,(z), 1 ^ p < oo, we have H* = flp,. Q.E.D.

We say that a closed operator H in a Banach space ^ is semi-Fredholm [2]
if Range H is closed and one of nul H or def H is finite. The index of H is defined
by ind H = nul H - def H, if either nul i ϊ or def H is finite.

We denote by φH the set of complex numbers z such that z — H is semi-
Fredholm [2].

</>H is the union of a countable number of connected open sets (components).

Lemma Π.6. Let A be a closed operator in a Banach space having the property
that in each of the components of φA there is at least one point in the resolvent set
of A. Let Bbea closed operator having the same property. Then if there is a λeρ(A) n
ρ{B) such that (λ - A)'1 - (λ - B)'1 is compact σe(A) = σjβ).

Proof Since A has at least one point in the resolvent set in each component of φA

it can only have discrete spectrum on φA. Then σe(A) = ψA = C\φA. By the same
argument

But if (λ — A)~1 - (λ - B)~* is compact ΦA = ΦB, then it follows that

σe(A) = σe(B). Q.E.D.

Lemma II.7. If A is satisfied:

Proof As in L e m m a III.2 of [1] we prove t h a t Q is P0Λ compact , then
n

QR0 is compact in if 1 and R^z) - R0(z) = ]Γ R0(z)(QR0(zf is compact in
i=ί

if1. By taking adjoints R^ — Ro is compact in if00. Then by Theorem 1.2 proved
below Rp(z) — R0(z) is also compact in JSfp, 1 < p < oo. Then it follows from
Lemma II.6 that

RW} Q-E.D.
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Proof of Theorem I. Lit follows from Lemmas II.4, II.5, and II.7. Q.E.D.
Let us prove now Theorem 1.2.

Proof of Theorem 1.2. Given a subset of Un, Ω, denote by χΩ the characteristic
function of Ω. Let Ωn be a sequence of bounded sets such that Ωn a Ω2 and χΩ (x)
—• χΩi. Let Pn be the operator of multiplication by χΩn in 5£qt. Pn is a projector.

Moreover Pn converges strongly to the identity in j£?βt.

Since Ωn is bounded PΛH is compact from JSf^Ωj) to ^qt{Ωn) by a result of

Krasnosel'skiΐ [4]. Since H is compact from JSfPl(Ω1) to JSfβl(Ω2) P n # converges

in norm to H as operator from JS?P1 to £eq\ By the Riesz Thorin Theorem

\\Pβ-H\\puqt^2\\Pβ-H\\^jHγp2m-^^ and H is compact from
jSf^OJ to i?*(Ω2). Q.E.D.

Remark II.8. In [4] KrasnoseΓskiϊ proved Theorem 1.2 in the particular case
when Ω2 is bounded, but he did not give a proof in the case when Ω2 is unbounded.
I learned about [4] after this paper was completed.

Let us compare our result with the one obtained by the method of quadratic
forms [2] (and the references to original contributions quoted there), [5], [6],
[7], and [8].

For simplicity we consider the case Po -f q(x). We define

h0 is a closed bounded below3 quadratic form with D{h0) = Hmj22®Hmj2 2 . The
perturbation is the following form

v(φ, ψ) = (qφ9 ψ)

D(v) = {φ,ψE^2®^2\ \itφ,ψ)\ < oo}.

The perturbed form is defined as follows

= D(ho)nD(v).

If h extends to a closed bounded below form, /z, then h has an associated selfadjoint
bounded below operator, H, which is an extension of Po-\- q. H is called the forms
extension or the forms sum of Po and q.

Theorem Π.9. Suppose that qeRm and lim j \q(y)\GJy - x)dy = 0 uniformly

in x.
Then h = ho + q is closed and bounded below with domain Hmf2 2 (g) Hm/2 2. Let
H be the associated selfadjoint, bounded below, operator. Then H coincides with
the operator H2 given by Theorem I.I, i.e. H2 = H.

Proof We prove as in Lemma III.2 of [1] that \q\112 is a compact operator from

3 Since PQ is elliptic we can always reduce the problem to the case when PQ is bounded below by a

change in sign
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Hm/22 to if2. Then for any ε > 0 there exists Kε such that

\v(φ,φ)\ S sho(φ,φ) + KΛ(φ9φ) φeHm/2a.

