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Abstract. Canonical variables for the generalized (non-metric) Einstein-Cartan
theory of gravity are defined. The space of solutions is equipped with a closed
differential 2-form Q. The symplectic 2-form @ has a diagonal representation in
terms of canonical variables. A geometric interpretation of the canonical
variables is presented and the 3+ 1 formulation of the field equations is given.

1. Introduction

The canonical formulation of general relativity is based on the Palatini variational
principle [2, 15, 23]. Also for simple examples of the gravitational field interacting
with the scalar or electromagnetic field natural generalizations of the ADM
formalism exist. In a more general situation the Lagrange function of the matter
field does depend on coefficients of an affine connection. Therefore for such a
theory the Palatini variational principle gives raise to a non-riemannian geometry.
The most general case is when we admit a non-symmetric connection I'=(I" ;}V) in
space-time. Generalized theories of gravity were investigated by several authors:
E. Cartan, Kibble, Sciama, Hehl, Trautman and others. We refer the reader to [7,
21] for a detailed bibliography. The present paper is based on the simplest
generalization of the Palatini variational principle

8[)/ —g(R+2)d*x=0 (1.1)

where a metric tensor g=(g,,), 2 non-symmetric connection I'=(I" ﬁv), a tensor
¢ =(¢") and its partial derivatives n = (1) are taken as independent variables. We
formulate the variational principle (1.1) in the geometric language of differential
forms and multisymplectic manifolds [4, 6, 911, 16-20]. Our field equations
derived from this principle coincide with those given by Trautman [21] cf. also
[8].

It is known from the geometric theory of the calculus of variations and the
theory of multisymplectic manifolds [5, 10, 11] that the set of solutions of the field
equations has a natural symplectic structure. This is the reason why we use such
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equations and do not impose the metric condition D,g,,=0 cf. [13, 22]. We call
the theory obtained by the Palatini principle (1.1) the generalized Einstein-Cartan
theory. It is known that in the classical general relativity the symplectic 2-form Q
can be diagonalized in the ADM coordinates (7%, g;,), where § =(g,;) is a metric
tensor of 3-dimensional surface ¢ in space-time M and the ADM density n=(n") is
defined by the second fundamental form K=(K;;) of the imbedding i:0—+M as
follows

i = —(detg, ) *(K ,5“5" — 57K ,,") . 1.2)
More precisely we have

~

QX X,)=1] (5nif5gij - (Sn“j&gij)dx1 Adx? Adx? (1.3)
s\t 27 2 1

where én”, 6g;; k=1, 2 are “components” of tangent vectors X,, X, cf. [17-19].

~ In the present paper we generalize the ADM density 7=(rn") for the case of
interacting gravitational and tensor fields. The generalized ADM density IT = (IT9)
has a natural geometric interpretation in terms of the fundamental mappings of
the hypersurface ¢ C M. We define also the canonical variables (2,, ") for the
matter field ¢ =(¢*). In the canonical variables (ITV, g,;, 2,, 3*) the symplectic
2-form Q has a diagonal representation of the type (1.3).
It turns out that the generalized Einstein-Cartan equations

G* — 8 T* =0 (1.4)

splits into 6 dynamical equations and 4 constraints

GO —8n T2 =0. (L.5)

Equations (1.5) do not contain time derivatives and are constraints imposed on
initial data of the canonical variables. This fact gives raise to degeneracy of the
symplectic 2-form Q. Problems concerning the dynamical structure of the Einstein-
Cartan equations (cf. corresponding results for the Einstein theory in [3, 14]) and
the degeneracy of the symplectic 2-form (cf. [17-197) will be discussed elsewhere.

