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Abstract. Canonical variables for the generalized (non-metric) Einstein-Cartan
theory of gravity are defined. The space of solutions is equipped with a closed
differential 2-form Ω. The symplectic 2-form Ω has a diagonal representation in
terms of canonical variables. A geometric interpretation of the canonical
variables is presented and the 3 + 1 formulation of the field equations is given.

1. Introduction

The canonical formulation of general relativity is based on the Palatini variational
principle [2, 15, 23]. Also for simple examples of the gravitational field interacting
with the scalar or electromagnetic field natural generalizations of the ADM
formalism exist. In a more general situation the Lagrange function of the matter
field does depend on coefficients of an affine connection. Therefore for such a
theory the Palatini variational principle gives raise to a non-riemannian geometry.
The most general case is when we admit a non-symmetric connection Γ = (Γ*v) in
space-time. Generalized theories of gravity were investigated by several authors:
E. Cartan, Kibble, Sciama, Hehl, Trautman and others. We refer the reader to [7,
21] for a detailed bibliography. The present paper is based on the simplest
generalization of the Palatini variational principle

= 0 (1.1)

where a metric tensor g = (gμv\ a non-symmetric connection Γ = (Γ*v), a tensor
φ = (φΛ) and its partial derivatives η = (η£) are taken as independent variables. We
formulate the variational principle (1.1) in the geometric language of differential
forms and multisymplectic manifolds [4, 6, 9-11, 16-20]. Our field equations
derived from this principle coincide with those given by Trautman [21] cf. also
[8],

It is known from the geometric theory of the calculus of variations and the
theory of multisymplectic manifolds [5,10, 11] that the set of solutions of the field
equations has a natural symplectic structure. This is the reason why we use such

0010-3616/78/0060/0215/$03.60



216 W. Szczyrba

equations and do not impose the metric condition Dλgμv = 0 cf. [13, 22]. We call
the theory obtained by the Palatini principle (1.1) the generalized Einstein-Cartan
theory. It is known that in the classical general relativity the symplectic 2-form Ω
can be diagonalized in the ADM coordinates (πij

9 # 0 ), where ^ = (gfij j is a metric
tensor of 3-dimensional surface σ in space-time M and the ADM density π = (πij) is
defined by the second fundamental form K = (Kij) of the imbedding ί:σ-+M as
follows

j

a ψ j ~ gίjKabg
ab). (1.2)

More precisely we have

Ω(XVX2)=± dδπ^δg^-δπ^δgλdx1 A dx2 A dx3 (1.3)
2

where <5πίJ, δg^ fc=l, 2 are "components" of tangent vectors XVX2 cf. [17-19].

In the present paper we generalize the ADM density π — (πij) for the case of
interacting gravitational and tensor fields. The generalized ADM density Π = (Πij)
has a natural geometric interpretation in terms of the fundamental mappings of
the hypersurface σCM.We define also the canonical variables (&A,φ

Λ) for the
matter field φ = (φΛ). In the canonical variables (Πij

9 gip &>Λ9 φA) the symplectic
2-form Ω has a diagonal representation of the type (1.3).

It turns out that the generalized Einstein-Cartan equations

G μ v - 8 π f μ v = 0 (1.4)

splits into 6 dynamical equations and 4 constraints

G°λ-SπT° = 0. (1.5)

Equations (1.5) do not contain time derivatives and are constraints imposed on
initial data of the canonical variables. This fact gives raise to degeneracy of the
symplectic 2-form Ω. Problems concerning the dynamical structure of the Einstein-
Cartan equations (cf. corresponding results for the Einstein theory in [3, 14]) and
the degeneracy of the symplectic 2-form (cf. [17-19]) will be discussed elsewhere.

