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Abstract. A general method for proving the existence of phase transitions
is presented and applied to six nearest neighbor models, both classical and
quantum mechanical, on the two dimensional square lattice. Included are
some two dimensional Heisenberg models. All models are anisotropic in the
sense that the groundstate is only finitely degenerate. Using our method
which combines a Peierls argument with reflection positivity, i.e. chessboard
estimates, and the principle of exponential localization we show that five
of them have long range order at sufficiently low temperature. A possible
exception is the quantum mechanical, anisotropic Heisenberg ferromagnet
for which reflection positivity is not proved, but for which the rest of the
proof is valid.

I. Summary of Results and General Strategy of Proofs

One of the main purposes of this paper is to explain a general method for proving
the existence of phase transitions, in the sense of long range order at sufficiently
low temperatures, in classical and quantum lattice systems. In principle, our
method can be applied to arbitrary lattice systems satisfying reflection positivity
(a condition closely related to the existence of a self-adjoint positive definite
transfer matrix), the groundstates of which are essentially finitely degenerate (e.g.
the space of groundstates decomposes into finitely many subspaces labelled by a
discrete order parameter, sometimes related to a broken discrete symmetry
group).

Our method is inspired by recent work of Glimm, Jaffe and Spencer concerning
phase transitions in the (λφ4)2 quantum field model, [16]. In this paper their
ideas are extended in two ways:

1. We systematize the use of reflection positivity and chessboard estimates
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in obtaining upper bounds on the statistical weight of contours arising in a Peierls
argument and we show how to apply these methods to quantum lattice systems.
This reduces the proof of long range order to estimating a ratio between a cons-
trained partition function and the usual partition function. (This is basically a
thermodynamic estimate).

2. We introduce the principle of exponential localization in order to derive
upper bounds on constrained partition functions. This principle is particularly
useful in the analysis of quantum lattice systems.

Reflection positivity, originally inspired by work of Osterwalder and Schrader
[18], and the principle of exponential localization are useful tools in contexts
other than the theory of phase transitions.

In Section LA we introduce six different classical and quantum mechanical
models on the two dimensional square lattice in terms of which we develop and
illustrate our general method. A summary of our main results concludes that
section.

In Section I.B we recall the connections between phase transitions and the
occurrence of various forms of long range order (LRO) at sufficiently low
temperatures.

In Section I.C, D and E we present the main ideas behind our general method;
(Section I.C contains a convenient variant of the Peierls argument, essentially
identical to the one of [16]; see also [10]).

In Section II we establish, (or review) reflection positivity for five of our six
models, the exception being the quantum Heisenberg ferromagnet. We prove a
generalization of the Holder inequality for traces which, when combined with
reflection positivity, yields the chessboard estimates. They extend constructive
field theory estimates of [19].

In Section III we introduce the principle of exponential localization and apply
it to our models for the purpose of estimating constrained partition functions.
This is an expansion of the idea used in [22].

In Section IV the proofs of our main results are completed by combining
the estimates of Sections I.C, II and III. Sections II and III contain results which
are of some interest in their own right: Theorems 2.1, 2.2, 3.1 and Corollary 3.2.
The reader can understand their statements and proofs without being familiar
with the rest of this paper.

Next, we describe the models studied in this paper in general terms and recall
some typical aspects of two dimensional lattice systems.

Two facts are well established about two-dimensional (quantum or classical)
lattice spin systems with short range interactions:

(i) The Ising model has a first order phase transition (i.e. long range order for
large β = {kT)~x); for all values S = 1/2, 1,... of the spin.

(ii) Models with continuous symmetry (e.g. the isotropic Heisenberg models)
have no such ordering. The proof of this is due to Mermin-Wagner [1], Mermin
[2] and Hohenberg [3], (MWH). Thus, a natural question is whether the aniso-
tropic models have LRO for all values of the anisotropy parameter, α, with
0 < a < 1. For the classical Heisenberg (H) model this was proved recently by
Malyshev [4]. Kunz, Pfister and Vuillermot [5] later gave a simplified proof
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for the planar rotator. Ginibre [6] and Robinson [7] proved LRO for the quantum
Heisenberg jerromagnet for very small α.

In [8] we announced proofs of LRO for a variety of anisotropic models:
in particular for the quantum ferromagnetic H model, for all α < 1. Subsequently
we became aware of a flaw in one of the lemmas for the ferromagnetic model.
This is basically the same flaw as in the announced Dyson, Lieb and Simon [9]
proof of LRO for the three dimensional H model. The other results stated in
[8] are correct. Here we will present the details of the proofs, including the part
of the proof for the ferromagnetic H model that is correct. It is hoped that before
very long the missing piece of the puzzle will be filled in.

An obvious remark has to be made: All the models we consider have no LRO
at high temperature, a fact which can be proved by high temperature expansions,
for example. Since LRO implies the existence of a spontaneously polarized state,
our proof of LRO at low temperature implies the existence of a phase transition.

The models discussed here are all two-dimensional but, as in the usual Peierls
argument [23], all our results and methods can be extended to higher dimensions.
They can also be extended to some other lattices, e.g. the honeycomb lattice;
see [12].

Some of our results were reviewed in [10] and [11]. Additional applications
of the ideas presented here are to be found [10], [12] and [13].

LA. Description of the Models and Main Results

All models are on the square lattice Z 2 and have only nearest neighbor interactions.
Thus ]Γ means a sum over nearest neighbors, each term being included once;

H is the Hamiltonian.

(1) Classical N-Vector Model (N > 1)

) \ (1.1)

Each S. is a unit vector in UN, uniformly distributed on the sphere. (More general
rotationally symmetric spin distributions could be accomodated by our methods.)
Note that in this classical case, the ferromagnet (minus sign in (1.1)) is equivalent
to the antiferromagnet (plus sign) by reversing the spins on the odd sublattice.
This is not true in quantum models.

Our result in this case is that for every a < 1 there is LRO at low T. In other
words for every α < 1 there is a βc{a) such that there is LRO for β > βc(a). Our
estimate on βc(a) is

βc(a) = O((l-a)~1). (1.2)

The MWH result is that βc(<x = 1) = oo. Our proof is simpler than Malyshev's
[4]
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(2) Classical Anharmonic Crystal (AC Model)

The Hamiltonian of this model is given by

j

where x. is the coordinate of an N-vector classical oscillator bound to site z, with
apriori distribution dNx;φ is some continuous, anisotropic interaction potential,

Φ(χ, y) = Φx(χ) + Φi(y) + Φ2(χ, y),

where φx ^ 0 is a one body potential, and φ2 is a two body potential.
In other words we are considering some sort of anharmonic, anisotropic

classical crystal (resp. a Euclidean lattice field theory). We will prove LRO at
high β under the following assumptions on φ:

occurs for x and y in the same direction, (Typically at x — y = x0, for some x0 ^ 0).
But if x1 and y1 (the 1-components of x, resp. y) have opposite signs

φ(x, y) ̂  ε0 + α + λ{φχ{x)

for some α > 0 and some λ > 0 with the property that for sufficiently large β

$e-βλφί(x)dNx<oo.

Examples of such potentials are:

1. φx(x) e.g. gx4-l(x1)2 + (64g)-\ for some g>0,φ2(x9y)=V(x-y), where
V(x) is some strictly convex function with minimum at x = 0.
2. ψλ(χ) e.g. yx2,7<^ l,</>1(x,y)= F(x-y), with V{x) e.g. #x4 - tC*1)2, for some
g > 0, (or F an arbitrary continuous function with two sharp minima at x =
±(xo l,0,...,0)).
3. φx{x) = γ log(|x| + 1), φ2 as in example 2.

Examples 2 and 3 (of anti-ferromagnetic type) are not of the general form
of model AC, but can be brought into this form by replacing x. by — xt on one
ofthesublattices.

Remarks. It is of interest to consider also the case where ^(x) is replaced by
const. β~1φί(x). Then these models certainly do not have LRO for large /?, as
can be shown by a high temperature expansion.