The methods we use in the present paper are similar to those used in [10, 17—
19]. Some technical results (the contracted Bianchi identities, the reduction of the
system (1.4)) were proved in [20]. The notation follows that of [9, 10, 12, 15, 17—

191 with the only exception, a different interpretation of the symbol 66
Appendix 1). Iuv

(see

2. The Field Equations

Let M be a 4 dimensional, smooth manifold—space-time, with local coordinates
(x*). Our geometric approach is based on the bundle t,:2,—M. A fibre of this
bundle over a point xe M is a direct sum of the space of symmetric 2 covariant
tensors g =(g,,) at x and the space of non-symmetric affine connections I'=(I" ﬁv)'
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The transformation properties of local coordinates (x*, 9 T ﬁv) in &, are

_ox* axP
Iuv = 5 x> 9ab 21
» OxY ox* oxP 9%x°  ox* ’
HYTToxT OxM oxY P 9xF oxY ox°
We have standard definitions of the Riemann tensor
Rguv=aurea—avrﬁa+rzarzt—F;aret (22)
the Ricci tensor, the symmetrized Ricci tensor, the curvature scalar
Rav = Rgnv > SRav =%(Rav + Rvaz) ; R= g”vRILv (23)
the symmetric Einstein tensor
G" =3(R"+R") "R (24)
the torsion tensor
A __ T2 A
= =T, (2.5)

A tensor field g =(g,,,) on M defines the pseudo-riemannian connection y =(y2,)

A
Yy = {ﬂv} =19"(0,9y. + 0,9, 0.9,0) - (2.6)

Therefore we have two different covariant derivatives for tensor field on M, D,
corresponding to the connection I' and V), corresponding to 7.
The defect tensor is defined by

A __TA A
ruv - ruv - yuv . (2.7)
Very important in the subsequent considerations is the following tensor
&5 =GP0+ g3 — g — g 28)

It has the property c4*=0, therefore r%, can be expressed by ¢4 only up to an
arbitrary covector x=(x,)

A A__ 1 A 1 A
ruv = Xuav _Zga-ﬂc‘zﬂgt Iuy +Zgaﬂctﬂ5u
1 A 114 1 A
+ _Zczvgavau_l_zc: guv+§c:ﬁg‘[ 9un9 v
1 .72 1.2
+ =260 =36 ey 29)

In the following we consider the subbundle of £, consisting of such systems
(x*,g,,, I's,) that g=detg,, <0. We denote it also by #,. We have a differential 4
4

form 6, (the Cartan 4-form) on 2,
8, =(1/16m) [g™)/—gdx° A ... ATy A ... AdX®
et/ 0 B 3
+—g* |/ —gdx /\.../\dI:,;a/\... Adx

+g° I I8 —T5,I0) |/ —gdx° A ... Adx?]. (2.10)
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By virtue of the transformation law (2.1) formula (2.10) defines globally a

4
differential 4-form on 2. This 0,, was given for the first time in [17,18] for the
case of symmetric connections.

Remark. If f: M— 2, is a section of 1, then f*59,=R |/ —g dx° A ...Adx?, therefore

69, is the appropriate tool for the Palatini formulation of the variational principle
in general relativity [18].

We need also another bundle 7, : 2, » M which corresponds to variables of an
external field (matter field). Let ¢: W—M be a tensor bundle with local coor-
dinates (x*, @), where ¢*=¢j! "% have tensor transformation properties.

Let 7, :2,—M be the bundle of first jets of local sections of Wover M. In 2,
we have local coordinates (x*, o4 11") where 11” have transformation properties of
partial derivatives of @4 We deﬁne the multisymplectic bundle 97’ as the fibre

product of #, and #, over M, P =P, ®P,, 1 9’—>M The 4-form 9 . is defined on

2 by its pull-back from £,. The Cartan 4-form 9 corresponding to the matter
field @ =(p*) is

§f=|/ g—g;dx AL /\i(p;‘/\.../\dx3
"

+- (Z%nu ) I/ —gdx® A ... ndx? (2.11)

where £ : #—R is the Lagrange function of the matter field cf. [4, 6,9, 11, 16, 18].

Remark. Taking as a principle the independence of the interaction of points of
o0&
space-time we assume that in any coordinate system F =0,
The Cartan 4-form 0 for the interacting gravitational and matter fields is

4
0=00,+9f. (2.12)
4
The variational principle based on 6 gives raise to the following definition:
The states of the system are sections f: M -2 satisfying the condition that
for every t-vertical vector field X tangent to P at points of the submanifold
C=fM)cZ

X dB)=0, (2.13)

where f* is the cotangent mapping to f cf. [4, 6, 9—-11, 16-19].
In local coordinates Equation (2.13) reads

o= —16ms™, (2.14a)
G =81 T™, (2.14b)
’7,‘?= e (2.15a)

(E- D=3 ~(-00,( V=0 5] =0, @.150)

"
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where
0¥
Y
SU=3F T (2.16)
is the hypermomentum tensor,
w0 0% W% 2.17)
09,y

is the symmetric stress-energy tensor.