The methods we use in the present paper are similar to those used in [10, 17-
19]. Some technical results (the contracted Bianchi identities, the reduction of the
system (1.4)) were proved in [20]. The notation follows that of [9, 10, 12, 15, 17-

19] with the only exception, a different interpretation of the symbol - — (see
Appendix 1). Qμv

2. The Field Equations

Let M be a 4 dimensional, smooth manifold—space-time, with local coordinates
(xλ). Our geometric approach is based on the bundle τx ^ - ^ M . A fibre of this
bundle over a point xeM is a direct sum of the space of symmetric 2 covariant
tensors g = (gμγ) at JC and the space of non-symmetric affine connections Γ = (Γμv).
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The transformation properties of local coordinates {xλ, gμv, Γμv) in ̂  are

_ dxα δxβ

9μ'v'~~faμr~d^τdaβ

_dx^_d^_dxP_ d2xσ dxλ'
μ'γ'~'dxΓ'dxμr'dx7 otβ + dxμ'dxv' dxσ '

We have standard definitions of the Riemann tensor

Rβ =r) Γβ —c) Γβ + Γ τ Γβ — Γ τ Γβ

^aμv Vμ1 vα uvΛ μa. ̂ 1 vαJ μτ J μa1 vτ

the Ricci tensor, the symmetrized Ricci tensor, the curvature scalar

the symmetric Einstein tensor

Gμv=^(Rμv + Rvμ) - ^gμvR (2.4)

the torsion tensor

Ql = Γl-Γλ

vμ. (2.5)

A tensor field g = (gμv) on M defines the pseudo-riemannian connection γ = (yμv)

-δτgβV). (2.6)

Therefore we have two different covariant derivatives for tensor field on M, Dμ

corresponding to the connection Γ and Vμ corresponding to γ.
The defect tensor is defined by

rλ =Γλ -yλ (2 7)
' μv x μv fμv ' V^ ' /

Very important in the subsequent considerations is the following tensor

cT = βμXλ + g"βr:βδ»λ -n-gτ»r\τ. (2.8)

It has the property cμ

λ

λ = 0, therefore rμv can be expressed by cμχ only up to an
arbitrary covector χ = (χμ)

+ -Hλgτv-\c^gτμ. (2.9)

In the following we consider the subbundle of ̂  consisting of such systems
(x\ gμv, Γμy) that gf = det^fμv<0. We denote it also by 0>v We have a differential 4

4

form θgr (the Cartan 4-form) on ^

...Λdx3

^dx0 Λ ... ΛdΓβ

β(XΛ ... Λώc 3

τ

- ΓβμΓξτ) ]/^g~dx° A...Λ rfx3]. (2.10)
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By virtue of the transformation law (2.1) formula (2.10) defines globally a
4

differential 4-form on 0>v This θgr was given for the first time in [17,18] for the
case of symmetric connections.

4

Remark. lϊf:M-^^1 is a section of τt then/*β =R y-gdx°A...Adx3, therefore
4

θgr is the appropriate tool for the Palatini formulation of the variational principle
in general relativity [18].

We need also another bundle τ 2 : ̂ 2 - > M which corresponds to variables of an
external field (matter field). Let ρ: W-+M be a tensor bundle with local coor-
dinates (xλ,φA\ where φA = φaβ\'"fs have tensor transformation properties.

Let τ 2 : ̂ 2 - * M be the bundle of first jets of local sections of Plover M. In &2

we have local coordinates (xλ

9 φ
Λ, ηA) where ηA have transformation properties of

partial derivatives of φA. We define the multisymplectic bundle 3P as the fibre
product of ̂  and 0>2 over M, & = &x θ ^ 2 , τ : ̂ ->M. The 4-form θgr is defined on

& by its pull-back from β?v The Cartan 4-form θf corresponding to the matter
field φ = (φΛ) is

4 ,—ajs?

C°Λ...Λ<ίx3 (2.11)

where JS? :^-»Ris the Lagrange function of the matter field cf. [4, 6, 9,11,16,18].