The symmetry φ(x,y) = φ( — x, — y) is not crucial for our arguments; see
also [10, 12]. The main point of the study of model AC is that exp [ - βφ2(x, y)~]
is not required to be of positive type. Next nearest neighbor interactions (coupling

*<«,.,) w i t h x(m± un± i ) ) c o u l d b e included.
Physically more interesting models of an anharmonic crystal would be

obtained by setting φ1(x) = 0 and assuming that φ2 is translation invariant. Our
methods do not apply to such models.
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(3) Quantum Antiferromagnetic Heisenberg Model

H = Ha = S~2[HZ + aHxy~] (1.3)

Hxy = Σ {S*SJ + SfSJ}; (1.4)

S = 1/2, 1, 3/2,... is the total spin at each site. We will prove that there is LRO at
sufficiently large β and small α: For each S there is an α(S) and βc(oϊ) such that
for α < ot(S) and β > βc(ot) there is LRO. As S -> oo,α(S) -> 1. We do not know
if there is LRO for all α < 1 when S is finite. This is an open problem. Because
the S -> oo limit is the same as the classical model [14], we have here a generali-
zation of the Malyshev result.

There is an equivalent form for (1.4) which is more convenient for our purposes,
namely

This is obtained by making a rotation of π about the y-axis for the spins on one
of the two sublattices; for such spin operators Sz -> — SZ,SX -* — Sx, Sy -> + Sy.
In this representation all the terms in (1.3) are then of the form—(real matrix
at i) (real matrix at j). Then reflection positivity, as discussed in Section II.A,
holds. See [9] for more details.

(4) Quantum Ferromagnetic Heisenberg Model

H = Hf=-Ha. (1.5)

The announced result [8] was that there is LRO for all α < 1 when β is large
enough (uniformly in S). Unfortunately we cannot prove this because the proof
of reflection positivity (Section II) is missing, but the second stage of the proof
is correct and is given in Section III.

(5) The Two Quantum Models Can Be Modified as Follows

Hz= Σ(SZ-SZ)2

nxy= Σ {(sr-sp2 + (Sf-sp2}.
<u>

H = S-2[Hz + uHxy~]. (1.6)

This was mentioned in [8]. We will not give the details of the proofs here which
are straight forward variants of the ones for (3), (4). This model is, however, interes-
ting for the following reasons:

First, consider this model classically. When α = 0 there is no LRO for any
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β by the Brascamp-Lieb argument [15]. Refined statements about exponential
clustering were proved in [21]. When α = 1 there is no LRO by MWH. We expect
that there is no LRO for any 0 < α < 1 and any β.

However, the quantum model has a phase transition. In view of the foregoing
remark, it is not surprising that our method yields the following in the ferromagne-
tic case (assuming reflection positivity): For α < 1 there is a j8c(α,S), with LRO
when β > βc(<x, S). However, βjμ, S) -• oo as S -• oo or α -• 1.

(6) Quantum and Classical xy Model

For convenience we take this model in the form

# = - S ~ 2 Σ {SJSJ + αSfS;}. (1.7)
<u>

This is the ferromagnet. However by making a notation by π about the y-axis
for all spins on one sublattice (as in model (3)), we see that the antiferromagnet
(defined with a + sign in (1.7)) is equivalent to the ferromagnet. See [9] for further
details. For this model, as given by (1.7), reflection positivity does hold: (see
Section II.A and use the standard representation in which Sz and Sx are real
matrices).

Since the results and proofs for this model are the same as for the antiferro-
magnet (model (3)), resp. for model (1), we will not give further details.

LB. Remarks about Long Range Order

Let < — }Λ be the Gibbs state of a system in a bounded rectangle A c Z 2 with
periodic boundary conditions, at inverse temperature β. The system in the thermo-
dynamic limit, ΛΐZ2, is said to have LRO if

lim(m2

Λ)Λ>0, (1.8)
ΛU2

where mΛ = r—r £ m. is the magnetization, and m. is defined, in the different models,
by \Λ\ieA

i \
(3) m ^ S - H - l ) * 1 " " 2 ^

(this is the staggered magnetisation)

The inequality σ(β)>0 implies that there is spontaneous magnetization; see
e.g. [9]. It is well known that σ(β) ̂  M 2 > 0 is implied by

< m 0 m . > ^ M 2 > 0 , (1.9)

uniformly in A and j . We will establish (1.9) at small temperature.
For this purpose, define Pfδ to be the projection operator onto all configu-

rations satisfying mί ^ δ, resp. m. ̂  — δ. Moreover

p.«5 = l-P+< 5 _p-< 5 (1.10)
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is the projection onto all configurations for which | tni \ < δ. Finally, P;(Λ) =
P7λ + Pfλ is the projection onto all configurations for which mi < λ. For all
models, except the AC model, |m;| ̂  1. Then

<momj)Λ = μλ\dP0(λ)dPj(λ'))Λ

The three terms on the right side of (1.11) are labelled I, II, III.
First we discuss II. Since, in all models, m0 and m} commute, for all j , P*dPTd

P+P f δ 0 i h- for δ >0, with

Therefore

<PZ*P7*yΛ^(pZpjyΛ. (1.13)

The right side of (1.13) will be estimated by means of a new version of the Peierls
argument inspired by work of Glimm, Jaffe and Spencer [16], and will be shown
to be small, for large jS, in the following sense which depends on the model: For
some ε > 0 and β large enough

uniformly in A and j . Thus,

II > - ε . (1.15)

Next we discuss term III on the right side of (1.11). By the Schwarz inequality
for the state < — >yl

<p^p^>Λ^<p^>Λ, (i.i6)

and we have used

(p<δ\2

 = p<δ

and

which follows from the translation invariance of < — yΛ. We will prove by purely
thermodynamic considerations that for some ε > 0 and sufficiently large β (depend-
ing on the model)

<PZδ>Λ<* (LIT)

Therefore

IΠ> -ε<52> - ε . (1.18)
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Finally we discuss term I on the right side of (1.11).

' Λ

+ δp<δ5\ _ / p + δp
j χΛ

In all the models considered in this paper there is a symmetry taking m to - m.,
for alljeΛ. Therefore

so that

<Pθ0>Λ=λ2

Combination of (1.14), (1.17), (1.19) and (1.20) yields

uniformly in A and j\ (provided β is large enough, depending on the model).
Therefore

(1.22)

Insertion of (1.15), (1.18) and (1.22) into inequality (1.11) gives

<mom.yΛ ^δ2- 4δ2ε -2ε>δ2- 6ε, (1.23)

uniformly in A and j . Therefore

σ(β)>δ2-6ε. (1.24)

In each model we will choose δ and ε to depend on β in such a way that, for suffi-
ciently large β, δ2 - 6ε > 0.

The most difficult inequality to prove is (1.14). The strategy will be explained
in three steps, C, D and E below. The inequality (1.17) is relatively simple and will
be given in Section IV.

LC. The Peierls Argument

In this section we describe a general form of the Peierls argument. We consider
a finite classical or quantum lattice system in a square A α I2. For convenience
we wrap A on a torus, but this is inessential for this part of the argument. At each
site ieA we are given two orthogonal projection operators, Pp with

P / + P Γ = 1, for ally. (1.25)

In the following < - > = = < - }Λ. We propose to derive an upper bound on
(P*P~ >, where m and n are arbitrary, fixed sites in Λ9 and m φ n. The first step
is the trivial identity

= (κκ Π (Pt + PJ)),
\ JΛ I

1 This also holds when <Po

+ *}Λ φ < P " δ ) Λ
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an immediate consequence of (1.25). We now expand the product on the right
side of (1.26).