The system (2.14), (2.15) is identical with that obtained in [13,21] by means of
the classical Palatini variational principle, cf. also [8]. We call (2.14), (2.15) the
generalized Einstein-Cartan equations.

Equations (2.14a), (2.15a) are algebraic and allow us to express uniquely (or
almost uniquely) I't, by g,,,, 8,9,,» ®*, 3,¢* cf. [20] where examples are given. In
general the connection we get from these equation is non-metric ie. D,g,,=0.

Remark. The physical interpretation of the tensors s’ T" was discussed in
several papers [7,8,21]. We do not consider this problem here.

Now we impose some restrictions on the Lagrange function &. It is natural to
assume that & can be expressed by metric g field ¢, its covariant derivatives and
torsion i.e.

LG T 91 = L1090, 9, D104, Q1) (2.18)
For a tensor field ¢p*=¢f! % we have from (2.18)
ag N4 L v
6[’)‘ pﬂg;z ackq)ﬁxz k+ +puﬁl - 11(’0131 k '
o e P (219)
where
0¥
prbiebs — (2.20)

0.0 arl oy. ak
up

is the 4-momentum of the field ¢ and a4’ is a tensor skew-symmetric in upper
indices i.e. a}t= —a}".

3. The Contracted Bianchi Identities and the Reduced System
of the Einstein-Cartan Equations

The group of diffeomorphisms of space-time acts in a natural way in the bundle 2
(Diff M, 2)>(®, p)— A(P) (p)e L. (3.1)

We assume that the theory is invariant with respect to this action. It means

(A®)*6=0. (3.2)
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4
It is easy to see that the definition of 0,, implies

(A@)*,,=4,. (3.3

Therefore we get

(A@)*6,=0,. (3.4

The postulate (3.4) gives raise to several relations among metric, connection,
stress-energy tensor, hypermomentum tensor and their derivatives. These relations
known as the Belinfante-Rosenfeld identities were given for the Einstein-Cartan
theory in [20, 21]. It was proved in [20] that they give the following result (cf. also

[21]).

Proposition 1. If the kinematical Equation (2.14a) and the Euler-Lagrange
Equations (2.152) and (2.15b) are satisfied then for every metric g =(g,,) and every
connection I'=(I"},) on M we have

V(G:—8n T3)=0. (3.5)

For our theory it is necessary to assume that M=Rxo where o is a
3-dimensional manifold. We shall consider only such metrics on M that ¢ is a
space-like submanifold and coordinate systems such that o= {xe M :x°=0}. By
similar methods as those used in the classical general relativity [1, 18,197 it is easy
to prove from Proposition 1.

Proposition 2 [20]. The Equations (2.14), (2.15) are equivalent to the system
ni=0,0% (E—L),=0

ct’ = —16mst”
*Ry;—8n( T~ 39 T 9,5) =0, (3.6)
GO—87T2=0 on o. (3.7)

We shall prove in Section 6 that Equations (3.7) do not contain x°-derivatives and
are constraints for initial data. If they are satisfied for x°=0 they hold for all x°.

4. The Orthogonal Decomposition of Tensors
Associated with a Given Space-like Surface in M

Let g=(g,,) be a pseudoriemannian metric on M with the signature (—1, +3),
o={xeM :x°=0} be a 3-dimensional space-like surface in M and n=(n") be the
normal unit vector to ¢ at x=(x*) (n-n= —1).

Let @ =(¢p}! %) be a tensor (tangent/cotangent to M) at xeo. The idea of the
orthogonal decomposition of ¢ is based on the notion of the gaussian (normal)
coordinate system. Let (x*) be a coordinate system in a neighbourhood of ¢ in M
such that ¢ = {xe M :x°=0} and n=(1,0,0,0) on 0. Coordinates ¢j' ¥ of ¢ in this
system give components of several tensors tangent/cotangent to a.



