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Abstract. We present a complete list of all separable coordinate systems for

the equations Z g~ '?0(g"*g"0,®) = E® and Z g0,Wd,W = E with spe-
i,j=1 i,j=1
cial emphasis on nonorthogonal coordlnates Applications to general

relativity theory are indicated.

1. Introduction

We study the problem of separation of variables for the equations

S B
a) 4,0 = . 2—'17 /9970, @)= E®
! (1L1)

4
b) Y gio,WoW =E.
i,j=1
Here, ds® = ) g, dx'dx’ is a complex Riemannian metric, g = det(g,j), Z 979, = 0%

g;;=49;> and E is a nonzero complex constant. (Furthermore, we have adopted
ow
oxt
dimensional complex Riemannian space and (1.1b) is the associated Hamilton-
Jacobi (HJ) equation.

In this paper we classify all metrics and coordinate systems for which Equations
(1.1) admit solutions via separation of variables. For (1.1a) the separation is in

terms of a product whereas for (1.1b) it is in terms of a sum
4

o(x)= []o9x), WX =) WOx). (12)

i=1 i=1

the notation ,W = W, = ) Thus (1.1a) is the Helmholtz equation on a four
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By applying appropriate reality conditions on the metric tensor we can use our
results to obtain the separable and partially separable systems for corresponding
real equations such as the Euclidean space Helmholtz equation, the Minkowski
space Klein-Gordon equation [1] and various equations of general relativity
theory. Indeed the interest in solving relativistic equations via separation of
variables methods, see e.g. [2-5], is motivation for our work. In a forthcoming
paper we shall make these applications explicit by classifying all separable systems
for (1.1a) and (1.1b) in Ricci-flat spaces.

There is a deep relationship between the symmetry groups of Equations (1.1),
the coordinate systems in which these equations admit solutions via separation
of variables and the properties of the separated (special function) solutions so
obtained. See [6] for an examination of this correspondence in the case of some
of the most common partial differential equations of mathematical physics. We
mention in particular that the myriad addition theorems, generating functions
and expansion formulas for the special functions of mathematical physics can be
derived systematically in terms of this relationship. Thus the method of separation
of variables assumes an importance far beyond the fact that it permits the cons-
truction of explicit solutions for partial differential equations.

The classical Stickel method for separatmg variables in Equations (1.1) is
well known, [7], [8]. We briefly review the main ideas for the HJ equation (1.1b).
Let {x'} be a prospective separable system for the HJ equation with separated
ordinary differential equations

4
@, =f(x) (WD) + g(x YWD + h(x)+ Y. chij(xi) =0 i=1,..,4. (L3)
j=1
Here ¢, = — E and c,, c;,c, are the separation constants. It is assumed that the
Stickel determinant S = det(S;)) is nonzero. Furthermore, if f; # 0 we can require
that f; = 1. To relate (1.3) w1th (1.1b) one looks for functions @,(x*, ..., x*) such
that

4 4
Y 08,=Y gio,Wwow—E (14)
i=1

ij=1

identically in the separation constants E,c,,c,,c,. Stickel [8] showed that the
only solution is f,=1,g9,=h,=0,0,=M,,/S where M, is the (j1) cofactor of
S. In particular the metric must be orthogonal.

The classification procedure utilized here is more general than that of Stackel
and is based on a method introduced in [9] for three-dimensional Riemannian
manifolds. Here the separable systems are classified in terms of the number of
ignorable coordinates they contain. (A variable x’ in a separable system is termed
ignorable if 0,9, =0 for 1<j,k <4, ie., the metric tensor is independent of x'.
Otherwise the varlable x! is essential. If the separated ordlnary differential equation
in the essential variable x' is first order in W® then x' is of type 1, if second order
then x'is of type 2.

If x* is ignorable then the HJ equation admits solutions of the form W =
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W(xt,x2,x%) + ¢, x* where c, is a constant, and (1.1b) reduces to

3 3
Y 9o WO W +2c, 3, g*0,W + cig** =E, (1.5)
i,j=1 j=1

an equation in three variables. If all remaining variables are required to be essential,
we can then apply the Stackel method to (1.5) and find an equivalent system of
three ordinary differential Equations (1.3) where now i = 1,2, 3, j is summed from
1 to 3 and f; need not be nonzero. If, however, two, three or four variables are
ignorable we can first split off these variables, introducing a separation constant
¢, for each ignorable variable, and apply the Stickel method to the reduced
equation in the remaining essential variables.