Definition 1. A configuration c is a function on A with values in { + , — }, and
c(m) = + ,c(n) = —. A contour γ cz A is a family of nearest neighbor pairs {<ι"i>
j ! >,..., < i{ Jt >: I = 4,6,...} which decomposes Λ. into precisely two disjoint
subsets

Given a configuration c, we let Γ(c) denote that class of all contours γ = {< iχ,
Λ>> ><Wz>} w i t h C ( U = +'^G^m(') ;XcOfe)= - Jfcei4n(y),fc= 1,...,/. Since, for
any configuration c, c(m) = + , c(ή) = —, we conclude that, given an arbitrary c,
there exists a contour γ(c)eΓ(c) with the property that there exists a connected
set Ac aΛJy(c)) such that meAc,c(ί)= + , for all ieAc,{iί,...,iι} ^Λc. (A set
X is connected if any two sites ij in X belong to a chain {/ = i0, i:

Λ,..., ik, ίk + χ = j}
c X such that ij and i I + 1 are nearest neighbors, / = 0,... ,/c). Using Definition 1
we get from (1.26) by expanding

c \ jeΛ

= Σ Σ (Π^y (1.27)

Next, we note that

for i ψj, arbitrary c. Hence, for Y c X,

0 ^ Π p j 0 ) ^ Π p j 0 ) ' s o t h a t

JeX jeY

for all c. Therefore

Σ
{c:y(c) = y} \jeΛ

- Jt \ 0 P 5 ϋ )

= (PΪP- Γί P+

\ m n Λ1 ι

<( Π PΐPJ/ (1-29)
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Therefore we have the inequality

Π PΐPJ
7 ^ <i,i>ey

Let I y I denote the number of nearest neighbor pairs in y, (the "length" of γ).

Theorem 1.1. (Peίerls Argument). Suppose that (for large enough \Λ\)

Π PΪPJ )ύe~κM9 (1.31)

for some constant K>\n3 (independent of A). Then

<KPn>^ Σ 2 ί 3 2 i ~ 2 e ~ 2 l * < 0 0 > ί1-32)
1 = 2

for arbitrary m and ninA (and all sufficiently large squares A).

Remark. The assertions of Theorem 1.1 do not depend on the size of A and extend
without change to the infinite system A = Z 2 (see the subsequent proof and [10,
Section 3]).

Proof By Definition 1 the length of a contour is always even. The smallest contours
are {<m,j1>,<m,j2>,<m,j3>,<m,j4>} and {<ΐ 1 9 n>,.. . ,<i 4 ,n>}, i.e. have
length 4. Hence, by (1.30),

W ; > * Σ Σ ( Π PΪP
1 = 2 {γ:\y\ = 2l} \ <i,j>ey

(When A is finite these sums are finite). Given some fixed length 2/, well known
combinatorics shows that there are no more than 2(1 — 1)32Z~2 contours of length
2/, provided A is large enough, depending on m and n. (The factor 3 2 *" 2 comes
from a standard 1— -argument and the fact that all contours consist of one or

two closed pieces. The factor 2(1 — 2) comes from the fact that each contour must
separate m from ή). Theorem 1.1 now follows from (1.33) and the inequality

00

K > In 3 which guarantees that the series Σ 2(/ — l)32l~2e~2lκ converges.
'=* Q.E.D.

Theorem 1.1 has the following

Corollary 1.2. Given ε > 0, there exists some finite K(ε) such that, for all K ^ K(s\

Remarks. 1. The relevance of Corollary 1.2 for the proof of long range order has
been explained in Section l.B.
2. Theorem 1.1 and Corollary 1.2 can easily be generalized to the case of more
than two positive operators (e.g. projections) Pj,..., Pjf say, with

M

1=1
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We could apply this more refined Peierls argument to the quantum ferromagnet,
model (4), with Pj = P.+*, Pf = P.<<5, Pf = P7δ. This extension is important in
models with more complicated phase diagrams involving at least M > 2 pure
phases; (see e.g. [10], Sections 3 and 8).
3. Clearly these techniques extend to arbitrary dimensions ^ 2 and other than
simple, cubic lattices. See also [12].

I.D. Reflection Positίvίty and Chessboard Estimate

In Section I.C we have seen that in order to prove

uniformly in m and n, it is sufficient to show

Π p+p- \ < P-K\y\ (\ 'IΛΛ

for some constant K = K(ε) > In 3. Here we want to sketch how (1.34) can be
reduced to a purely thermodynamic estimate.

Let A be a square with sides of length N = 4M, M = 1,2,3,.... We define a
"universal projection"

M-lΓN-ί Π

p = Π Π P + P~ P~ P+ (ί 35)
ΓΛ 11 1 1 jΓ(4m,«)jΓ(4m+l,«Γ (4m + 2,nΓ (4m+3,n) * \l.DJ)

m = θl_n = O J

The following self explanatory figure illustrates Equation (1.35).

Fig. 1

One of the key estimates in our approach to proving LRO is the inequality

ΓT p+pr )<<(p \M/2MI (136)
x L i j / Λ V /
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which we shall prove for models (1), (3), (5) (antiferromagnetic case) and (6), i.e.
all models except the quantum ferromagnets and the anharmonic classical crystal,
model (2). For the former, we believe that (1.36) holds but we have no proof; (1.36)
will be assumed to hold in the sequel.

For the AC model, the definition of the universal projection has to be modified:
Let A be a square with sides of even length N = 2M. We define

M-1ΓM-1 Ί

?A ~ 11 11 P(2n,2my (2n+l,2m) *
m = O L n = O J

The following figure explains the definition of P^c.

(1.37)

Fig. 2

In the case of the anharmonic classical crystal we prove

Π PϊPτ)z (1.38)

(This inequality also holds for the classical ΛΓ-vector model, model (1)). Our
proofs of inequalities (1.36) and (1.38) are based on the notion of reflection positivίty
(or 0 - 5 positivity) which we now explain: We choose a pair of lines / parallel
to one of the coordinate axes, cutting A into two congruent pieces Λ+ and A_
(Note: / is a pair of lines, because A is wrapped on a torus). In models (1), (3), (4)
and (5) the lines / are between two lattice lines, so that A+nA_ = φ, whereas
in model (2) / consists of two lattice lines, and Λ+nΛ_ =l. Let θι be the reflection
at /. Let F = F(m)Λ+ be a complex-valued function of all the m/s (see Section l.B),
with ieΛ+. We define θιF = θιF(m)Λ to be the function obtained from F by
substituting mθιj for m.. Reflection positivity is the inequality

P (1.39)

where F is the complex conjugate of F. A somewhat more general inequality
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(also called reflection positivity) is discussed in Section II; as an example we
mention that in the JV-vector model, (1.39) is true for arbitrary, complex-valued
functions F of {S. :ίeΛ+} and both choices of / (between two lattice lines or
coinciding with a lattice line).

Reflection positivity (1.39) yields the following Schwarz inequality: If F and
G are functions of (m)Λ+ then

(1.40)

Next, we indicate how (1.36), resp. (1.38) follow from (1.40). Let yh be all pairs
<ij> of the contour y for which j — i points in the 1-direction. Such pairs are
called "horizontal". Furthermore γv = y\yh denotes all "vertical" pairs in y.
For <ij>eyh, let i ΛJ denote the site with smaller 1-coordinate; for <ij>eyF,
i A j is the site with smaller 2-coordinate. Suppose that reflection positivity (1.39)
holds for reflections θι at lines / between two lattice lines. Then we define

Similarly yv e and yvo are defined. By the standard Schwarz inequality for < - >
we have

Π P?PT)*( Π pΐPiY( Π PΪPJ

I \ 1 / 4

^ Π ( Π PΐPJ) (141)
β = e,0

To each factor on the right side we now apply reflection positivity (1:39) and
inequality (1.40) repeatedly, for many different choices of /. This yields

Π P ^ 7 / ^ < ^ > 2 | T a ' / j | / M I - (1.42)

This inequality is a special case of a general corollary of reflection positivity,
called chessboard estimate [19], which we prove in Section 2. Clearly, inequalities
(1.41) and (1.42) yield the key inequality (1.36).

In the classical, anharmonic crystal, model (2), we first decompose y into two
pieces, yh consisting of horizontal and γv consisting of vertical pairs. For < ij}eyh,
let (ij)2 denote the 2-coordinate of both i and;, for (ij}eyv, let {ij)1 be the 1-
coordinate of i and j . We define
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Applying again the standard Schwarz inequality for < — >, we obtain

. (1.43)
Π PΪPJ ) £ Π < Π PΪPJ

To each term on the r.s. of (1.43) we apply the Schwarz inequality (1.40) repeatedly,
for all allowed choices of reflections θt at lattice lines I This yields (see Section II)

Π Kp7 ) = < F ^ > 2 | y " ' l/μi1. (1.44)
j>ey*,β '

The key inequality (1.38) follows from inequalities (1.43) and (1.44). Further details
concerning reflection positivity and the chessboard estimates (1.42) and (1.44)
are given in Section II.

