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Abstract. We present a complete list of all separable coordinate systems for
4 4

the equations £ g'^d^g^dp) = EΦand £ g%WdjW = E withspe-

cial emphasis on nonorthogonal coordinates. Applications to general
relativity theory are indicated.

1. Introduction

We study the problem of separation of variables for the equations

a) Δ4Φ = Σ ~ dμjgVdjΦ) = EΦ

(i.i)

b) Σ gij8iWdjW = E.

Here, ds2 = YJgijdxidxj is a complex Riemannian metric, g = det(gf0), X^% fe = δι

k,

g.. = gn, and £ is a nonzero complex constant. (Furthermore, we have adopted
dW \

the notation dJV = P^ = -τ-τ. I Thus (1.1a) is the Helmholtz equation on a four

dimensional complex Riemannian space and (1.1b) is the associated Hamilton-
Jacobi (HJ) equation.

In this paper we classify all metrics and coordinate systems for which Equations
(1.1) admit solutions via separation of variables. For (1.1a) the separation is in
terms of a product whereas for (1.1b) it is in terms of a sum

Φ(x) = Π Φ ( 0(Λ W(x) = Σ ^ ( V ) (1.2)
i=ί
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By applying appropriate reality conditions on the metric tensor we can use our
results to obtain the separable and partially separable systems for corresponding
real equations such as the Euclidean space Helmholtz equation, the Minkowski
space Klein-Gordon equation [1] and various equations of general relativity
theory. Indeed the interest in solving relativistic equations via separation of
variables methods, see e.g. [2-5], is motivation for our work. In a forthcoming
paper we shall make these applications explicit by classifying all separable systems
for (1.1a) and (1.1b) in Ricci-flat spaces.

There is a deep relationship between the symmetry groups of Equations (1.1),
the coordinate systems in which these equations admit solutions via separation
of variables and the properties of the separated (special function) solutions so
obtained. See [6] for an examination of this correspondence in the case of some
of the most common partial differential equations of mathematical physics. We
mention in particular that the myriad addition theorems, generating functions
and expansion formulas for the special functions of mathematical physics can be
derived systematically in terms of this relationship. Thus the method of separation
of variables assumes an importance far beyond the fact that it permits the cons-
truction of explicit solutions for partial differential equations.

The classical Stackel method for separating variables in Equations (1.1) is
well known, [7], [8]. We briefly review the main ideas for the HJ equation (1.1b).
Let {V} be a prospective separable system for the HJ equation with separated
ordinary differential equations

Here c1= — E and c2,c3,c^ are the separation constants. It is assumed that the
Stackel determinant S = det(50 ) is nonzero. Furthermore, iift φ 0 we can require
that/. = 1. To relate (1.3) with (1.1b) one looks for functions Θ Cx1,... ,x4) such
that

Σ Θiφi = Σ 0%WdjW - E (1.4)
i = l i,j=ί

identically in the separation constants E,c 2,c 3,c 4. Stackel [8] showed that the
only solution is /. = ί9g. = ht = 0, Θ. = Mn/S where MJ± is the (/I) cofactor of
S. In particular the metric must be orthogonal.

The classification procedure utilized here is more general than that of Stackel
and is based on a method introduced in [9] for three-dimensional Riemannian
manifolds. Here the separable systems are classified in terms of the number of
ignorable coordinates they contain. (A variable xι in a separable system is termed
ignorable if dtgjk = 0 for 1 ̂ j,k ^ 4, i.e., the metric tensor is independent of x\
Otherwise the variable xι is essential. If the separated ordinary differential equation
in the essential variable xι is first order in W(i) then xι is of type 1, if second order
then xι is of type 2.

If x4 is ignorable then the HJ equation admits solutions of the form W =
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Wix1, x2, x3) + c4x
4 where c4 is a constant, and (1.1b) reduces to

Σ gijd.Wd.W + 2c4 Σ ffJdjW + c ^ 4 4 = £, (1.5)
Ui ji

an equation in three variables. If all remaining variables are required to be essential,
we can then apply the Stackel method to (1.5) and find an equivalent system of
three ordinary differential Equations (1.3) where now i = 1,2,3, j is summed from
1 to 3 and /. need not be nonzero. If, however, two, three or four variables are
ignorable we can first split off these variables, introducing a separation constant
ck for each ignorable variable, and apply the Stackel method to the reduced
equation in the remaining essential variables.