The orthogonal separable systems we obtain are exactly those which one
would find by employing the classical Stickel method. However, for systems
with at least one ignorable variable we find truly nonorthogonal coordinates
which do not seem to appear in the literature. Our lists are also simpler and
more explicit than those given heretofore. This is primarily because, as pointed
out in [9], one can identify all coordinate systems which lead to the same families
of separable solutions for Equations (1.1). (For example, if {x'} is a separable
system with x* ignorable and x',x?,x? essential then it is easy to see that {X'}
with X/ =x7,j=1,2,3,X*=x*+ a,(x") + a,(x?) + a5(x*),a, arbitrary, is also
a separable system with X* ignorable and X', X2, X3 essential. Furthermore,
the two systems have the same separable solutions. We regard all such systems as
equivalent and merely give one representative from each equivalence class in
our lists. The functions a, are chosen such that this representative is as simple
as possible. In particular, if possible we choose the a; such that the resulting
metric is orthogonal. If this cannot be done we say that the separable system is
truly nonorthogonal. All other separable systems are equivalent to orthogonal
separable systems. Similar remarks hold for two, three and four ignorable co-
ordinates.)

In this paper we list all possible ways variables can locally separate on a
four-dimensional Riemannian manifold. A related problem not solved here is:
Given a particular manifold M list all separable systems for M. To solve this
problem we must determine which of the metrics listed here can be interpreted
as a metric for M. In particular, for flat space we must require that the curvature
tensor corresponding to each separable metric vanish identically. For orthogonal
separable systems we have solved this problem in flat spaces E,, [1] and in the
space of constant curvature S,, [10]. For nonorthogonal separable systems in
E, and S, the solutions will be given in forthcoming articles.

The most notable paper concerning separation of variables for Equations (1.1)
is undoubtedly that by Eisenhart [11]. It follows easily from Stdckel’s original
paper [8] that any orthogonal separable system for (1.1a) also separates (1.1b).
Robertson [12] found a necessary and sufficient condition that a separable system
for (1.1b) also separate (1.1a). Eisenhart’s great contribution was to show that
the Robertson condition amounted to the requirement R;;=0 for i+ j where
R,, is the Ricci tensor of the Riemann manifold. It follows immediately from
this result that for all Einstein spaces (in particular for flat space and spaces of
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constant curvature) the Helmholtz and HJ equations separate in exactly the
same orthogonal coordinate systems. Furthermore, this result makes feasible
the computation of all separable orthogonal systems for a given Riemann manifold
provided the curvature tensor of the manifold can be characterized in a reasonably
simple manner.

Among recent contributors, Havas has influenced us the most. In his papers
[13] and [14] he gave a useful summary of the classical work relating Equations
(1.1), listed both orthogonal and nonorthogonal separable (and partially separable)
systems for these equations in n variables and emphasized the relevance of the
condition R;;=0,i#j, even for the Helmholtz separability of nonorthogonal
systems. Our work differs from his primarily in the explicit nature of our results
and in the new nonorthogonal systems we find. Most of the nonorthogonal systems
obtained by Havas and earlier workers appear to be equivalent to orthogonal
separable systems'in the sense discussed in [9]. In this paper we show that the
condition R;;=0,i#j, for all non-ignorable variables x',x/ is necessary and
sufficient for Helmholtz separability of even nonorthogonal HJ separable systems
with two exceptions, the nonorthogonal E1 and E2 systems. These special systems,
particularly E1, are important counterexamples for several conjectures concerning
separable coordinates.

There is another series of papers [3—5], based on some results of Woodhouse,
concerning separability of Equations (1.1) and explicitly pointing out the relevance
of variable separation to the symmetry properties of (1.1) and to modern relativity
theory. However, the authors of these papers adopt a very special definition of
separation and partial separation of variables which rules out many of the classical
separable systems. They consider only the type of variable separation in which
one variable can be explicitly separated from the remaining variables in (1.1).
This definition omits such well known separable systems as the Lamé ellipsoidal
coordinates and paraboloidal coordinates in flat space for which all variables
must be separated simultaneously (i.e., the full Stickel matrix machinery must be
used [11]). The variable separation treated in these papers corresponds to our
typesIand J.

As a first step in the application of our results to relativity theory we establish
in this paper that a Ricci-flat space admitting a separable coordinate system must
also admit a Killing vector. Furthermore a separable system for a non-flat Ricci-
flat space must contain an ignorable coordinate.

For corresponding treatments of Equations (1.1) in three and four variables
with E =0 see [15-17].

2. Equations with Ignorable Coordinates

We now enumerate the possible separable coordinate systems for the HJ and
Helmholtz equations which contain at least one ignorable variable.