Remark. Taking as a principle the independence of the interaction of points of

space-time we assume that in any coordinate system —j = 0.
4 UX

The Cartan 4-form 6* for the interacting gravitational and matter fields is

θ = θgr + θf. (2.12)
4

The variational principle based on θ gives raise to the following definition:
The states of the system are sections / : M - > ^ satisfying the condition that

for every τ-vertical vector field X tangent to 0> at points of the submanifold

(2.13)

where f* is the cotangent mapping to f cf. [4, 6, 9-11, 16-19].
In local coordinates Equation (2.13) reads

f = - 1 6 π s f , (2.14a)

μv = Sπfμv, (2.14b)

Λ = dμφ
A, (2.15a)
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where

sT=^ir ( 2 1 6 )
U μv

is the hypermomentum tensor,

Tμv 9 I nμ» a? (1 M\
1 — Δ — -γ Cf aZ> \Δ.L I}

is the symmetric stress-energy tensor.
The system (2.14), (2.15) is identical with that obtained in [13,21] by means of

the classical Palatini variational principle, cf. also [8]. We call (2.14), (2.15) the
generalized Einstein-Cartan equations.

Equations (2.14a), (2.15a) are algebraic and allow us to express uniquely (or
almost uniquely) Γμv by gμv, dλgμv, φA, dμφ

A cf. [20] where examples are given. In
general the connection we get from these equation is non-metric i.e. Dλgμvή=0.

s

Remark. The physical interpretation of the tensors s^v, Tμ v was discussed in
several papers [7,8,21]. We do not consider this problem here.

Now we impose some restrictions on the Lagrange function 5£. It is natural to
assume that S£ can be expressed by metric g field φ, its covariant derivatives and
torsion i.e.

ngμv,Γ
λ

μvi φ\ ηA) = ̂ (g^ φA, Dλφ
A, Qλ

μv). (2.18)

For a tensor field φA = φ*β\\';% we have from (2.18)

y^FΆ ¥ λ<X.2 # k T β \ .. ,βs ••• i f tχίt^ιχιc_,ιλτβi,..βs

where

•nflβ 1 β S

is the 4-momentum of the field φ and aμχ is a tensor skew-symmetric in upper
indices i.e. av

λ

μ=-aμ

λ\

3. The Contracted Bianchi Identities and the Reduced System
of the Einstein-Cartan Equations

The group of diffeomorphisms of space-time acts in a natural way in the bundle &>

(DiffM, ^ ) 3 ( Φ , p)-+A(Φ) {p)e&. (3.1)

We assume that the theory is invariant with respect to this action. It means

(A{Φ))*Θ = Θ. (3.2)
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4

It is easy to see that the definition of θgr implies

(A(Φ))*θgr = θgr. (3.3;

Therefore we get

{A{Φ))4f = θr (3.4;

The postulate (3.4) gives raise to several relations among metric, connection,
stress-energy tensor, hypermomentum tensor and their derivatives. These relations
known as the Belinfante-Rosenfeld identities were given for the Einstein-Cartan
theory in [20,21]. It was proved in [20] that they give the following result (cf. also
[21]).

Proposition 1. // the kinematical Equation (2.14a) and the Euler-Lagrange
Equations (2.15a) and (2.15b) are satisfied then for every metric g = (gμv) and every
connection Γ = (Γμv) on M we have

Vτ(G\-SπTλ) = 0. (3.5)

For our theory it is necessary to assume that M=WLxσ where σ is a
3-dimensional manifold. We shall consider only such metrics on M that σ is a
space-like submanifold and coordinate systems such that σ = {xeM :x° = 0}. By
similar methods as those used in the classical general relativity [1,18,19] it is easy
to prove from Proposition 1.

Proposition 2 [20]. The Equations (2.14), (2.15) are equivalent to the system

sRtj - 8π( ή ; - i ^ Tβgaβ)) = 0, (3.6)

G°λ-SπT° = 0 on σ. (3.7)

We shall prove in Section 6 that Equations (3.7) do not contain x°-derivatives and
are constraints for initial data. If they are satisfied for x° = 0 they hold for all x°.