Symplectic Structure of the Einstein-Cartan Theory 221

Their valence is determined by the number of non-zero indices in @} %.
According to the classical terminology [2,23] we call geometric objects tangent/
cotangent to M the 4 objects and geometric objects tangent/cotangent to ¢ the 3-
objects. The 3-object generated by a 4-object @=(pj' %) is denoted by
0 =(p5: ) where

oo @ g OXPLOxFe 9x¥t Ox

P = PR = G G G o P 1)

v

Remarks. The matrices [ai}, W} are given in Appendix 2.

ox*

Examples. (i) for a vector »=(") we have the scalar ° =v0=—n-v (the
projection v on n) the vector (tangent to ¢) o*=v* ="+ (v- n)n* (the projection of v
on o).

(1) For a covector p=(p,) we have the scalar p,=<{n|p)=n"p, the covector
P, =p, (the pull-back of p on o).

(iii) For the metric g =(g,,)

g00=—1’ gOk=gk0=07 gpngpq’ (4.2)
§O=—1, §*=7°=0, =g, (43)

where [(g~!)?] is the inverse matrix of [9,.]-
We define also

g=detg,,. 4.49)

The orthogonal decompositions are compatible with the natural pairings of
vectors and covectors e.g.

(olp) =17p, =Py + 7P

In Appendix 2 we present several relations between 3- and 4-objects.

5. Canonical Variables for the Interacting Gravitational and Tensor Fields

For a pseudoriemannian metric g=(g,,) on M and a space-like surface
o={xeM :x°=0} we define the lapse function N =(—g°%)~ /2, the shift covector
field N, =g, and the metric tensor g =(g,;). The components of the unit normal
vector to ¢ are (n*)=(1/N, — N¥*/N). A change of n caused by its parallel transport
with respect to the riemannian connection y.,={2} in a direction tangent to ¢
defines the symmetric 2 covariant tensor field on ¢ (the second fundamental form
of ¢ in the riemannian geometry)

Kij=—g;Vn*. (5.1)

We know, cf. [2, 17-19, 23] that for the pure gravitational field the canonical
variables conjugate to the components of the metric g;; on ¢ are given by the ADM
density on o

ml=— I/E(qu - gquabgab)gpigqj : (52)
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It was proved in [17, 18] that the symplectic form in the set of solution of Einstein
equations is, in terms of the variables (n%,g, ;) diagonal. The corresponding
discussion for the Einstein-Cartan theory gives raise to the following definition of
the canonical momenta (cf. Section 7)

IP=nt+ 4|/ =g (et + g =1 )/ = g (2 +2)g™
4/ + g1 | = g(cP g TN+ OogNY)
+ =41/~ gc2°g NN, (5.3)
If
2 =+ 16mat” (54
then by virtue of the skew symmetry properties of a}” we have (cf. Appendix 2)

TTP9 = P4 _%: 1/5(2164 )

+ =5 VEE°+2N) T+ (E0 +20977). (5.3)
For the matter field ¢ we take as the canonical variables
Pis  Phbe=Vap%hk. (5.5)

Remark. It follows from (2.19), (2.20), (2.16), and (2.14a) that z4* can by expressed
by p%, ¢4, and ]/52;” can be expressed by the canonical variables (2,, ).

6. The Field Equations of the Gravitational Field in the Canonical Variables

Proposition 3. If the kinematical Equation (2.14a) and the Euler-Lagrange
Equations (2.15a) and (2.15b) hold then the constraints (3.7) read

NV/5(G—8n 1)
= — T, ITP =47 (1/G7°7) + 82, s =0

[ ey r<pv1...vs >

(6.1a)

[(G3—8n T9)— N"(G2— 87 19)]
= —$OR+(1/25) 1111, — 4 (tr [1)*]
+ —(1/29) [(1% = 77) (IT,,, ~ ) — +(tr (1T — m))?]
+ =12V - 12DV, ()/52°°F)
+(1/29) (n,, — 39, trm) (}/52075)

+—8n.L +(8n/)/§) Py Dol

B it

+(12)/ D) G0Ny, 5eT, =0, (6.1b)

Remark. In (6.1) and (6.2) ®R;;,®R denote the Ricci tensor and the curvature
scalar of the riemannian geometry given by the metric tensor g =(g;;) on o.
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The 3-object Do(p‘;;‘ % js defined by the general procedure given in Section 4
(cf. Appendix 2). V, denotes the covariant derivative corresponding to the rieman-
nian metric (g;;) on o.