A. All Variables Ignorable

By applying a linear transformation x’ = a’x/ to the ignorable coordinates {x’
pp i
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we can obtain an equivalent set of ignorable coordinates {x'} for which g, ;=0
The HJ equation becomes

[A] W2+ Wi+ W} + W =E, 2.1)

and the corresponding Helmholtz equation is also separable in these flat space
variables.

B. Three Ignorable Variables

If x!' is the essential variable then g;= Gij(x’). By re-defining the ignorable
4

variables {X’} according to dx’'=dx'+h(x")dx' where g,,;= — ) g,h,.j=
k=2

2,3,4 we can obtain the HJ equation

4
[B] W2+ ) ¢x" YWW,=E. (2.2)
i,j=2

The corresponding Helmholtz equation also separates in these coordinates.

C. Two Ignorable Variables with Two Essential Variables of Type 2

We will treat this case in some detail to indicate our methods of derivation. If
the essential variables are x*, x? then for separation of the HJ equation the contra-
variant metric must have the form

g" = g7 = 0,¢" = Qa(x"), g% = Qb(x?) (23)

g** = Qc(x"),g** = Qd(x?),g>* = Q[e,(x") + e,(x?)]

g** = QLf,(cN) + ) 1,9 = Q[h,(x") + h,(x*)],¢'* = 0
where Q =1/[K,(x") — K,(x?)]. By defining equivalent ignorable coordinates
x3,x* to the original coordinates x>, X* by

dx® = dx® — adx' — bdx?,dx* = dx* — cdx' — ddx® 2.4

we can assume a = b = ¢ =d = 01in (2.3). Thus the HJ equation becomes

[C] K_——_T(— [VVlz + VVZZ + (31 + ez)W32'+ 2(h1 + hz)Ws W4
1 2
+(fy +H)WE]1=E. @3)
The corresponding Helmholtz equation separates if and only if
(K1 - Kz)z :,
0,,1In =0 (2.6)
12 [(61 +ez)(f1 +f2)_'(h1 +h2)2

and this condition is equivalent to R, , = 0 where R;; is the Ricci tensor.
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D. Two Ignorable Variables with One Essential V ariable of Each Type
There are two cases to distinguish, the first being

1

D1 —_—
[D1] K —K,

(W2 + 2a,W, W, + 2b,W,W, + d, W} 2.7)

+2(f, + LW W, + e1W42] =E,

where the subscript i on a,b,d, e, f, K denotes the essential variable x' on which
the function depends. Here a,b, # 0. The necessary and sufficient condition for
separation of the corresponding Helmholtz equation is

(K1 - K2)2 :|

0,,In =0, 2.8
2 |:2a2b2(f1 +f,) — ade, — b3d, 28

which is equivalent to R, = 0.

The second case corresponds to

[D2] K -K, [WE + 2W, W, +(d, + d)W;
1
+2f\W,W, +e,W]=E. 29)
The necessary and sufficient condition for separation of the Helmholtz equation is
(K, =K,
0,,Inf —1—2"|=0 .
12 [ d, +d, (2.10)

and this is equivalent to R, , = 0.

E. Two Ignorable Variables with Two Essential V ariables of Type 1

Here there are three cases to distinguish. The first possibility is

[E1] K—l—i—K—z [2a, W, W, + 2W, W, + 2a,W,W, + 2W,W,
+(c, + c,))WZ]1=E, a,a,+#0. (2.11)
Necessary and sufficient conditions for separation of the Helmholtz equation are
01,(a,0,Y + a,0,%) = 0,,(0,y + 0,4) =0, (2.12)

K,-K,
V= 1n<a1_az>

In this case the condition R, = 0 where

(all

a, —a. —-a
Ry, =00~ 300, 38" Doy 1 o) 7% @.13)

1 2 1 2

neither implies nor is a consequence of (2.12). To show this we first find all solutions
of Equations (2.12). The general solution of the second equation is

¥ =" —x%)+g(x") + h(x*)
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and substituting this result into the first equation we obtain

Lemma 1. A coordinate system of type E1 permits separation of the Helmholtz
“equation if and only if it corresponds to one of the following three types:

i) a, =coshx', a, =cosh x?, Y = —In(e¥ ™~ — 1)
11) a, = eXIy a2 = exz, K2 =0
iii) 8, =0.

It is easy to check that R, # O for the systems of types i) and ii). Furthermore
the system

a,=(B+5x',a,=2x>, K, =1,K,=0

satisfies R, , = 0 but not Equations (2.12).

We briefly investigate the possible E1 systems which can occur in flat space.
The only nonvanishing elements of the curvature tensor for an El system are
R, 14-R 223:R,5 13 and Ry, ,. A direct computation shows that if the first three
of these elements are required to be zero then the system satisfies 9, ,§ = 0, hence
permits separation of the Helmholtz equation.