4. The Orthogonal Decomposition of Tensors
Associated with a Given Space-like Surface in M

Let g = (gμv) be a pseudoriemannian metric on M with the signature ( - 1 , +3),
σ = {xeM:x° = 0} be a 3-dimensional space-like surface in M and n = (nμ) be the
normal unit vector to σ at x = (xλ) (n n = — 1).

Let φ = (φ"β\\\'aβc

s) be a tensor (tangent/cotangent to M) at xeσ. The idea of the
orthogonal decomposition of φ is based on the notion of the gaussian (normal)
coordinate system. Let (xι) be a coordinate system in a neighbourhood of σ in M
such that σ = {jceM:x° = 0} and n = (1,0,0,0) on σ. Coordinates φf;;;fs of φ in this
system give components of several tensors tangent/cotangent to σ.
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Their valence is determined by the number of non-zero indices in φ\\';%
According to the classical terminology [2,23] we call geometric objects tangent/
cotangent to M the 4 objects and geometric objects tangent/cotangent to σ the 3-
objects. The 3-object generated by a 4-object φ = {φaβ\yaβ) is denoted by
φ = (φCβ1'"Cβc) w h e r e

dxa

dxμ

dxv

dx^
Remarks. The matrices - — , —π are given in Appendix 2.

Examples, (i) for a vector v = (va) we have the scalar v° = uδ = —nv (the
projection t> on n) the vector (tangent to σ) vk = vk = vk-\-(v n)nk (the projection of v
on σ).

(ii) For a covector p = (pa) we have the scalar Po= I <\ r ίl/ ?) : = n αPα t n e covector
Pk=Pk ( t n e pull-back of/? on σ).

(iii) For the metric g = (gμv)

9 oo= - 1 ' ôk = ^ o = 0

? gPq = 9Pq> (4.2)

£ 0 0 = - l , gok = gko = 0, gP* = (g-iγ*9 (4.3)

where [(^~ 1)M] is the inverse matrix of [gpq].
We define also

pq. (4.4)

The orthogonal decompositions are compatible with the natural pairings of
vectors and covectors e.g.

In Appendix 2 we present several relations between 3- and 4-objects.

5. Canonical Variables for the Interacting Gravitational and Tensor Fields

For a pseudoriemannian metric g={gμv) on M and a space-like surface
σ = {xeM :x° = 0} we define the lapse function N = ( — goo)~1/2, the shift covector
field Nk = gok and the metric tensor ^ = (βfί<7 ) The components of the unit normal
vector to σ are (nμ) = (1/iV, — Nk/N). A change of n caused by its parallel transport
with respect to the riemannian connection yλ

μy> = {μ

λ

v} in a direction tangent to σ
defines the symmetric 2 covariant tensor field on σ (the second fundamental form
of σ in the riemannian geometry)

J J μ (5.1)

We know, cf. [2, 17-19, 23] that for the pure gravitational field the canonical
variables conjugate to the components of the metric gtj on σ are given by the ADM
density on σ

g{κm-gmκabg
ab)ψψ. (5.2)
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It was proved in [17,18] that the symplectic form in the set of solution of Einstein
equations is, in terms of the variables {nli,g^ diagonal. The corresponding
discussion for the Einstein-Cartan theory gives raise to the following definition of
the canonical momenta (cf. Section 7)

Π™ = π""+\ γ^g(c? + cf )gτ0 - J γ^g(cξ ° + c°/)gτ«

(5.3)

-Ϊ V^gicf + c*)g*> - \ y^(c°og^N" + c°

If

2ΛV = C Λ V + 1 6 π α Γ ( 5 4 )

then by virtue of the skew symmetry properties of α^v we have (cf. Appendix 2)

+ - ϊ Vlm° + z?pWq + (3° + -z°r

q)¥p) • (5.3')
For the matter field ψ we take as the canonical variables

Remark. It follows from (2.19), (2.20), (2.16), and (2.14a) that z f can by expressed

by p\, φA, and ]/^z^v can be expressed by the canonical variables ψ>A, φ
A).