To get formulas (6.1a) and (6.1b) we have to use the Belinfante-Rosenfeld
identities proved in [20,21].

It is easy to see that Equations (6.1a) contain only canonical variables IT%, g,,,,
2,, p* and their x*-derivatives. The same is true for Equation (6.1b) but the proof
of this fact is more complicated. One can prove that the linearized version of (6.1b)
(the “infinitesimal change”) depends only on 4117, dg,,, 32,, 6¢* and their
x*-derivatives. Therefore (6.1b) depends only on canonical variables and their
spatial derivatives.

The dynamical Equations (3.6) give raise to

Proposition 4. If Equations (2.14a) and the Euler-Lagrange Equations (2.15a) and
(2.15b) hold then

V/=9CR = 8n( Ty —4g,tr T))3""
- l/:_agij(SRab —8n( ib —3gpptr 751)) g*
=0,IT"+ N |/G(PRI—1gii®R)
+ —(N/2)/9) 3" " — L (trm)?)
+(2N/)/3) (min® — Lnil trr)
+ 7, NIII? + 7, N7 — 7 (ITNP)
+ = VG(PPIN - Gi7H7,N)
+11/GV [NGI+2)] g™
+ — /G INEIgY + 2554 + 250G + 205597
+—31/722°@ g9 + §*g*)a,N
+ —3N@ET +20°)5G" (1 — 59,y tr7)
— 3N+ 259G (1, — 5 Gup tTT)
FINY 300~ BTy BT T ET) G754 375
+ N /59, 2nar 05, — 4na=Qs,) (G7'5% + §P5%)
+—1iN|/55 e, —8aN /g T 759 =0. 62)

Equations (6.1), (6.2) together with (2.14a), (2.15a) and (2.15b) and

009:;=V:N;+V;N,+ trm) (6.3)

l/—(n” 291]

give the complete system of field equations. We have no equations containing
d,N, 0,N* and therefore these variables are to be given in an arbitrary way on M.
It is possible because the constraints (6.1) do not contain N, N*.
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7. The Symplectic Differential 2-Form on the Space of Solutions
of the Generalized Einstein-Cartan Equations

In our approach solutions of the field equations are sections of the multisymplectic
(multiphase) bundle & satisfying (2.13). It is difficult to expect that Equation (2.13)
has global solutions on M. Therefore we consider only sections of £ over a
neighbourhood of 3-dimensional surface ¢ in M. The images of these sections form
the space of states 5 (a set of 4-dimensional submanifolds in £) equipped with a
natural pseudodifferential structure [10, 18].

A vector X tangent to # at Ce # is represented by a t-vertical vector field X
tangent to £ and defined on CC 2, which satisfies the linearized version of (2.13)
cf. [5, 10, 11, 17-19]. In local coordinates

— a A a A a A a
X—5gw@; +5F’”6Fﬁv +5(,0 55;1‘ +57’]ﬂa—n—ﬁ, (71)

where components dg,,,, 6I'%,, 5¢*, oy} are geometric objects on the submanifold
C (or equivalently on M) which satisfy the linearized version of (2.14), (2.15).

Remark. ég,,, 6I'%,, d¢* are tensor fields on C (on M).

We define, cf. [18] the differential 1-form ® on #
&10y=[x 26, XeT ), (7.2)

where c is the 3-dimensional submanifold in C = f(M) corresponding to the space-
like surface ¢ in M (c= f(0)) and X is a t-vertical vector field representing X. The
definition of @ depends on the choice of a space-like surface ¢ CM but its exterior
derivative Q=d@ given by

Q(Xl’X2)=%<(X1 AXz)IQ>=%§(X1 /\X2)—'d§ (7.3)

is independent of the choice of e CM ([5, 10, 11, 17-19]).
Therefore the differential 2-form Q is well defined geometric object determined
by the internal structure of the space 7.

Remark. Note a difference in the factor 1/2 between (7.2), (7.3) and the correspond-
ing formulas in [10, 17-19].