Lemma 2. A type El system in flat space permits separation of the flat space
Helmholtz equation.
The second possibility for type E systems is

1
1 2
with the condition for Helmholtz separability,
0,,In(K, —K,)=0. (2.15)
Here
K' K’ b,K
R . =3__ "—"12 1pr 2772
12 2(K1 _ K2)2 + 272 2(K1 _ Kz)

so the condition R, = 0 implies (2.15) although (2.15) doesn’t imply R, = 0.
The third possibility is

1
[E3] —K—aT[ZWIW‘L-+-2WZW3 -+-01W32 +d,W}]=E (2.16)
1 2
with the condition for Helmholtz separability

0,,In(K, —K,)=0 (2.17)
which is equivalent to R,, = 0.

F. One Ignorable Variable with Three Essential Variables of Type 2
The HJ equation is

[F] %[(qz = a)W + (a5 — a )Wy + (g, — 4 )W5’
+[14(q, — g5) + 73005 — 4,) + 73(q, — @) IWZ] =E, (2.18)
S= Sl(‘h - Q3) + Sz(q3 - ql) + S3(q1 - CI2)-
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Since these coordinates are orthogonal the conditions for Helmholtz separability
are Rij=0 for all i #j. However, the condition R, =0,/=1,2,3, is satisfied
automatically.

G. One Ignorable Variable with One Essential Coordinate of Type 1
and Two Coordinates of Type 2

There are two cases to consider, the first being
1
[G1] a[Wl2 + W2+ 21, — LW, W, + (m, —m,)WZ]=E, (2.19)

Q=k, —k,+g5(,—1,).

The conditions for Helmholtz separability are equivalent to

0;; m(l(_zl> 0, 1=5i<j=£3, (2.20)
which are precisely R;; = 0.

The second case is
|

1 |
[G2] a[g3 W2+ LWE + 2W,W, + (u,ly + g, f)WE] =E, 2.21)

Q=ky+ 0,0, +g,r,.
The conditions for Helmholtz separability are
0,;InQ=0, 1<i<j=<3 (222
which are precisely R;; = 0.

H. No Ignorable Variables

This is the most complicated case and the metric is necessarily orthogonal. The
HJ Equation reads

- M j1 2
[H] .21 —SL Wi =E (2.23)
j=
where S is a Stdckel determinant and M, is the (j1) cofactor of S. Eisenhart [11]
has shown quite generally that the corresponding Helmholtz equation separates
if and only if R;;=0 for all i#j. A detailed classification of these coordinates -
will be given in Section 4.

Theorem 1. A separable coordinate system for the HJ equation in a four dimen-
sional Riemannian space is equivalent to exactly one of the systems {x'} of types
A-H.If {x'} is not of type E1 and R;; = Ofor all pairs of distinct essential variables
x',x/, then {x'} also separates the correspondlng Helmholtz equation. Except for
the coordinates of types E1 and E2 this condition is also necessary for Helmholtz
Separation.
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Since the Ricci tensor vanishes in flat space the following result is an immediate
consequence of Theorem 1 and Lemma 2.

Corollary 1. A coordinate system in four dimensional flat space provides a sepa-
ration of variables for the HJ equation

()

j=1
if and only if it provides separation for the Helmholtz equation
4 (92!//
;2‘1 az')y?

This result is well known for orthogonal separable systems [11], but we have
extended it to nonorthogonal systems.

Defining the Einstein tensor G,;=R,;—3Rg,; it follows immediately from
Theorem 1 that

Corollary 2. Let {x'} be a system, not of type El, which separates variables in
the H) Equation and such that the vacuum Einstein equations G, i = 0 are satisfied.
Then {x'} separates variables in the Helmholtz equation.

3. Equations with Partial Separation

We next enumerate the systems {x'} for the HJ and Helmholtz Equations such
that one or two variables can be separated from the rest but the variables are
not totally separable. We should emphasize that while these systems can be
considered as generalizations of the coordinates of types A — G listed in Section 2,
they are not true generalizations of type H coordinates. Indeed the most interesting
and complicated of the type H coordinates (such as ellipsoidal coordinates) do
not permit the splitting of one or two variables from the remaining variables. For
these coordinates all variables must be separated simultaneously.

The seven types of partially separable systems will now be classified in terms
of essential and ignorable variables.