6. The Field Equations of the Gravitational Field in the Canonical Variables

Proposition 3. // the kinematical Equation (2.14a) and the Euler-Lagrange
Equations (2.15a) and (2.15b) hold then tjie constraints (3.7) read

= - VpΠ"r - \ Vv{ γjj%η + iπ&Z Z F r<\ ; * = 0, (6. la)

[(G°-8πfo°)-iV'(G?-8πt0)]

-(1/20) [ ( Π ^ - π

Vp{ y^z°0") - (1/2 ΫJj) Vp

+ - 8πif + (8π/

+ (1/2 l/^)(l/^z τ

O λ)POΛ-i^/^=0. (6.1b)

Remark. In (6.1) and (6.2) {2>)Rip

{2)R denote the Ricci tensor and the curvature
scalar of the riemannian geometry given by the metric tensor g = (g^) on σ.
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The 3-object Doφ
a

β\-a

β

k

s is defined by the general procedure given in Section 4
(cf. Appendix 2). Vk denotes the covariant derivative corresponding to the rieman-
nian metric (gtj) on σ.

To get formulas (6.1a) and (6.1b) we have to use the Belinfante-Rosenfeld
identities proved in [20,21].

It is easy to see that Equations (6.1a) contain only canonical variables Πpq, gpq9

0>A, φ
A and their xfc-derivatives. The same is true for Equation (6.1b) but the proof

of this fact is more complicated. One can prove that the linearized version of (6.1b)
(the "infinitesimal change") depends only on δΠpq, δgpq, δ^A, δφA and their
xfc-derivatives. Therefore (6.1b) depends only on canonical variables and their
spatial derivatives.

The dynamical Equations (3.6) give raise to

Proposition 4. // Equations (2.14a) and the Euler-Lagrange Equations (2.15a) and
(2.15b) hold then

\π{fm-\gpqtτf))ΨΨj

\ah-%π{Tah-{gahXτ T))9ab

-h VpN
jΠpi + VpN

ιΠpj - Vp(ΠijNp)

+ -]/ΪJ(VirjN-gi3VkVkN)

zp

q° )ψψ{πup-\gup\xπ)

Qlβ - Aπa™Qlp) (gpψj + gpψ)

+ - IN ]/dgijcfrλ

aβ - SπN ]β Tpqg
pψ = 0. (6.2)

Equations (6.1), (6.2) together with (2.14a), (2.15a) and (2.15b) and

2N
dogij = ViNJ+VjNi+ -7==(πy-^y trπ) (6.3)

give the complete system of field equations. We have no equations containing
d0N, d0N

k and therefore these variables are to be given in an arbitrary way on M.
It is possible because the constraints (6.1) do not contain N,Nk.
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7. The Symplectic Differential 2-Form on the Space of Solutions
of the Generalized Einstein-Cartan Equations

In our approach solutions of the field equations are sections of the multisymplectic
(multiphase) bundle 9 satisfying (2.13). It is difficult to expect that Equation (2.13)
has global solutions on M. Therefore we consider only sections of 0* over a
neighbourhood of 3-dimensional surface σ in M. The images of these sections form
the space of states J f (a set of 4-dimensional submanifolds in &) equipped with a
natural pseudodifferential structure [10,18].

A vector X tangent to J f at Ce J f is represented by a τ-vertical vector field X
tangent to 0> and defined on C c ^ , which satisfies the linearized version of (2.13)
cf. [5, 10, 11, 17-19]. In local coordinates

where components δgμy, δΓμv, δφA, δημ are geometric objects on the submanifold
C (or equivalently on M) which satisfy the linearized version of (2.14), (2.15).

Remark. δgμvi δΓμv, δφΛ are tensor fields on C (on M).