I.E. Estimate o/< PΛ > and Exponential Localization

In this section we sketch the main ideas of how to estimate

By definition of < — >,

• Tr(exp[-/?tfJ) *

where R(AC) means either RΛ or RAC. Here HΛ is the Hamiltonian of the model
under consideration, and Tr is the usual trace in the quantum mechanical models,
and, in the classical models, an integral with measure the product of the single
spin distributions over all sites in A. Let EΛ(de) denote the spectral measure of
the Hamiltonian HΛ. By the spectral theorem

Tr(exp [ - βHjC) = ]e~βe Ύr(EΛ(de)C), (1.46)
eo

where e0 = eo{A) = infspec HΛ is the groundstate energy, and C is an arbitrary
operator, resp. function. We will choose some positive number Δ = Δ(β), depending
on the model under consideration, and decompose R^c\β) into two pieces

eo + Δ\Λ\

] Λde)PJAC)), (1.47)
eo + Λ\Λ\

where

= f e-
βeΎr(EΛ(de)) (1.48)
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is the partition function. We estimate R{+C)(β,A) by

β, A) S ZΛ(β)~1 exp { - β[e0 + A \Λ | ] } J Ύv{EΛ{de))

S exp{ - /?[e0 + A \Λ{]} { T r ( l ) Z ^ ) - 1 } . (1.49)

The Peierls-Bogoliubov inequality will be shown to give

Ύr(l)/ZΛ(β) ^ exp β[e0 + ^ | Λ | ] , (1.50)

for β sufficiently large. Thus

R^{β9A) S exp{ - βΔ\Λ\/2}. (1.51)

Next we consider R{^c\β, A). In the classical cases this will vanish for the follow-
ing reason: A will be chosen sufficiently small so that P{£C) will be a projection
onto configurations with energy greater than eo + J | y l | . Thus the integral for
R^c\β) will vanish identically.

In the quantum cases, the situation is more complicated. Although PΛ will
be a projection onto states whose average energy exceeds e0 + A \Λ\, the integral
does not vanish, because PΛ will have nonvanishing matrix elements in eigenstates
of HΛ with energy < e0 + A \A\. To be explicit, let e0 ^ eγ ^ be the eigenvalues
of HΛ with eigenvectors φ0, φ1,.... Then

R_(β, A) = ZΛ(β)~1Σ'C; exp[ - βej (1.52)

where £ ' means a sum over i such that e. ^ e0 + zl | /I |, and

C^iφ^P^). (1.53)

Now C is independent of jβ, and terefore R_(β,A) does not necessarily
vanish as exp[ — β(const.)]. What we have to show is that C. -> 0 sufficiently
fast as i -> 0. Then we can hope that R_(β,A) goes to zero sufficiently fast as
β -• oo, for a suitable choice of Zl.

The estimate on C , carried out in Section III, comes about in the following
way: We write HΛ = AΛ + BΛ, where BΛ is suitably small compared to AA9 and
such that PΛ is an eigenprojection for AΛ onto AΛ eigenvectors having energy
> e0 + nΔ \A I for some n. In model (3), for example, A = S~2HZ. If BΛ were zero
then C. = 0 for e. ^ e0 + J |yl|. The principle of exponential localization will tell
us that ^ eigenvectors of A^ energy greater than eo +nA\A\,(n^2) when
expanded in the φt, are strongly (indeed, exponentially well in |vl|) localized
around φ. with β. > e0 + zl | A |. This, in turn, will lead to C. being smα// for e^ e0.

Acknowledgements. We thank B. Simon for some very useful suggestions.

II. Reflection Positivity and Chessboard Estimates

II.A. Reflection Positivity

In this section we recall the proofs of reflection positivity, inequality (1.39), for
the models studied in this paper. For the classical iV-vector models, reflection
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positivity is shown in [20]. In terms of a transfer matrix formalism it is used in
[10]. For the quantum anti-ferromagnet and the quantum mechanical xy model
(models (3) and (6)) reflection positivity was discovered in [9]. The proof given
there also applies to the classical JV-vector models.

First we consider the classical, anharmonic crystal, model (2), for which (1.39)
is new. We choose a pair of lattice lines / cutting A into two congruent pieces,
Λ+ and Λ_, with Λ+ nΛ_ = I Let Λ± = Λ±\l The N-vector oscillators attached
to sites in Λ± have coordinates (y)± = tyeR1* :jeA±}. The coordinates of the
JV-vector oscillators attached to sites in / are denoted by

Given a function F of (y)+, (z), we define ΘJF to be the function of (y)_, (z) obtained
by substituting yθιj for yj9 for a\\jeA±, i.e. Of is the reflection of F in the lines /.
The Hamilton function HΛ of the AC model is given by

HΛ=

= Σ

= Σ

Let dx be the a priori distribution of a single oscillator, and set

Let F = F((y)+, (z)) be an arbitrary function localized on Λ+. Then

= ZA(βΓίjd(z)d(y)+d(y)_e-βH'Ψ((y)+ Λz))θιF((y)_ ,(z))

i.e.

0, (2.2)

which is reflection positivity. Clearly, this form of reflection positivity also holds
for the classical JV-vector models. Next, we consider the quantum mechanical
models and the classical iV-vector models. We let / be a pair of lines between
lattice lines cutting A into two disjoint, congruent pieces, A+ and A_. Let 3I7

denote the family of all bounded functions of the spin S. ("algebra of observables"
at site;). We define
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and

Given some £e9I, we define ΘB = θfi by

(ΘB)(($)Λ) = B((ΘS)Λ), (2.3)

where

= {SθιJ:jeΛ},

i.e. ΘB is obtained from B by substituting Sθιj for S., all jeΛ. Clearly θ defines
an isomorphism from 91+ onto 9Ϊ_ (and conversely). Furthermore we define

B = (Bτ)* (2.4)

to be the complex conjugate (not the adjoint) of B, for arbitrary Be*Ά. Following
[9] we study Hamiltonians of the following general form:

H = B + θ(B)-ΣCiθ(Q, (2.5)
i

where J5,C 1 ? . . . ,C k , . . . are in 9Ϊ + , (and B = B*,Ci= ±Cf, for all ΐ, so that H
is selfadjoint). The following result is a slight variation of Theorem E.I of [9].

Theorem 2.1. (Reflection Positivity). Let F e 2 ί + . Then

where "Tr" means the usual trace in the quantum case and an integral in the classical
case.

Proof. It clearly suffices to prove that Ύr(e~βHF(ΘF)) ^ 0. By the Trotter product
formula,

e~βH = lim Gπ, where
n—• oo

( — Γ R

e-(β/n)Be-(β/n)ΘB\ j i 0_

L n
Thus, Theorem 2.1 is proved if

Ύr(GnF(ΘF)) ̂  0, for all n. (2.7)
To prove (2.7), note that all elements in 91 + commute with all elements in 91 _.
In (2.7) all elements with a θ (which are in 9Ϊ__) can therefore be moved to the
right of all elements without a θ (which are in 91+). This shows that Tr(GnF(BF))
is a sum of terms of the form, ...DmFθ51... ΘDmΘF) = Ύr(D1 ...DJθφ,... DmF))

= Ύr(D1...DmF)Ύr(Dι...DmF),
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with Dί,..., Dm in 21 + . Here we have used the obvious facts that Tr (AB) — Tr (A)
Ίx(B\ for AeSΆ+ , J3e2I_, and Ύτ(ΘA) = Tr(A\ for all Ae<&+. Finally

by definition of complex conjugation (B h> B). Q.E.D.