1. One Essential Variable of Type 2
The HJ equation can be written as

1 4
I w2 A (x2, X3, xYWW, | = E. 31
1] Kl(x1)+K(x2,x3,x4)[ 1 +j’lz=2 x5 x7, X)W, ,] (3.1

The condition for partial Helmholtz separation is that either K, or K is constant,
which is equivalent to R,;=0,j=2,3,4.

J. One Ignorable Variable
The HJ equation has the form

[J] i G'WW,=E (3.2)

iil=1
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where dG*/0x* = 0. The corresponding Helmholtz equation also admits partial
separation in x!.
K. Two Essential Variables of Type 2
The HJ equation has the form
1 4
—Q[G(x3,x‘*)I/Vl2 + H3, xHYWE + ) Aﬂ(x:‘,x“)WjW,:l =E (3.3)

Jil=3

0 =K,(x")G + K,(x)H + K(x*,x*)
and the condition for partial Helmholtz separability is that two of the functions
K,,K,,K are constant, which is equivalent to R,, =0, R;=0,i=1,2,j=3,4.
L. Two Ignorable Variables

The HJ equation is
4

Y, G xWW,=E (34)

il=1

and the corresponding Helmholtz equation is also partially separable.

M. One Essential Variable of Type 2 and One Ignorable V ariable
The HJ equation has the form

1 4
[M] K,(x") + K(x®, x4)[W12 + j’lz=2Aj1(x3, x4)W}W,:| =E (3.5)

and partial Helmholtz separability is achieved if either K, or K is constant,
which is equivalent to R, ;=0,j = 3,4.

N. One Essential Variable of Type 1 and One Ignorable V ariable
The HJ equation has the form

1 4
N ke K(x3,x4)[2WlW2 + jEZAﬂ(xsaX“)VV,-VVz] =E (3.6)

and partial Helmholtz separability is achieved if either K, or K is constant. In
this case Helmholtz separability appears unrelated to any Ricci tensor condition.

0. Variable Splitting

Here the HJ equation becomes

1 2 4
(6] A (xY, XD )WW, + B.(x3,x*
[0] K(xl,x2)+L(x3,x4)[j,Z'1 il W i,hz=3 i )

WM]=E 3.7
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and the corresponding Helmholtz equation partially separates if either K or L
is constant, which is equivalent to R, ;=0,i=1,2,j=34,

4. Equations with No Ignorable Variables

We now present a detailed classification of the Helmholtz separable systems of
type H. These are orthogonal systems {x™} for which the metric can be written

4
ds? =Y, H3dx)? H,;= S/M,,, (4.1)

Jj=1

S is a Stéckel determlnant and M, is the (j, 1) cofactor of S. Furthermore, none
of the variables x' is ignorable and the Robertson condition RJ =0,j#k is
satisfied. As is well-known [11] the Stdckel form condition (4.1) is equivalent
to the system of equations
0, H? —0,In H} +0,In H?0, In H}
+0,InH?0,In H} =0,  (j#k), 4.2

and the Robertson condition reads
—-%6jkln(Hi2H,2)=0, G, ki, 1 ). 4.3)
From (4.2) we have 0, In(H7/H}) = 0. Combining this result with (4.3) we find
H? = @,k, H2=09,0,

j
030,05 = Vi3 i Us ks 1 %) (4.4)
0405 = 0,0 =05 = O =
0= 0, Vi = ‘/’ikj'
Furthermore,
Oy H} =0,,nH} =0,,InH?=—0,,In HJ? =f; “4.5)

ki

where 0,f; = 0. Integrating (4.5) and making use of (4.4) we see that In H? is a sum
of functions, each function depending on at most two of the four variables
x',x7,x*, x'. Substituting this form for In H?2 into (4.4) we obtain

Lemma 3. If the metric ds® is in Stéickel form and satisfies the Robertson condition,

then there exist nonzero functions X, = X (x),&,; = &, (x', X)) = &1, m,; = n, (x', X)) =
such that
H} = X,85,8538uM51 141121
H3 = X,85858 MaoMaoMay (4.6)

Hg = X3§1z§1_41£2_41’731’732’734
Hi = X4é;216;31’741”42’734'
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Here
ajk(éﬁ‘fﬂékiékmjk) =0, (ja ka A l 7[" ) (47)

Property (4.7) follows from substitution of (4.6) into (4.2) for i = j. The nonzero
functions X, are arbitrary and can be modified at will by the trivial change of
variable x™ = x™(x™),m=1,...,4, which does not affect variable separation.