Theorem 1. If X,, X, are vectors tangent to # at C and X ,,X , are representing
them t-vertical vector fields on C then

QX ,,X,)=(1/32m)| ((1517”‘1(25qu —él]"q§gpq) dx' A dx* A dx?

+3] (Q@!i::::f:écﬁ%‘,:zz?: - 95’5::::55?@%‘,:1:%’;) dx! ndx? adx3, (7.4)

where 1517"‘1, légm, ?@A, ?(7)" are expressed by components of vector fields X;i=1,2
using the linearized version of (4.1), (5.3), (5.5).

Remark. We assume that in (7.2)—(7.4) the components of the vector fields X;
vanish rapidly at the spatial infinity such that the corresponding integrals exist.
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Formula (7.4) shows that the tensor density IT =(IT*9) is a good generalization
of the ADM tensor density m=(n??) for the case of the gravitational field
interacting with matter.

Remark. If we take as an example the non-linear electrodynamics then the
canonical variables (%,, 3*) coincide with those given in [15,19].

In the next section we give the definition of the IT density in terms of geometric
objects associated with an imbedded surface ¢ CM and generalize the ADM
interpretation of the density = in classical general relativity.

Proof of Theorem 1. If a submanifold C C 2 is the image of a section f: M— 2 and
f satisfies the kinematical Equation (2.14a) then
ét 4 4 4 4
c=f+{+{+]

where

4
0=[(—1/16n)g,,, dIT7+ PLi- Loy 5] A dx' Adx? Adx?,

LSRR

0= (1/16m0)/G/NGA@ON ) ~TadNy— N, d53)

+1/3(0(1/N)g"dN,,— 8,(1/N)g*3“ N dg,,)
+ = V/G(1/N) VN, GG dg,, + (N/N)d75)] A dx* A dx® A dx?,

a4
§=(1/32n) [—d()/GN3c2%™) ] Adx! Adx? Adx?,
4 4 . .

Q=all terms in 0 which contain dx°.

4 4
The form Q is closed, integrals containing Q over submanifolds x°=const. vanish
and therefore we have to compute the integrals

(=3 AX,) D, L=1](X, AX,)—dd.

It was proved in [17-19] that the integral I, can be transformed into an integral of
an exact 3-form on c ie. I,= jdﬁ and therefore vanishes by virtue of boundary

conditions on ¢ (on o). The integral I, gives raise exactly to (7.4).

We know that the canonical variables are not independent, they satisfy at least
4 constraints (6.1). These constraints give raise to the degeneracy of the symplectic
2-form Q. It can be proved by methods similar to those used in [17-19] that the
degeneracy of  caused by (6.1) is determined by the action of Diff M in the space
. This result will be published elsewhere.

In particular cases other constraints can be given by the Euler-Lagrange
equations, for instance in electrodynamics [19]. They give raise to an additional
degeneracy of Q.
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8. Fundamental Mappings of a Hypersurface in Space-Time

Let M be endowed with a pseudoriemannian metric g =(g,,) and a non-symmetric
connection I'=(I'4)). Let i:c—>M be an imbedded 3-dimensional submanifold,
which is space-like with respect to g i.e. the induced metric (the first fundamental
form of the imbedding)

g=i*g (8.1)

is positively definite (riemannian).
Let n=(n*) be the field of unit vectors normal to o i.e.

(nln)=g(n,n)=—1. (8.2)

For a vector X tangent to ¢ at x and a vector field Y tangent to ¢ we define the
normal and tangent components of the covariant derivative D =(D,)

(Dxn),= —g(Dxn,n), (8.3)
(Dxn),=Dyn—(Dyn),n, (8.4)
(DyY),=—g(DxY,n), (8.5)
(DyY),=DyY—(DyY),n. (8.6)

From the properties of covariant derivatives we have

Proposition 5. The mapping
C*(T(0)) x C*(T(0))2(X, ¥)—>S(X, Y)
= —(DyY),eC*(0) 8.7)

is bilinear over the ring C*(0).

Corollary. For every xeo formula (8.7) defines the bilinear mapping

T.(0) x T(0)a(X,Y)-S(X,Y)eR. (8.7

Proposition 6. The mapping
C*(T(0)) x C*(T(0))3(X, Y)> DY
=(DyY),eC*(T(0)) (8.8)
defines a covariant derivative on the manifold o.