We leave it to the reader to check that the Hamiltonians HΛ of models (1), (3)
and (6) are of the form (2.5). See also [9]. Hence Theorem 2.1 proves reflection
positivity, inequality (1.39), for these models. However, for the quantum ferro-
magnet, models (4) and (5) (ferromagnetic case), HΛ is not of the form (2.2) (because
of the SfSJ terms), and the proof of Theorem 2.1 breaks down. At present, no
useful form of reflection positivity is known for these models. In the sequel, we
will assume that inequality (1.36), which follows from reflection positivity (as
shown in Section II.B) does hold for the ferromagnetic models, even though we
have no proof of it.

II.B. Chessboard Estimate

Our goal in this subsection is to use reflection positivity to prove inequalities
(1.42) and (1.44) (chessboard estimate). We prove a general theorem that includes
(1.42) as a special case.

Theorem 2.2. (Generalized Holder Inequality). Let 21 be a vector space with anti-
linear involution J (to be thought of as complex conjugation). Let ωbe a multilinear
functional on 21x 2M,for some integer M > 0, with the properties

(C)ω(Ax,...,A2M) = ω(A29...9A2M9A1) (cyclicityl and

(θ) The matrix K whose matrix elements K(j are given by

K-ij — ω ( ^ i , i ' ' JAtM, A.Λ,..., AjM),

with Alm an arbitrary vector in 21, for all 1= 1, . . . , n , m = 1,...M, is a positive
semi-definite nx n matrix, for all n= 1,2,... (Reflection Positivity). Then

2M

(1) \ω(Aί,...,A2M)\S Y[ω(JApAp...JApA

(chessboard estimate)
and

(2) \\A\\2M

is a semi-norm on 2Ϊ.

Proof. 1. A Schwarz Inequality. Let 5£(21x M ) be the vector space over the complex
numbers spanned by all elements in 2ί x M . Hypothesis (θ) tells us precisely that ω
defines an inner product on i?(2I x M ) . As a special consequence of the Schwarz
inequality for this inner product we have

ω(JA2M,..., JAM+!, AM + ι,..., A2M) . (2.8)
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2. Proof of Theorem 22 for M = 2. This serves to exhibit the main ideas behind
the proof of the general case. By (2.8) and hypothesis (C),

I ω(A, B, C, D) I ̂  ω(A, B, JB, JΛ)ίl2ω(JD, JC, C, D)1/2

= ω(£, JB, JΛ, A)1/2ω{JC, C, A JD)1/2

^ ω(B, JB, £, JB)1/4ω(JA, A, JA, A)11*

ω{JC, C,JC, C)ίl4ω(D,JD,D,JD)ί/4

= ω(JA, A, JA, A)1/4ω(JB, £, JB, B)1/4

• ω(JC, C, JC, C)1/4ω(JD, A JD, D)ί/4

which is (1); (2) follows from the multilinearity of ω and (1).

3. The General Case. Since ω is multi-linear and

ω(JAj,Aj,..., JAj^Aj) = ω{Aj,JAj,..., Ap JA),

by hypothesis (C), we may assume that

ω(JApAp...,JApA)=l, (2.9)

for all j = 1,...,2M; (if not, replace ^ by ω{JApAp...,JAvA)~ll2MΆ). We
set JAj = Aj+2MJ=l,...i2M. A configuration c is a function on {1,...,2M}
with values in {1,...,4M}. Let z = max|ω(^ c ( 1 ),^ c ( 2 ),. . .,^ c ( 2 M )) | , i.e.

( ) f o r a l l c . (2.10)

Lemma, z = 1.

Proof. For c defined by

c(2m - 1) =j + 2M, c(2m) = j ,

m= 1, ...,M,

by (2.9). Hence z ̂  1. Thus, it suffices to show z ̂  1. Let c be a configuration for
which

Let c(M + 1) = j . Then, by the Schwarz inequality (2.8),

z = I ω(Ad(1),..., Aέ(2M) I

• ω ( J ^ 4 ί ( 2 Λ f ) ' > J ^ j , ̂ , . . . , A~c{2M))

^ z1>2co(JA,i2M),...,JApAp...,AH2M))
112, by (2.10)

= zll2ω(JAdi2M_ίy...,JApAj,...,Aδ{2MyJAδ{2M))
112, by hypothesis (C)

S z^ω(JAd{2M_ 1 } , . . . , JApApJApAp . . . , ^ ( 2 M _ υ ) 1 / 4 , by (2.8) and (2.10)
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^ z
1-2~r

ω{JApAp...,JApA)2~rn, by (2.8) and (2.10)

= z1-2-m,by(2.9),

for some m with 2m~ί ^ M > 2m~2. Hence z 2 " w ^ 1, i.e. z ^ 1.
Q.E.D.

To prove Theorem 2.1, (1), let c be given by c(j) =jj = 1,...,2M. By (2.10)
and the Lemma,

\ \...,A2M)\<ίz=l. (2.11)

The multilinearity of ω and (2.11) completes the proof of (1). Theorem 2.2, (2)
follows from the multiiinearity of ω and hypothesis (θ) (which imply IIA \\2M ^ 0
and

I2M

2Λf- | 'Ί II Λ 11221*) and from (1) (which implies that
B\\2M). Q.E.D.

To apply Theorem 2.2 to the proof of estimates (1.42), resp. (1.44), one makes
the following identifications:

A. h> P?PJ, with ij nearest neighbors;

Theorem 2.2 must be applied twice, once in the vertical direction and once
in the horizontal direction. This gives (1.42), resp. (1.44). We now must check that

<y( ) = <•> satisfies the hypothesis of Theorem 2.2: Clearly ( Y\Bj ) is linear
\ jeΛ I

in each Bp yielding multi-linearity of ω.
Since we have wrapped A on a torus (periodic boundary conditions),

jeΛ I \jeΛ

for arbitrary as A. This shows that ω satisfies hypothesis (C) in both, the vertical
and the horizontal directions. Finally, hypothesis (θ) of Theorem 2.2 in both,
the vertical and the horizontal directions, is an immediate consequence of reflection
positivity (inequality (2.1), resp. Theorem 2.1). A more direct proof of inequalities
(1.42) and (1.44) proceeds as follows; (we sketch the argument leading to (1.42);
the case of the anharmonic crystal is treated similarly). Let Bhe denote all pairs
of horizontal nearest neighbors <ij> (directed, "horizontal bonds") with i /\j
even. Let G be an arbitrary, non empty subset of Bhe. Let \G\ denote the number
of horizontal bonds in G. We consider the family

I
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Let

z = max

and let & be some subset of directed, horizontal bonds on which the maximum
z is taken. Using translation invariance of < — ) (corresponding to hypothesis (C)
of Theorem 2.1) and reflection positivity of < — ) (corresponding to (θ)) and
applying the Schwarz inequality (corresponding to (2.8)) repeatedly, as in inequality
(2.11), in the horizontal and vertical direction, we obtain

for some integer k> 0. Hence z ^ ( P ^ ) 1 ^ ' from which we obtain (1.42). Finally
we remark that Theorem 2.2 can be used to give alternate proofs of the general
chessboard estimates of the last reference in [19] (Theorem 2.3, periodic boundary
conditions) and of [10] (Lemma 4.5). Furthermore Theorem 2.2 implies the
Holder inequality for general traces and the Peierls-Bogolubov and Golden-
Thompson inequalities.

III. Exponential Localization

In this section we explain the difficult part in the required estimate oϊRΛ(β) = <P^>,
defined in (1.45), for the quantum mechanical models. We recall that in Section I.E.
we have split RΛ(β) into two pieces

•+GM), (3.1)

where

R_(β, Δ) = Z^GSΓ T c i e x P C - /teJ (3.2)
iΔ

here ]•]' means a sum over all i such that ei rg e0 + Δ | A |, and

C.ΞΞ^P^.). (3.3)

The easy estimate of R+(β, Δ) is postponed to Section IV. In this section we prove
upper bounds on R_(βyΔ) for models (l)-(6). We claim that, for the classical
models (1), (2) and (6) (classical case),

R_(β,Δ) = 0 (3.4)

for sufficiently small Δ. To show this we first estimate the minimum ${P{£C))
of the Hamilton function HΛ restricted to the configurations

{S S e P j (models (1), (6)),

resp. {x: xeP*c} (model (2)).