Then h is closed in D(h) = Hmf2 2 ® Hm/2 2, and bounded below. We prove below
that for b large enough R2{- b) = RιJ2(\ - Q( -b))'1^12, where Q(z) =
Ry2(z)qRll2(z). From this and the expression (Hφ9ψ) = h(φ9\l/)9\l/9φeD(H) it
follows from a straight forward computation that we omit that R2( -b) = (-b-
H)'1. Then H = H2. Let us prove now that R2 = #* / 2 ( l - Q)~^R^2. Take b large
enough such that bep(H2) and: || | g | 1 / 2 £j / 2 ( - 6)|| < 1. Then

R2( -b) = R'J2( -b){\- (\q\ί/2R0( - bY>2)* (sign q)\q\ί/2R0( - ft)1'2)"1**'2

-W-βΓ1**'2. Q E D

Finally, let us prove that the spectrum of H is real for 1 <; p ̂  oo.

Theorem Π.10. Suppose that qeRm and lim J \q{y)\Gm(y-x)dy = 0 uniformly
R->ao

in x. Then the spectrum ofHp,l^p^oo is real.

Proof. Since H*= H ,,- + — = l,p < oo it is enough to prove the Theorem for
p p P p

2<p< oo.
The only spectrum that Hp can have in C\R is discrete spectrum. First assume

that q(x) is a bounded function. Define

q*K) 0 otherwise.

Let us define HpR = POp + q-qR.
Then λeC\R is an eigenvalue of Hp R with eigenvector φ if and only if

φ = R0(λ)(q-qR)φ.

But since φej?p,p> 2,(q - qR)φe5£2. Then φe5£2, and since the operator
H2R is selfadjoint in JS?2 we must have φ = 0. Then H R has no spectrum in
C\JR. But as operator in 5£x

\{q-qR)R^-qR^K^K^ \ \q{y) \ GJx - y)dy —> 0
x \y\*R R~+co

by assumption.

Then H1R converges in resolvent sense to Hί. By taking adjoint H^ R conver-
ges in resolvent sense to H^ and by interpolation HpR converges to Hp in resolvent
sense. Since HpR has no non real eigenvalues Hp has no non real eigenvalues,
and then it has no non real spectrum at all. If q is not bounded define

•M-ίf!*1**15'
(0 otherwise.

Then HpJ = POp + qι has no non real eigenvalues. But, \\qR0 - g ^ o l U 1 , ^ 1 ^
KRm(q ~ «,). As in Lemma IIL2 of [1] we prove that Rm(q - qt) ̂  0. Then
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Ht 1 converges to Hί in resolvent sense, and as before we prove that Ht converges
to Hp in resolvent sense. Q.E.D.

p

We considered the case P n + q in Theorems II.9 and 11.10 by simplicity, but
MM

these theorems extent to the general case P o + X

Acknowledgements. I thank Professor Martin Schechter for very useful conversations.

References

1. Weder, R.: Second order operators in the uniform norm. Preprint Harvard University (1977)
2. Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966
3. Schechter, M.: Spectra of partial differential operators. Amsterdam: North Holland 1971
4. Krasnosel'skiϊ, M. A.: On a theorem of M. Riesz. Soviet Math. 1, 229-231 (1960)
5. Schechter, M.: On the invariance of the essential spectrum of an arbitrary operator II. Ric. Mat.

16, 3-26 (1967)
6. Faris, W. G.: The product formula for semigroups defined by Friedrichs extensions. Pacific J.

Math. 22, 47-70 (1967)
7. Nelson, E.: Topics in dynamics. Princeton: Princeton University Press 1969
8. Simon, B.: Halmiltonians defined as quadratic forms. Commun. math. Phys. 21, 192-210 (1971)
9. Koller, H., Schechter, M., Weder, R.: Ann. Inst. Henri Poincare 26, 303-311 (1977)

10. Weder, R.: The unified approach to spectral analysis II. Preprint Princeton University (1977)

Communicated by H. Araki

Received September 20, 1977