To complete our classification we need only satisfy the Equations (4.2) for
i,j, k distinct. Note that the ¢;; and ,; are not uniquely determined by (4.6). Indeed
these expressions are invariant under the replacements

12 416580, Ny = aybybicyy

13 = bieséy, M3y = a3bsa,cy 'y,

SR AW N4y = a4b4a1_1b1_11141 4.8)
¢y3 ™ ay0385, My, = a3 '¢3¢,b5 M5,

0 byby85, Map = Gz 'Ca5 'y My,

834 = 30,85, Maz = €4 by 'b3 ey ',

where a,,b;,c; are nonzero functions of the single variable x’. In particular, if
;. In £, = 0 for some j, k then without loss of generality we can assume ¢, = 1.
Denote each of the twelve Equations (4.2) for i, j, k distinct by [i;j, k] (= [i;k.j]).
Differentiating each equation [i;j,k] with respect to x' and x' where j, k,i,1 are
distinct, we obtain twelve equations which are equivalent to the eight conditions

A;)(Azy +2B3,) + A;5(A,, +2B,,) =0
A3 (A1, —2B,,) + A,,(A3 = 2B3) =0
Ay3(Ayy —2By,) — A3,(4,, +2B5) =0
Alz(A34 + 2B34) - A14(A23 + 2323) =0
A (Ay; —2B,5)+ A,,(A,; +2B,;)=0 4.9)
Ay(Ayy—2B,) + Ay3(4,4 — 2B,,) =0
A (A3 —2B3,) — Ay(Ay4 +2B1 ) =0
AIZ(A34 - 2334) + A24(A13 + 2B13) =0
A;=0,;In¢,;, B,;=0;lnn,;.

Our analysis of the possible Helmholtz separable systems depends strongly on
which of the various factors vanish in expressions (4.9). We examine all possible
cases.

Case 1. A, + 2Bij =0 for all i,j.

ij —
Then 4;;= 0 and we can assume that ¢;; = 1.

Case 2. A;{(A,, £ 2B,)) # 0 for some choice of i,j, k, L
To be definite we assume (i, j, k, [) = (1, 3, 2,4). Then it follows from (4.9) that
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Ay,,A,5,A45, and A, are nonzero, as well as 4,, +2B,,,A4,, —2B,,, A, +
2B,,,A,; + 2B,;. Furthermore, relations (4.9) imply that d,,In4,,=0,;In
A,y=0,,In4,,=0,,In A, =0. Integrating these equations and substituting

into
612(513614523524’712) =0,

a special case of (4.7), we see that this last condition cannot be satisfied. Thus
Case 2doesn’t occur.

Case 3. Case 2doesn’t hold but for some choice of distinct i, j, k, I, 4, (4,, + 2B, ) #
0,4,,—2B,,=0.

Without loss of generality we can assume (i, ], k, ) = (1, 3, 2, 4). It follows from
(4.9) that 4,,,4,,+2B,,,A,,,A,, + 2B, are nonzero. Since Case 2 doesn’t
hold, we have A;, =2B;, #0,4,, =2B,; #0,4,,= —2B,,and 4,, + 2B, =0.
This last pair of equalities implies 4, = 0, which is impossible.

Case 4. Case 2 doesn’t hold but for some choice of distinct i,j,k, 1, 4, (4, —
2B,)#0,4,,+ 2B, =0.
By a computation analogous to Case 3 we can show that this is impossible.
It follows from the above that

AfAut2B,)=0 (4.10)

for all distinct i,j, k, . The possibility that the second factor is always zero has
been treated in Case 1. We now treat the remaining possibilities.

Case 5. A;;=0 for all distinct i,j.

Here we can assume that {;; = 1.
Case 6. A;;,A,, A4, =+ 0,1,j, k, [ distinct.

Without loss of generality we can assume that (i,j,k, 1) = (1,2,3,4). Then
A,,A4,3,4,,#0 and from (4.10) 4,,=A4,,=A,,=B,,=B,,=B,,=0. We
can use (4.8) and assume without loss of generality that #n,, =n,, =#,, =1,
&a=1¢&,,=¢&,,(x*. Differentiating equation [3;2,1], (4.2), with respect to
x*and [4;2, 1] with respect to x* we obtain

A,,20,In¢,,-0,Iné,; —0,Inn,,)=0
A (—=20,In¢,-30,In¢,;, —0,Inn,,)=0
which implies 4,, = B,, =0, a contradiction.

Case 7. Aij,Ajk,Aki +0.

Without loss of generality we can assume that (i, j, k) = (1,2,4). Then 4,,,4,,,
Ay #0 and Ay, =A,;,=A4,,=B,;=B;,=B,;=0. We can use (4.8) and
assume without loss of generality that n,, =n,, =1,¢,, = &,,(x%),&,, = &,(%),
&, =4 2(xe'), N3, =15,(x?). Writing the simultaneous equations 0,[4;2,3],
0,[2;1,3],0,[4;1,3],0,[1;2,3],0,[1;3,4],0,[2;3,4] we see that these equations
are consistent only if ¢,,,¢;,,¢;, and 7, are constants. Thus, x? is an ignorable
variable, which is impossible.
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Case 8. A;;,A; +# 0, all other 4, =0.