The orthogonal separable systems we obtain are exactly those which one
would find by employing the classical Stackel method. However, for systems
with at least one ignorable variable we find truly nonorthogonal coordinates
which do not seem to appear in the literature. Our lists are also simpler and
more explicit than those given heretofore. This is primarily because, as pointed
out in [9], one can identify all coordinate systems which lead to the same families
of separable solutions for Equations (1.1). (For example, if {x1} is a separable
system with x4 ignorable and xγ,x2,x3 essential then it is easy to see that {X1}
with Xj = xjJ=l,2,3,X4r = x4r + a1(x1) + a2(x2) + a3(x3),aι arbitrary, is also
a separable system with X4 ignorable and X1 ,X2,X3 essential. Furthermore,
the two systems have the same separable solutions. We regard all such systems as
equivalent and merely give one representative from each equivalence class in
our lists. The functions at are chosen such that this representative is as simple
as possible. In particular, if possible we choose the at such that the resulting
metric is orthogonal. If this cannot be done we say that the separable system is
truly nonorthogonal All other separable systems are equivalent to orthogonal
separable systems. Similar remarks hold for two, three and four ignorable co-
ordinates.)

In this paper we list all possible ways variables can locally separate on a
four-dimensional Riemannian manifold. A related problem not solved here is:
Given a particular manifold M list all separable systems for M. To solve this
problem we must determine which of the metrics listed here can be interpreted
as a metric for M. In particular, for flat space we must require that the curvature
tensor corresponding to each separable metric vanish identically. For orthogonal
separable systems we have solved this problem in flat spaces £ 4 , [1] and in the
space of constant curvature S4, [10]. For nonorthogonal separable systems in
E4 and S4 the solutions will be given in forthcoming articles.

The most notable paper concerning separation of variables for Equations (1.1)
is undoubtedly that by Eisenhart [11]. It follows easily from StackeΓs original
paper [8] that any orthogonal separable system for (1.1a) also separates (1.1b).
Robertson [12] found a necessary and sufficient condition that a separable system
for (1.1b) also separate (1.1a). Eisenhart's great contribution was to show that
the Robertson condition amounted to the requirement ^ = 0 for iφj where
Rkl is the Ricci tensor of the Riemann manifold. It follows immediately from
this result that for all Einstein spaces (in particular for flat space and spaces of
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constant curvature) the Helmholtz and HJ equations separate in exactly the
same orthogonal coordinate systems. Furthermore, this result makes feasible
the computation of all separable orthogonal systems for a given Riemann manifold
provided the curvature tensor of the manifold can be characterized in a reasonably
simple manner.

Among recent contributors, Havas has influenced us the most. In his papers
[13] and [14] he gave a useful summary of the classical work relating Equations
(1.1), listed both orthogonal and nonorthogonal separable (and partially separable)
systems for these equations in n variables and emphasized the relevance of the
condition Rtj = 0,i^j, even for the Helmholtz separability of nonorthogonal
systems. Our work differs from his primarily in the explicit nature of our results
and in the new nonorthogonal systems we find. Most of the nonorthogonal systems
obtained by Havas and earlier workers appear to be equivalent to orthogonal
separable systems in the sense discussed in [9]. In this paper we show that the
condition Rtj = O,iφj, for all non-ignorable variables x\xj is necessary and
sufficient for Helmholtz separability of even nonorthogonal HJ separable systems
with two exceptions, the nonorthogonal El and E2 systems. These special systems,
particularly El, are important counterexamples for several conjectures concerning
separable coordinates.

There is another series of papers [3-5], based on some results of Woodhouse,
concerning separability of Equations (1.1) and explicitly pointing out the relevance
of variable separation to the symmetry properties of (1.1) and to modern relativity
theory. However, the authors of these papers adopt a very special definition of
separation and partial separation of variables which rules out many of the classical
separable systems. They consider only the type of variable separation in which
one variable can be explicitly separated from the remaining variables in (1.1).
This definition omits such well known separable systems as the Lamέ ellipsoidal
coordinates and paraboloidal coordinates in flat space for which all variables
must be separated simultaneously (i.e., the full Stackel matrix machinery must be
used [11]). The variable separation treated in these papers corresponds to our
types I and J.

As a first step in the application of our results to relativity theory we establish
in this paper that a Ricci-flat space admitting a separable coordinate system must
also admit a Killing vector. Furthermore a separable system for a non-flat Ricci-
flat space must contain an ignorable coordinate.