For models (1) and (6)

W^-fMI-ίMI (3.5)
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For model (2)

)Z2βo\Λ\ + ϊ\Λ\. (3.6)

Therefore

if Δ < (1 - α)/2 (models (1), (6)) (3.7)

resp. Δ < α/2 (model (2)) (3.8)

then R_(β,Δ) = 0

which proves our contention.

As already noted in Section LE, (3.4) is false for the quantum mechanical
models, and we have to work much harder in order to obtain a good upper bound
on R_(β,Δ). The idea is to show that C. = (φ^P^.) is very small for eigenvalues
et of HΛ close to the ground state energy e0. Although PΛ is a projection onto
states of relatively high Hz-energy, (Φ^PAΦ^ does not vanish, even for e. very
close to e0, as it does in the classical case.

111. A. Principle of Exponential Localization

The following general result will be crucial for our analysis.

Theorem 3.1. (Exponential Localization of Eigenvectors). Let A and B be self adjoint
operators {typically finite, hermitean matrices) on a Hubert space J f such that

(0 A^O

(ii) ±B^εA,

with 0 5Ξ ε < 1. Suppose that

Choose some p > λ ̂  0 such that

σΞΞspip-λy^l. (3.9)

Let Pp be the spectral projection of A corresponding to [p, oo), and Mp = PpJ^,
(all "eigenvectors" of A corresponding to eigenvalues ^ p). Note that (A - λ) restrict-
ed to Mp > 0. Finally, let φeMp be a unit vector with the property

Then \{φ,ψ)\^σd. (3.10)

Remarks. 1. Since B ̂  — εA, by (ii),

A + B^(ί-ε)A^0, (3.11)

so that all eigenvalues λ of A + B are nonnegative.
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2. Clearly the condition |β |^ε^4 implies (ii), but the converse is false, as
the example

— 1 / ' '

shows. Hypothesis (ii) is all we need to prove (3.10).

Proof By hypothesis,

(,4 + B)φ = λφ, i.e. (A - λ)φ = Bφ.

Thus, for some δ ^ 0,

so that

\{φ,Ψ)\ = \(ΦΛΛ -λ + iδ)-\Bφ + iδφ))\

= \((A- λ- iδy^^Bφ + iδφ)\.

Since ψeMp and λ < p, by hypothesis,

limG4 - /I - iδ)" 1 ^ = (A - λ)-^,

hence

\(φ,ψ)\ = \(B{A-λ)-ιφ,ψ)\. (3.12)

By hypothesis (iii), {B{A- A)~1}^eMp, for j = 0,1,...,d — 1. Therefore, for

^ ( 3 . 1 2 ' )

and we can iterate (3.12') d — 1 times and then apply (3.12). This yields

|(0,*)| = \(B(A - λy'iP&A - A)-1Pp}"-10,Ά)|

- xy ιppγ-

where we have used that [A, Pp] = 0. Now

^ - A)'1 / 2 = (εσ)1'2, (3.14)

| | P μ - A)" WB(A - A)"ι'*pp || S || P p μ - A)" 1 ' ^ 1 ' 2 II2 jA-^BA-1'2 \\

Sp{p-λ)-H = σ, (3.15)

and we have used the definition of P p and hypothesis (ii). Finally

II (A - λy^φ || = II (A - x
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and

g (1 - C 1 / 2 [ 0 M ^ + W ) ] 1 / 2 , by (3.11)

= [ ( l - ε Γ ^ ] 1 / 2 < P 1 / 2 , (3.17)

since σ = βp(ρ - A)"1 < 1, i.e. A < p(l - s). If we combine (3.13)—(3.17) we find
\

)()
\(φ,φ)\ ^ σt-Vh^ip - λyWp1*2 = σd. Q.E.D.

Corollary 3.2. Suppose N <= Mp is a subspace ofMp such that each φeN satisfies
hypothesis (Hi) of Theorem 3.1. If P is the projection onto N then (in the notations
of Theorem 3.1)

The proof is essentially identical to the one of Theorem 3.1. We now apply
Corollary 3.2 to estimating the overlap of the universal projection PΛ with the
low lying eigenstates of HΛ, i.e. the numbers Cf = {φi9PAφ^)9 when the eigenvalues
e.£eQ + A\Λ\9 for models (3) and (4), (quantum mechanical antiferromagnet,
resp. ferromagnet. The case of the xy model is similar to the antiferromagnet).
For this purpose we identify

P = PA (3.18)

A = S~2Hz-eo(oι=l), (3.19)

where eo(oc = 1) is the groundstate energy of the isotropic Hamiltonian,

B = ocS~2Hxy. (3.20)

In all the models discussed here, the groundstate energy eo(oc = 1) of the Hamilto-
nian H = S~2(HZ + Hxy) is bounded above by the groundstate energy ez

0 oϊS~2Hz.

Therefore

A ^ 0. (3.21)

Furthermore

A + - B = S~2(HZ + Hxy) - eo(ί) ^ 0. (3.22)

If we rotate all spins on one of the sublattices by an angle π around the z-axis

we see that A + - B is unitarily equivalent to A — B, as Hxy is taken into - Hxy

α α
under this unitary transformation, but Hz is unchanged. Therefore

±J3^αΛL,i.e.ε = α. (3.23)

Finally we set

p = 4 - e o ( α = l ) + nΛ|Λ|, (3.24)

where A and n will be chosen to be dependent on the model. Thus the hypotheses
of Theorem 3.1 and Corollary 3.2 are satisfied.
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III.B. Estimates for the Antiferromagnet

Next we consider the quantum mechanical antiferromagnet, model (3), in detail.
We shall estimate the overlap coefficients

for all eigenvectors φ. of the Hamiltonian HΛ corresponding to eigenvalues e.
with

e^el + A\A\. (3.25)

From (3.19) and (3.20) we infer that

A + B = HΛ-e0(*=i).

Therefore the eigenvalue λ of A + B introduced in Theorem 3.1, Corollary 3.2
satisfies

Δ\A\, (3.26)

where

<5 = μ-|(4-eo(« = l))

It is shown in [17] that

βo(α=l)^-(l+^2|Λ| (3.27)

so that
1 . (3.28)

Combining (3.23) and (3.24) with (3.26) and (3.28) we arrive at the following
estimate for σ:

p-λ = (n-ί)A\Λ\

Let

£\PΛ) = Mspec(PΛHΨΛ) - eo(α = 1)

be the minimal ,4-energy of any state in N = PΛ^ Recalling definition (1.35)
of the universal projection PΛ we see that

so that

Sz{PΛ)-p^%-nΔ)\Λ\. (3.30)

Since PΛ plays the role of the projection P introduced in Corollary 3.2, we have
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the constraint

±-nA>0. (3.31)

Lemma 3.3. (Estimate on d for Antίferromagnet). Let A = S~2HZ — eo(oc = 1)
(1) Let φ be a vector of A-energy at least e, i.e. (1 — Pp=e)φ = 0. Then the A-energy
ofHxyφ is at least e - 8S" 1 , i.e. (1 - Pe_8S^)Hxyφ = o!
(2) d ̂  [γ£(l — 2wJ)S|Λ|],/0r 2nA < 1, where [α] is the largest integer ^ a.

Proof. In our representation (1.40) of the antiferromagnet

= - 4 l Σ WS/+SΓSΓ}, (3.32)

where S+,S~ are the spin-raising, resp. spin-lowering operators. Using (3.32)
we see that one application of Hxy to a vector φ can raise (resp. lower) the z-
components of the spins of one nearest neighbor pair (ij} a A by 1. Clearly,
this cannot change the minimal ,4-energy of φ by more than 5~2 8S = 8S~1,
as a minute of reflection shows. More precisely,

^-Pe-s,s)HxyPe = 0. (3.33)

This completes the proof of (1). The proof of (2) is an immediate consequence
of the definition of d9 of inequality (3.30) and of part (1). Q.E.D.

Proposition 3.4. R_S σ2d, where

σ = φ+(Sη)~1+0(β-ξ))and

for arbitrary ξ < 1 and η < 1.