Proof. According to the axioms of covariant derivatives [12] we have to prove
that for fe C*(o0)

l—)fo=fDxY§ D_x(fY)=X(f)Y+fDxY-

These properties follow directly from (8.8).

The covariant derivative D on ¢ defines a connection I' on o. We call it the
connection induced by the imbedding i:o—M.
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Definition. The mapping
T,(0) x Ty(0)3(X, )~ K(X, ¥)

= —¢((Dxn),, Y)= —g((Dxn),, Y)eR 8.9)
is called the second fundamental form of the imbedding. The mapping
T(0)>X—>F(X)=(Dyn),eR (8.10)

is called the fundamental 1-form of the imbedding.

Proposition 7.
F(X)=%(Dyg)(n,n), (8.11)
S(X,Y)—K(X,Y)= —(Dyg) (Y, n). (8.12)
Proposition 8.
S(X, Y)—S(Y, X)=¢(Q(X, Y),n), (8.13)
where Q=(Qﬁv) is the torsion tensor of T,
0(X,Y)=DyY—-D,X—[X,Y]
of. [12].

Corollary. For a symmetric connection I' which preserves the scalar product i.e.
Dg =0 we have F =0, S=K and K is a symmetric 2 covariant tensor field on o.

The torsion tensor Q of the connection I' on ¢ is given by

Proposition 9.

O(X., Y)=(Q(X, Y)),. (8.14)
For the covariant derivative D of the tensor § on ¢ we have
Proposition 10.

(D,9)(X.Y)=(Dz9)(X,Y); X,Y.ZeT(o). (8.15)

Corollary. If I' is the pseudoriemannian connection corresponding to the metric g
then I' is the riemannian connection corresponding to §g.

We express now the above formulas in local coordinate system (x*) for which
o={xeM :x°=0}. We have X=(0,X%), Y=(0, Y*) and

Proposition 11.

F(X)=X"r,— N°ry), (8.16)
K(X, ¥)= —X"Dy")g,, Y, 8.17)
S(X,Y)=—NTI?}, kys, (8.18)

(DyYy=X%0,Y*+13,.Y"), (8.19)
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where
r=(s), TI5=I5+NT?,. (8.20)

Remark. We see from (8.20) and (A.2.8) that the components of the connection I’
on o are the spatial components of the connection I' taken in the normal
coordinate system.

For the fundamental mappings we have in the normal coordinates F=(F)),
K=(Kij)’ S=(Sij)a D=(Dk)

F, =7, (8.16))
K= “ffogsja 8.17")
S=-T3, (8.18")
D Y=o,y +I%, Y. (8.19))

9. Geometric Interpretation of the Canonical Variables

In Section 4 we have presented the geometric construction of canonical variables
for the matter field @ =(¢*). We explain now the geometric meaning of the
gravitational variables (IT*,g,,). We know that the variables g, are components
of a metric tensor on the submanifold o C M. To elucidate the interpretation of I174
we note that it follows from (2.8) and (5.3)

Lemma 1.
=%+ | = (15"~ ™"
+1)/=g@g e+ g, 0D
Using (9.1), (A.2.8), and (A.3.5) we have in the normal coordinate system
Proposition 12.

17 =4 )/G(F375" + 55" — (%5 + T20). 9.2)
If we compare (9.2) with (8.16')—(8.19") we have
Theorem 2.

7 = — 1 /5(S 4(G75" + 5°G") — §"(S 7" + K os7™)) - ©.3)
Formula (9.3) is a generalization of (5.2), in fact if I ;}V= { fv} then we have from
Proposition 8 K, =S, K., =K,,, and II" =z
Appendix 1

Let ¥V be a manifold parametrized by symmetric quantities (g,,,), (9, =9,,)- We can
formally treat all variables (g,,) as independent. Therefore

0.5
O = ESY .
a9, 7
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For a function F on V (symmetric in g,,) we have

OF
0F=-—dg,,, where oF = OF .
09,y 0 09y,

A vector X tangent to ¥ can be written

0
X=6gyv—ag—a 5gpv=5gvp.'
v

We have the natural pairing of

<_5_
09,

and dg,,

nv

dg,,,,> =515},
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In the papers [17-19] we took another convention, and treated only g,, u<v as

independent variables. In such a situation

a9,
a—g—”=5555+5; hooukEv: =048y, p=v
A%
oF d
dF =} _ﬁ_dg”“; X=) 5!]qu;

K=V v w=v uy

dgaﬁ>=5552+525“, pEv; =065, u=v.