We define, cf. [18] the differential 1-form Θ on JT

(7.2)

where c is the 3-dimensional submanifold in C = f(M) corresponding to the space-
like surface σ in M (c = f(σ)) a n d Z is a τ-vertical vector field representing X. The
definition of Θ depends on the choice of a space-like surface σCM but its exterior
derivative Ω = dΘ given by

(7.3)

is independent of the choice of σCM ([5, 10, 11, 17-19]).
Therefore the differential 2-form Ω is well defined geometric object determined

by the internal structure of the space Jf.

Remark. Note a difference in the factor 1/2 between (7.2), (7.3) and the correspond-
ing formulas in [10, 17-19].

Theorem 1. IfXvX2 are vectors tangent to 3^ at C andXvX2 are representing
them τ-vertical vector fields on C then

dx1 Adx2

: ^ d χ l Λ dχ2 Λ dχ3 >

where δΠpq, δgpq, δ$A, δφA are expressed by components of vector fields X. i= 1,2

using the linearized version o/(4.1), (5.3), (5.5).

Remark. We assume that in (7.2)-(7.4) the components of the vector fields X.
vanish rapidly at the spatial infinity such that the corresponding integrals exist.
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Formula (7.4) shows that the tensor density Π = (Πpq) is a good generalization
of the ADM tensor density π = (πpq) for the case of the gravitational field
interacting with matter.

Remark. If we take as an example the non-linear electrodynamics then the
canonical variables (^A,φ

A) coincide with those given in [15,19].
In the next section we give the definition of the Π density in terms of geometric

objects associated with an imbedded surface σQM and generalize the ADM
interpretation of the density π in classical general relativity.

Proof of Theorem ί. If a submanifold C C & is the image of a section / : M - > ^ and
/ satisfies the kinematical Equation (2.14a) then

where

θ = [ ( - l/16π)gpqdΠ™ + ̂ l:±άφ%\::^ A dx1 A dx2 A dx3,

θ = (l/l6π)[]/ϊj(l/N)gk«(d(duNk) -ys

kudNs - NMu)

+ γ^{dk{\IN)gkudNu - dk(l/NW«gkrNudgqr)

+ - ]/H((ί/N) VuNkg
kψudgrq + (Nk/N)dy*k)l A dx1 A dx2 A dx3,

θ = (l/32π) [ - d( j/#ΛΓ3cτ°y °)] Λ dx1 A dx2 A dx3 ,

4 4

θ = all terms in θ which contain dxΌ.
4

4 4

The form θ is closed, integrals containing θ over submanifolds x° — const, vanish

and therefore we have to compute the integrals

It was proved in [17-19] that the integral I2 can be transformed into an integral of

an exact 3-form on c i.e. I2= \dμ and therefore vanishes by virtue of boundary
c

conditions on c (on σ). The integral lx gives raise exactly to (7.4).
We know that the canonical variables are not independent, they satisfy at least

4 constraints (6.1). These constraints give raise to the degeneracy of the symplectic
2-form Ω. It can be proved by methods similar to those used in [17-19] that the
degeneracy of Ω caused by (6.1) is determined by the action of DiffM in the space
jf. This result will be published elsewhere.

In particular cases other constraints can be given by the Euler-Lagrange
equations, for instance in electrodynamics [19]. They give raise to an additional
degeneracy of Ω.
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8. Fundamental Mappings of a Hypersurface in Space-Time

Let M be endowed with a pseudoriemannian metric g = (gμv) and a non-symmetric
connection Γ = (Γ*V). Let z:σ->M be an imbedded 3-dimensional submanifold,
which is space-like with respect to g i.e. the induced metric (the first fundamental
form of the imbedding)

is positively definite (riemannian).
Let n = (rf) be the field of unit vectors normal to σ i.e.

(8.1)

(8.2)

For a vector X tangent to σ at JC and a vector field Y tangent to σ we define the
normal and tangent components of the covariant derivative D = (Dλ)

(Dxn)n=-g(Dxn,n), (8.3)

(Dxn)t = Dxn-(Dxtι)nn, (8.4)

(DxY)n=-g(DxY,n), (8.5)

{DxY)t = DxY-{DxY)ntι. (8.6)

From the properties of covariant derivatives we have

Proposition 5. The mapping

C°°(T(σ)) x C°°(T(σ))9(X, F)->S(X, Y)

= -(DxY)neC™(σ) (8.7)

is bilinear over the ring C°°(σ).