Proof. We choose

Δ = β~ξ and n = ±ηβξ. (3.34)

Then \ - nΔ = \(1 - ή) > 0, for η < 1, so that the constraint (3.31) is fulfilled. By
Equation (3.2), (3.3),

^ max (φt,Pλφϊ. (3.35)

Suppose the maximum on the right side of (3.35) occurs for i — i0, eio < e0 + A | A |.
We set φio = φ,PΛ = P and apply Corollary 3.2. This gives
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By (3.34) and (3.29)

1 + 2SΔ

= <x(l+(ηSΓ1+0(β-ξ)).

Furthermore, by Lemma 3.3, (2) and (3.34)

Remark. The dependence of σ and d on the total spin S will permit us to show
that the critical anisotropy αc(S), below which a phase transition occurs, tends
to 1 as S -* oo.

Our estimate for d is not very good and can be improved; we illustrate how
to do so for spin 1/2. We claim d ^ \Λ\(l - nΔ)/4 instead of \Λ\(ί - 2nΔ)Sβ =
\Λ\(ί — 2nA)/16;PΛ (Fig. 1) now means a projection onto a definite pattern of
up or down spins; $Z(PΛ) = —\Λ\ + δ, and we wish to lower it to an ^-energy of
— 2|/L| + πzl|yl| + <>. Let eh be the iίz-energy of the horizontal bonds. Initially,
eh = 0; finally eh^ - \Λ\ + wJ|Λ|, since the vertical energy ^ —|Λ|. Also,
eh= — IAI + 2b where b is the number of bad (i.e. H — or — h ) horizontal bonds.
At least k = \Λ\(ί-nΔ)/2 bad horizontal bonds must be removed; d^d' =
numbers of steps to do this, while d' ^ d"'/2, where d" is the number of single
spin flips required to do the same thing. Since the initial horizontal pattern in
in each row is bgbgb... (g = good bond), it is easy to see that d" = k. These argu-
ments give the following improved estimates for S = 1/2:

(3.36)

(3.37)

11LC. Estimates for the Ferromagnet

It is well known that in the quantum mechanical ferromagnet (model (4))

eo(α) = e J , f o r a U | α | ^ l ; (3.38)

in fact, the groundstates for |α | < 1 are identical with the two groundstates of
Hz. Therefore

p = nA\Λ\,by(3.2A),and

A = S~2HZ -ez

0,B = αS~2Hxy.

We estimate the overlap coefficients {φi9PΛφ^} for all eigenvectors of the Hamilto-
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nian HΛ corresponding to eigenvalues et with e{ ̂  ez

0 + A | A |. Thus the eigenvalue
λ of A + B introduced in Theorem 3.1 and Corollary 3.2 must satisfy λ g A \A\.
Therefore

p n
σ = ε 7 = α -. (3.39)

p—λn—l

As in the antiferromagnet one shows that

R_S<r2d; (3.40)

see the proof of Proposition 3.4. We are left with estimating the "distance" d on
the right side of (3.40).

Estimate on d. Let / be an integer such that | A11/2/l is an integer. We decompose A
into \A\/l2 disjoint, congruent squares, b( = boxes), with sides of length /. Let
φ be an eigenvector of {Sz: is A}. Clearly φ is also an eigenvector of A. For φ, a
perfect square is defined to be a square b = bφ such that Szφ = σtφ and one of the
following two properties holds:

(i) σ.^ (0.9)5 ϊoτal\iebφ

(ii)σ.£ -(0.9)S foral l ie^.

Suppose now that the ^-energy of φ is ^ nzl | ̂ 41. We propose to estimate the
minimal number, fe, of perfect squares bφ for this φ. For this purpose we assign
an ^4-energy to every b square in A in such a way that the sum of the energies
assigned to all squares in A is ^ the ^4-energy of φ. The ^4-energy of a perfect
square is zero. Therefore, to a square which is not perfect, an ^4-energy of at least
2(0.1) must be assigned. There are (\A\l~2) — k squares which are not perfect.
Since the A energy of φ is ̂  nA | A |, we obtain the inequality

(\Λ\Γ2-k)(02)£nΔ\Λ\9

i.e.

k^\A\(Γ2-5nA). (3.41)

Since / ̂  2, we require that nA < 1/40. Let ψ be an arbitrary vector in the range
of PΛ, i.e. PΛψ = ψ. Define d (see Theorem 3.1) by the condition

but (3.42)

for all 7 <d.

We expand [B(A - λ)~ ̂ ψ in terms of eigenvectors φz

jxj/ of {Sz:ieA}. Let
φ = φz

h φ be a vector of ̂ 4-energy ^ nA. By (3.42) such a φ ψ 0 exists. By (3.41)
φ has fe^ |^t|(Z~2-5nzl) perfect squares. In order to obtain a perfect square
by repeated application of B(A -λ)'1 to φ,B(A - λ)'1 has to be applied to φ
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at least m times, where

m^(0.9)yS | . (3.43)

I2

This is so, because φ is an eigenvector of PA, so that the z-components of — spins

in a box b have to be raised from Sz ^ 0 to Sz = (0.9)S, resp. lowered from Sz ^ 0
to Sz = - (0.9)S, in order to convert b into a perfect box. (Recall that PΛ is picto-
rially given by Figure 1, Section ID).

For the quantum mechanical ferromagnet

B = - Σ {strj + sis*}

= - ί Σ {S+SJ+SΓS+}. (3.44)

Equation (3.44) shows that when the z-component of a spin at some site is raised
(lowered) the z-component of a spin at a nearest neighbor site is lowered (raised).
Thus, in order to raise the z-component of a spin at some site ίeb from Sz :§ 0
to Sz = (0.9)S without lowering the z-components of other spins in b, B has to
be applied

(0.9) dist (i, boundary of 6) S

times; hence, on the average, (0.9)S - times. This completes the proof of (3.43).

If we combine (3.41) with (3.43) we obtain

d^rn-k^ \Λ\(Γ2 - 5nΔ) — (0.9).
o

Choosing / = [(lOnJ)" 1 / 2 ](^ 2) yields

Proposition 3.5. Provided nΔ < 1/40

where

, and
n- 1

^ (0.9)| Λ\Sll6(10nΔ)ll2y1.

Remark. The estimate on d obtained in Proposition 3.5 for the ferromagnet is
vastly superior to the estimates on d obtained for the antiferromagnet (Proposition
3.4 and (3.37)). This will become apparent in the next section where we will allow
nΔ to go to zero as β -» co. Then d -» co for the ferromagnet, but not for the
antiferromagnet. Finally we note that the general methods developed in this
section can be applied in other contexts than the one considered here in order
to get bounds on expectations of global observables in equilibrium states.
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ΓV. Estimates on R+ and Completion of the Proof

IV. A. Summary of Previous Results

Recall that our proof of LRO at low temperatures is completed by showing that

is "small" for large /?, namely we require that

f 2n32n-2RfΛU±; (4.1)
n = 2

see Section I.C, Theorem 1.1 and Section I.D, inequalities (1.34), (1.36) and (1.38).
In Section III we decomposed RΛ(β) into two parts,

RΛ(β) = R_(β9Δ) + R+(β9Δ)9 (4.2)

and we have established upper bounds on R_(β,A), namely:

(a) In models (1) and (6) (classical case), i.e. the classical N-vector models:

lUiM) = 0, for Zl^(l-α); (4.3)

see (3.7).
(b) In model (2), the classical, anharmonic crystal:

(4.4)

see (3.8).
(c) In model (3), the quantum antiferromagnet:

R_(β9Δ)£σ2d

9foτΔ=β-*9 (4.5)

where

and

resp.

with

0<ξ<l0<η<ί

(to be chosen later). See Propositions 3.4 and (3.37). The estimates for model (6)
(quantum xy model) are identical.
(d) In model (4) (quantum ferromagnet)

R_(β,Δ)£σ2d

9 (4.6)



Phase Transitions in Anisotropic Lattice Spin Systems 263

where

— iΓrϊ < 4 7 >
and

d ^ (0.9) IAI S[16(10nJ)1/2] "*, (4.8)

with n > 1 and A > 0 to be chosen later. We require nA < 1/40.