<i
09,

Appendix 2 (The Normal Coordinate System)

Let (x*) be local coordinates on M and o={xeM :x°=0}. Let g9=(g,,) be a
pseudoriemannian metric on M and ¢ be space-like with respect to g. The normal
unit vector to ¢ n=(1/N, — N¥/N). A normal local coordinate system (x*) in a

neighbourhood of ¢ in M is given by
xP=N@Hx®,  xF=x*+x"N¥x%)
and conversely

x°=x%/N(x¥), x*=xF—xON¥xh)/N(x%).

We have
ox0 oxF . ox*
—_ = —_— = — 4
0x° N, 0x° N, ox* o
0x° ox* Oxt

= = — k —_=”.
38~ UN,  FE=—NIN, F5=0

In (A.2.2) partial derivatives are taken at a point xeg ie. x°=x"=0.

(A2.1)

(A2.1")

(A2.2)
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According to the Definition (4.1) for a scalar ¢ on M $ = ¢|o (the restriction of
@ to o) for a vector v* we have

a scalar v°=No°
5

a vector (tangent to ¢) vF=v*+1ON*. (423
For a covector p, we have
a scalar  po=(1/N)po—(N°/N)p, (A24)
a covector p,=p,.
For a tensor b% we have
scalar  BY=b%— N°p?
covector b? = Nb?
vector b =b(1/N)+bY(N*/N)—b(N*N*/N)—b¥(N*/N) (£2:3)
tensor  B¥=bf+bON*.
For a tensor z4" we have
tensor  z%%=zB%1/N)+zJ°(N?N* |
2gUNP/N) = z0°(N*N*N*/N) — 2t (N“N*/N) (426)

—2JYNPN°/N) ~ 22(N°*/N)
tensor zP°=zP°N+z0°NN?  (cf. (5.3)) and so on.
For a tensor %, we have
covector 7o, =r9 —r9 N* (A27)
tensor rpq_Nrpq cf. (8.16) and so on.
For coefficients of a connection I on M we have

ax* oxtax® .  0°x° oxt

I =ri—=_" """ s e A28
TR oxt oxFoxT TR 0xFox” 9x° ( )
In particular case of the riemannian connection y, A ={24} we have

70s=0, ypq = Nypq s Ygo= ng“yuq (A2.9)

7o, =N%p +v5, andso on.

Remark. The above definition of 7;, coincides with that given in Appendix 3.
We have also

Vgt =Veph-%, Dt =Dyl % (A.2.10)
The covariant derivative of the quantity ¢
Vo5 =055
+ Pyt +5“’<v,,,qo;§ Wl (A.2.11)
+ - 5B1quq)pﬂz : —5,;9’“1(0‘;;‘1 Ho-1p-
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Appendix 3

On the submanifold o= {xeM :x°=0} we have

N=(_g00)— 1/2, Nk=90kv NS=§Ska

gpll_____gPQ__NpNQ/N2’ gooz_N2+Nst; g0p=Np/N2 (A31)
g=detg,,, g=detg;, |/ —g=N]/5,
vh={h), T=0 [cf (A29)], (A32)

Vea=Tea= N 9005 7po=N"5,+(1/N)9,N

Vho=NG"15, + F,N* = NNy}, = N*/NO,N

136=(NYN)3,N +(1/N)3oN + N°N*%, (A3.4)

V5o =0oN*+ N(@*— N°N*/N?)3,N + N°V,N°*
+2N2N?§*% % — N*/No N — N*N°N*y5,,

Ky=-Ny%s ni=)/=g0%—9,0%5")3"5"

Y90, =(=9) " (m,,— 3G, tr7), trm=g,n",

alguv = guaytl + gvav(;l
009:;=V:N;+ V;N,+2N*].

(A3.5)

(A.3.6)

Remark. 7, denotes the covariant derivative with respect to the connection 7%, on
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