Corollary. For every xeσ formula (8.7) defines the bilinear mapping

Tx(σ) x Γ » 9 ( X , Y)-+S(X, F)eIR. (8.7)

Proposition 6. The mapping

C°°(T(σ)) x C°°(T(σ))9(X, Y)^DXY

= {DxY)teC™(T(σ)) (8.8)

defines a covariant derivative on the manifold σ.

Proof According to the axioms of covariant derivatives [12] we have to prove
that for /eC°°(σ)

DfXY = fDxY;

These properties follow directly from (8.8).

The covariant derivative D on σ defines a connection Γ on σ. We call it the
connection induced by the imbedding i: σ-»M.
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Definition. The mapping

Tx(σ)xTx(σ)B(X,Y)^K(X,Y)

= -g((Dxn)t, Y) = -g((Dxn)p Γ)eR (8.9)

is called the second fundamental form of the imbedding. The mapping

T»9X^F(X) = (Dxn)nelR (8.10)

is called the fundamental 1-form of the imbedding.

Proposition 7.

F(X)=±(Dxg)(n,n), (8.11)

S(X, Y)-K(X, Y)= -(Dxg)(Y,n). (8.12)

Proposition 8.

S{X, Y)-S(Y,X)=g(Q(X, Y),n), (8.13)

where Q = (Q*v) is the torsion tensor of Γ,

Q{X,Y) = DXY-ΌYX-IX,Y]

cf. [12].

Corollary. For a symmetric connection Γ which preserves the scalar product i.e.
Dg =0 we have F = 0, S = K and K is a symmetric 2 covariant tensor field on σ.

The torsion tensor Q of the connection Γ on σ is given by

Proposition 9.

Q(X,Y) = (Q(X,Y))t- (8.14)

For the covariant derivative D of the tensor g on σ we have

Proposition 10.

(Dzg)(X, Y) = {Dzg)(X, Y) X, Y,Ze T(σ). (8.15)

Corollary. // Γ is the pseudoriemannian connection corresponding to the metric g
then Γ is the riemannian connection corresponding to g.

We express now the above formulas in local coordinate system (xλ) for which
σ = {xeM:x°=0}. We have X = (0,X'1), F=(0,y k)and

Proposition 11.

F(X)=Xk(r°k0-Nsr°ks), (8.16)

K(X,Y)=-Xk(Dχ)gtιsY\ (8.17)

S(X,Y)=-NΓ°ksX
kYs, (8.18)

\ Yr), (8.19)
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where

r=(nX nr=rir+Nsrl- (8.20)

Remark. We see from (8.20) and (A.2.8) that the components of the connection Γ
on σ are the spatial components of the connection Γ taken in the normal
coordinate system.

For the fundamental mappings we have in the normal coordinates F = (Fk),
K = (KiJ)9S = (SiJ)9D = φj

Fk = r°k0, (8.16')

Ktj=-riogaj, (8.17')

StJ=-Γΐj, (8.180

Γ. (8.190

9. Geometric Interpretation of the Canonical Variables

In Section 4 we have presented the geometric construction of canonical variables
for the matter field φ = (φA). We explain now the geometric meaning of the
gravitational variables (Πpq, gpq). We know that the variables gpq are components
of a metric tensor on the submanifold σCM. To elucidate the interpretation of Πpq

we note that it follows from (2.8) and (5.3)

Lemma 1.

Ptfq + Ψq9hpVαh. (9.1)

Using (9.1), (A.2.8), and (A.3.5) we have in the normal coordinate system

Proposition 12.

π™=\ ]/d(r°αb{gαpgbq+gαqgbp) - gpq(r°αbg
αb+r*0)). (9.2)

If we compare (9.2) with (8.16Ή8.19') we have

Theorem 2.