IVB. The R+ Estimate

We now estimate R+(β,A) for these models.

{a') Models (/) and (6 Classical). Let P^*5 be the subset of configurations such that
m. = S~ ιSz ^ (1 - <5)1/2, for all ieA. Then (with Tr defined by the usual normalized
integral, i.e. Tr(l) = 1)

^ {Tr P>δ) exp{ - β Tr[P> d

by Jensen's inequality. By symmetry, the term proportional to α vanishes in
Tr P%*HA. Furthermore, HΛ^-2\A\{\-δ) whenever P>δ j= 0. Moreover,

(4.9)

Hence, choosing δ = A/4 = (1 — α)/8, we obtain

Λ + ( jM) ^ exp[j8|/l|(2 - ^ ί j Z ; 1 S Γ ^ ^ ^ ^ ^ ^ l , (4.10)

where c(α) oc α — ln(l — α) for α ̂  1, is independent of jS. Thus

< p ^ > i / μ i = RA(β)V\Λ\ = R^A)1^ ^ e-W*>(i-«)+c(«), (4.11)

which tends to 0, as β -> oo. T/zi5 completes the proof of LRO for models (1) and
(6, classical) /or /αr̂ fβ enough β. An estimate on the spontaneous magnetization
(moy = S~ί(Sz

oy, resp. σ(/?) (see Section I.B) as a function of β is given later.

(//) Model (2). By definition of model (2) (anharmonic crystal, Section LA),

min φ(x,y) = ε0,

occurs when x and y have the same direction. Without loss of generality we may
assume that there exist some x0 φ 0 such that

#*o>*o) = βo ( 4 1 2 )

But when x1 and y1 (the 1-components of x, resp. y) have opposite sign

0(x, j;) ^ ε0 + α + Λiφt(x) + φ^)), (4.13)

for some λ > 0; see Section LA. We now choose δ > 0 such that xj - <5 ;> 0 and
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for all x and y in a ball of radius δ centered at x0. We can do so, since the interaction
potential φ is by assumption continuous
Hence

ZΛ(β) ^ ^

where vN(δ) is the volume of a ball of radius δ in MN. Furthermore, for A = α/2

i.e. jRl c (M) = 0 (see (4.4)),

S exp[ - 2β(ε0 + α / ^ l J ^ ' Z ^ Γ 1 , (4.15)

where

This is an immediate consequence of (4.13); (see also inequality (1.49) of Section
I.E). Combination of (4.14) and (4.15) yields

Rf{β,aβ) S exp[ - (βφ)\Λ\-](g(β)/vN(δ)rK

By definition of the AC model (model (2), Section LA.) there exists some finite
β0 such that for all β ^ β0

Obviously g(β) is monotone decreasing in /?, as φχ is positive. Thus there exists
a finite constant c such that

Hence

RΛC(β) = Rf(β,a/2) S exp[ - j3α/4 + ό]\Λ\9 (4.16)

which tends to 0 as β -» oo. Recalling condition (4.1) (resp. Theorem 1.1 of Section
I.C and Section I.D, inequality (1.38)) we observe that inequality (4.16) completes
the proof of XRO for the AC model for large enough β.

(d) Models (3) and (4) (Quantum Heisenberg Models). In order to estimate R+(β, A)
we need a lower bound on the partition function ZΛ(β). This is done by comparing
it with the partition function of the corresponding spin S Ising model (anisotropy
α = 0) by means of the Peierls-Bogolyubov inequality.

Lemma 4.1. For models (3) and (4) the partition function satisfies

ZΛ^Z'Λ. (4.17)

Where Z'js the partition function of the spin S Ising model (i.e. α = 0 in (1.3) and
(1.5)).

Proof. By the Peierls-Bogolyubov inequality,

<4 1 8 )
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for any set {φ.} of orthonormal vectors. Choose the xj/j to be eigenvectors of
all the Sz

i9 ieΛ. Then the right side of (4.18) is precisely Z\ because (ψj9 H
xyψ) = 0

for all j .

Lemma 4.2. For models (3) and (4)

ZΛ £ l(δβ)(2S + 1)]W exp{2jS|/l|(l - δ)}

for any 0 g δ ^ 1.

Proo/. Using Lemma 4.1,

where J]' means a restricted summation in which each Sz. ^ S(l — δ)112. (Note:
the partition function for the Ising ferro and antiferromagnet are identical.) Then
Hz ^ - 2\Λ\S2(1 - δ). To complete the proof we have to bound £'1 = μ]Λ].

μ = [S - S(ί - δ)112 + 1]+ ^ [1 + Sδ/2]+ ^ Sδ/2 ̂  {2S + 1)5/8

for S ^ 1/2, and where [ ] + means integral part. To complete the bound on R+

we use the fact that Tr 1 = (25 + l)|ylL For the ferromagnet, e0 = - 2\Λ\. Thus,
provided

A>4δ (ferromagnet), (4.19)

(1.50) and (1.51) are established for β sufficiently large. For the antiferromagnet,
e0 > - 21AI (1 + 1/4S). Thus, provided

A > 4δ + S~ * (antiferromagnet), (4.20)

(1.50) and (1.51) are established for β sufficiently large.

The final estimate for the ferromagnet is obtained from (4.6) and (1.51). Choose
n = (1 + α)/(l - α) < 2/(1 - α). Thus σ < (1 + α)/2 < 1. Choose A = Kβ~2/3 where
X is chosen such that σ(^m^onK)-^/ιβ < β-x/2 τ h i s c a n b e d o n e u n j f o r m i y j n

S > 1/2. For sufficiently large /?, nJ < 1/40. Furthermore, with this choice of
A,R+ > R_. Hence

lim ( P ^ ) 1 ^ 1 g exp( - Kβ1/3/2) (4.21)

which tends to zero as β tends to infinity. Note that there is a /?1/3, instead of a
/? dependence in (4.21). This completes the proof of LRO for the quantum ferro-
magnet, except for the assumption that the chessboard estimate holds.

The calculation for the antiferromagnet is more complicated. We have to
combine (4.5) with (1.51). As β -+ oo,£+(jM)1 / M I -» 0, provided ξ < 1, by (1.51)
and (4.5). The problem resides in R_(β,A). This will not go to zero as β -> oo,
but for small enough α (depending on S), which we call αc(S), we can make R_(β,
/\y/\Λ\ smaller than any given number, say μ. Choose μ such that (4.1) is satisfied.
We omit details, but note that ac(S) tends to 1 as S tends to infinity.
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IV.C. Estimate of the Spontaneous Magnetization

Consider the order parameter which satisfies the previously derived inequality

σ{β)>δ2-6ε (1.24)

provided <P+PJ > < ε/2 and <PQ *> < ε. In the classical models (1) and (6) these

inequalities hold for all ε > 0 and δ < 1 if β is large enough. This follows from

chessboard estimates applied to (P^3}, and the results of Section IV. Thus

σ(β) -> 1 as β -> oo.

For the quantum antiferromagnets (3), (6), an estimate on (PQ6} can be

obtained using chessboard estimates and exponential localization, as before,

with the following result: Given ε > 0, δ < 1 and α < 1 there exists an S(ε, δ9 α) < oo

such that (1.24) holds as β -+ oo for S > S(s,δ,(x). For the ferromagnet (4), chess-

board estimates, if they could be shown to be true, would easily yield σ(β) -> 1

as β -» oo for all S and all a < 1. Without using chessboard estimates, we can

show that <PQ ̂ ) ""* 0 a s β ~* °° for all δ < 1 and all α < 1. This is proved by

means of the following thermodynamic argument: It is sufficient to show

By the Schwarz inequality and translation invariance

This latter quantity is half the Hz-energy per site. The ground state has the property

that S " 2 < S ? S p = l for all i,j. If S"2<SJS*> -f» 1 as β-> oo, for | ι - O | = l,

then the free energy would not approach the ground state energy as β -> oo. This,

it is easy to see by the previous arguments, would be a contradiction.
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Note Added in Proof

We are informed that an inequality similar to Theorem 2.2 was also proved independently by R. F.
Streater and E. B. Davies (unpublished). Their proof is similar to ours.