Without loss of generality we can assume (i,j,k) = (1,2,4). Then A4,,,4,,
are the only nonzero A4, and B,, = B,, =0. Employing (4.8) we can require
Ny =MN13=C3,= 614—1 0,815 —62523 =0. Then equations 9,[4;2,3],0,[4;1,
3] 0,[1;2,3] are consistent only if ;¢ =0;£,5=0,1,; =0. It follows that
x> is ignorable and this is a contradlctlon

Case 9. Only one nonzero function 4;;.

Without loss of generality we can assume that A4, is the only -nonzero A.
Thus B, , = 0 and by employing (4.8) we can require ,, = &,, =&,, =1,0,¢,, =0.
From equations 0,[3;2,4] and 0,[3;1,4] we find that 9, In#n,, = —26 In¢,,,
O,Inn,,=—30, In $4>B,=B,,=0 and by (48) we can require 617714
62112 +=0. The add1t10na1 condition 0,,(£,,¢,3¢,,¢,415,) =0 from (4.7) implies
0,8,,=0s0¢,,,n,, and n,, are constants. It follows that x* is ignorable, which
is a contradiction.

We have strengthened Lemma 3 to

Lemma 4. If the metric ds* satisfies the hypotheses of Lemma 3 and admits no
ignorable coordinates, then
H? =Xi(X‘)gnji(xf,x‘),nji=r7,-,-, 1<i<4 4.11)
JFi
OoMu=015k<i<4.

In consequence of the Stéickel conditions (4.2), the components of the Riemann
curvature tensor for i, j, k distinct may be written [11]

=2H%), In H> 4.12)

jllk i~ jk
An immediate consequence of Lemma 4 is

Lemma 5. If ds* satisfies the hypotheses of Lemma 3 and admits no ignorable
coordinates, then R ik =0.

It is remarkable that the strong condition R, =0 is automatically satisfied
by a Helmholtz separable system with no 1gnorab1e variables. In Ref. [18] two
of the authors computed all Helmholtz separable systems in four variables such
that the technical condition R ;;, = 0 was satisfied. The results were also reported
in Refs. [1], [17] and were obtained by substituting expressions (4.11) into the
twelve equations [i;j,k] and solving for the #;;. We now see that the answer to
our present problem can be obtained by eliminating the separable metrics with
ignorable variables from our previous list. Thus we have

4
Theorem 2. The metric ds*> =) HZX(dx)* defines a Helmholtz separable system

1
with no ignorable variables if and only if the metric coefficients take one of the
following forms:
[Ha] HI=X (0, —0,), H;=X,(0, —0))

H} =X (05— 0,), H} =X,(05—0,)
0,=0(x), 0, #0,
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[Hb] Hf =X,(0;, —0)), Hﬁ =X,(0,—0,)
Hi= X,0,0,(0,—0,),H; = X,0,0,(0;—0,)
0,40,

[HC] sz = Xi(ai - O'J.)(O'i - O’k)(O'i - 01)
with i,j, k, l distinct,

[Hd] Hi=XH; =X,0,(0,3 +03,)(0,4+ 74,)
H= X30,(05,+0,,)(0,,+0,3), Hy = X491(0,,+0,,)(0,5+03,),

¢y #0.
Here 0,; is a function of x' alone.
We will now use our results to prove a theorem about Ricci-flat spaces, i.e.
complex Riemannian spaces which satisfy the vacuum Einstein equations. (At
this point it is convenient to write x; in place of x.)

Theorem 3. Ifin a Ricci-flat (R;; = 0) complex Riemannian space the HJ equation
admits a separation of variables with no ignorable coordinates, then the space is

flat.

Before proving this we prove a simple but useful lemma.

Lemma 6. Suppose the metric ds* is in Stickel form, is Ricci flat (i.e. R, ;=0),
and admits no ignorable coordinates. Furthermore, suppose that for a fixed value of i
R;;;;= 0 for two values of j # i. Then the space is flat.