Πpq = - i \/^(Sαb(gαpgbq + gαψp) - gpq(Sαbg
αb + K f l & ^ b ) ) . (9.3)

Formula (9.3) is a generalization of (5.2), in fact if ^ v = {μ

λ

v} then we have from
Proposition 8 Kαb = Sαb, Kαb = Kbα, and i7 M = π M .

Appendix 1

Let Fbe a manifold parametrized by symmetric quantities (gμv\ (gμv = gvμ) We can
formally treat all variables (gμv) as independent. Therefore
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For a function F on V (symmetric in gμv) we have

dF = —— dg , where = .
ogμv

 μv agμv dgvμ

A vector X tangent to V can be written

d

We have the natural pairing of - — and dgaβ

In the papers [17-19] we took another convention, and treated only gμv μ^v as
independent variables. In such a situation

da

7ξfί=δϊδ} + δ:δ%, μΦv; =%δ}, μ = v
UUμv

yμv μ^v

Appendix 2 (The Normal Coordinate System)

Let (xλ) be local coordinates on M and σ = {xeM:x° = 0}. Let g = (gμv) be a
pseudoriemannian metric on M and σ be space-like with respect to g. The normal
unit vector to σ n = (l/N, —Nk/N). A normal local coordinate system (xλ) in a
neighbourhood of σ in M is given by

and conversely

We have

x — )v - ί - = jvfc - ϊ - — ^
δx° ' dx° ' θxs s

(A.2.2)

In (A.2.2) partial derivatives are taken at a point xeσ i.e. x° = xδ = 0.
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According to the Definition (4.1) for a scalar φ on M φ = φ\σ (the restriction of
φ to σ) for a vector vλ we have

a scalar v° = iVi;0,

a vector (tangent to σ) v* = vk + v°Nk.

For a covector pA we have

a scalar p 0 = (1/N)po - (Ns/N)ps

(A.2.4)
a covector pk = pk.

For a tensor bj we have

scalar δg = ftg-Ns&s°

covector b^ = Nb^

vector 5£ = bk

0(l/N) + b°0(Nk/N) - b°(NkNs/N) - bk(Ns/N)

tensor δj = bk + f>° JVfc.

For a tensor z^v we have

tensor zpq=zpq(l/N) + z°0°(NpN(i i

+ z°o

q(Np/N) - z°°(NpNqJSI*/N) - zp

s

υ(NqNs/N)

-z°q(NpNs/N)-zpq{Ns/N)

tensor zpO = zPθN + z°°NNp (cf. (5.3')) and so on.

For a tensor rλ

μy we have

covector r?π = r?π •-r?JVg

tensor ^,q

 = ^rpq cf. (8.16) and so on.

For coefficients of a connection Γ on M we have

fλ _pλ __ UΛ/ U Λ UΛ> pλ υ Λ U Λ ' ' - —
1 μ v - 1 μ v - Λ a n γ μ Λ v 2 μv "

In particular case of the riemannian connection yλ

μv = {μ

A

v} we have

7° = 0 V° =iV70 yPr, = NapuV°
i O s v > i p q i y ' p q > I q θ x y v f u q (Ά 2 9̂

ψ =jVsy° +ys and so on.

Remark. The above definition of ψpq coincides with that given in Appendix 3.
We have also

The covariant derivative of the quantity φA is
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Appendix 3

On the submanifold σ = {xeM :x°=0} we have

= detgij9

] , (A.3.2)

yk

p0=N2gkuy°pu+vpN
k - NkNYpu - Nk/NdpN

y°00 = (Na/N)daN + (1/N)SON + NaNby°ab (A3 A)

Too = doNS + W ~ NsNa/N2)daN + JVβFβN
s

+ 2N2Nψqy°pq - Ns/Nd0N - NsNaNby°b,

Remark. Vr denotes the covariant derivative with respect to the connection yk

pq on
σ.
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