Proof. Since R;; =0 implies the Robertson condition, it follows from Lemma 5
that R, = 0. Now without loss of generality we take as our two vanishing compo-
nents of Rijﬁ,Rmzl_ = R1331 = 0. It . follows immediately from R , =0 that
R, 4, =0. The remaining Ricci equations are
R R
R.. =_—2332 4 2442 _
S
R R
R..——2332  M34a3 _
== H T H
R R

R, = 2442 + 3443 =0.
4 2
* H;  Hj
It is easy to see that the only solution to these equations is R,;5, =R,,,, =

R,,,;=0. QED.
In order to prove Theorem 3 we will need the following expression ([19],

p. 44).

J

H,
+H§<aii1nHj+ 9, ln Hjailnﬁ:>
H?H?
+ Y SptomHi InH, (4.13)
h#j,i k
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Proof of Theorem 3. Since R;;=0 HJ separation implies Helmholtz separation
and by Theorem 2 we need only prove the result for the four types of metrics
[Ha-d]. We proceed by cases:

(Ha) It is easy to see from (4.13) that R, 3, =R, ,,, =0 and by Lemma 6 R,,, = 0.
(Hb) If either o, or g, is constant, we can redefine variables to obtain an ignorable
coordinate. Thus, ¢,, 0, are not constant and we redefine x, , x, such that H? =
X (x, —x,), H}=X,(x; —x,), H=X,x,x,(6, —0,), Hi=X,x,x,(0,—0,).
From (4.13) we find

Ry, 1 e (1Y (1Y
- - Sip) (=) (=
H 2x,-x)| x-xn\x, ) T\\x ) T\x; )

and

Ri331 R1441__;[1 1 iX_; 1 X1:|
1 .

3 —+— — " <,
H} H} X7 xy(x; —x,) X Xy X, —x,) X,

Forming the Ricci component

R R R
R, =—1221  T1331 | Riaas (4.14)
u="gz T2 gz

we find

2R, = 1 1 s X 11X

X, 1Y (1Y),
T - \X,) T Xi)]" '

Consider the operator (x;, — x,)’d, = A. Computing A3R,, =0 we obtain an
expression independent of X,. Equating, then, coefficients of powers of x, to

@3)
zero, we find (—) = 0. By symmetry of the coordinates x, and x, , we conclude
2

1 \®
(X—> = 0. Plugging this information back into R,, =0, we find
1

1 1
X" ex? +dx,, X,
from which R,;,, =R, ,,, =0. Thus the desired result follows by Lemma 6.
(Hc) This is the most difficult case. We can assume that no o, is constant; for if a
o, were constant, we could find an ignorable coordinate. Thus we can take o, = x
and from (4.13) we find
2R, 1 -1 1

HZH? (3, — %)) (x5, — x,) 0, — x,)((xi - x;)? * 20x; — x)(x; — %)

w)(x) e (1)
20— )05 - )\ X, ) T2 i =) —x) \X, )t

= —(cxZ +dx,)

i’

+
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1 1Y
+ 20, — x,7(x; — x,)(x; — x,)(?}.)

1 1 1
+(xj—xi)(xj—xk)(xj—x,)<—(xi—xj)z+2(xi—xj)(xj—xk)
w5 (X,) S ¢

206, = x)(x; — x, J\ X +2(xk—xi)2(xk—xj)2(xk—xl) (Y,;)

1 1
+ P
20x, — x)*(x, — xj)z(xl - xk)<Xl )
for i,j, k, I different. Computing the Ricci component R, from (4.14) we find

TS S
H?  (x; — x,)(x; — x3)(x; — X,) X, Gep =2 (g —x))(x; — %)

B

X, (e — x)(x; — %) (x; — X)) -

Multiplying this expression by (x, — x,)*(x, — x;)(x, — x,) and differentiating
)
five times with respect to x,, we obtain <X—— = 0. By symmetry we conclude

2
1 (5)
(&7) =0

Plugging this information back into R,,, we see by equating powers that the

17 %;

. . 1 . .
coefficients in 7) of the powers of x; are independent of i, i.e.
1

1
<Y>= ax? + bx? + cx? +dx, + e;.

A straightforward but tedious computation then shows that R,;, =0, and our
result follows from Lemma 6.
(Hd) Notice that if ¢, is constant we can make x, an ignorable coordinate.
Assuming ¢, # constant we redefine x, so that ¢, = x,. An easy computation
using (4.13) shows that
H?(1 11X,
R = 4 <X%+x1 X1>'

It follows from (4.14) that

R,.=-23 i_*_iX_,l
SRR EAEN Y,
Thus R,, =0 implies R,;;, =0 and invoking Lemma 6 once again we obtain

the theorem.
We have the following simple result:
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Corollary 3. If in a Ricci-flat complex Riemannian space the Hamilton-Jacobi
equation admits a separation of variables, then the space admits a Killing vector
(i.e. an infinitesimal isometry).
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