For corresponding treatments of Equations (1.1) in three and four variables
with £ = 0 see [15-17].

2. Equations with Ignorable Coordinates

We now enumerate the possible separable coordinate systems for the HJ and
Helmholtz equations which contain at least one ignorable variable.

A. All Variables Ignorable

By applying a linear transformation xι = a\χj to the ignorable coordinates {xj}
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we can obtain an equivalent set of ignorable coordinates {x1} for which gtj = δiy

The HJ equation becomes

[A] Wf + Wf + Wf + W^E, (2.1)

and the corresponding Helmholtz equation is also separable in these flat space
variables.

B. Three Ignorable Variables

If x1 is the essential variable then gtj = G.^x1). By re-defining the ignorable

variables {xj} according to dx1 = dx1 + h^x^dx1 where g^^ ~ Σ gjkhk,j =
k = 2

2,3,4 we can obtain the HJ equation

[B] W?+ Σ gίj(x1)WiWj = E. (2.2)
ij=2

The corresponding Helmholtz equation also separates in these coordinates.

C. Two Ignorable Variables with Two Essential Variables of Type 2

We will treat this case in some detail to indicate our methods of derivation. If
the essential variables are x1, x2 then for separation of the HJ equation the contra-
variant metric must have the form

g11 = g22 = Q,g13 = Qaix'U23 = Qb(χ2) (2.3)

g14 = QcixW = Qd(x2),g33 = Qle^x1) + e2(x2)}

g4* = QίMx1) +f2(*2)lg34 = SCM*1) + M*2)].01 2 = °

where Q = \/\K1{x1) —K2{x2)^\. By defining equivalent ignorable coordinates
x3, x4 to the original coordinates x3, x4 by

dx3 = die3 - adx1 -bdx\dx4 = dx4 - cdx1 - ddx2 (2.4)

we can assume a = b = c = d — 0 in (2.3). Thus the HJ equation becomes

[C] — i — \Wl + W2

2 + (et + e2)Wf + 2(hx + h2)W3W4

κι-κ2
12H=E. (2.5)

The corresponding Helmholtz equation separates if and only if

and this condition is equivalent to Rί2 = 0 where R.j is the Ricci tensor.
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D. Two Ignorable Variables with One Essential Variable of Each Type

There are two cases to distinguish, the first being

^ + 2a2W2^ + 2b2W2W4 + d,W3

2 (2.7)

where the subscript i on α,b5d,e,/,K denotes the essential variable xι on which
the function depends. Here a2b2 φ 0. The necessary and sufficient condition for
separation of the corresponding Helmholtz equation is

which is equivalent to Rί2 = 0.
The second case corresponds to

κ1-κ2

+ 2/i W3 W4 + e, Wf] = E. (2.9)

The necessary and sufficient condition for separation of the Helmholtz equation is

and this is equivalent to R12 = 0.

E. Two Ignorable Variables with Two Essential Variables of Type 1

Here there are three cases to distinguish. The first possibility is

[El] 1 [2aιWίW3 + 2W,W4 + 2a2W2W3 + 2W2W4

K1-K2

1 2 3 ί 2 (2.11)

Necessary and sufficient conditions for separation of the Helmholtz equation are

e^ia^φ + a2e2φ) = d12(d±φ + e2ψ) = o, (2.12)

In this case the condition Rί2 = 0 where

R12 = d^-tdJdJ-iQ^idJ + d2ψ)-i(4^ (2.13)
ax a2 aγ a2

neither implies nor is a consequence of (2.12). To show this we first find all solutions
of Equations (2.12). The general solution of the second equation is
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and substituting this result into the first equation we obtain

Lemma 1. A coordinate system of type El permits separation of the Helmholtz
equation if and only if it corresponds to one of the following three types:

i) α1 = cosh x 1, α2 = cosh x2, φ = — ln(eχ2~χί — 1)
ii) aί = ex\ a2 = eχ2, K2 = 0

in) dί2φ = 0.
It is easy to check that Rί2 φ 0 for the systems of types i) and ii). Furthermore

the system

at = (3 + <fi)x\ a2 = 2x2, Kί = ί,K2 = 0

satisfies Rί2 = 0 but not Equations (2.12).
We briefly investigate the possible El systems which can occur in flat space.

The only nonvanishing elements of the curvature tensor for an El system are
^2ii4>^i223>^2ii3 a n c * ^i2i2* A direct computation shows that if the first three
of these elements are required to be zero then the system satisfies d12ψ = 0, hence
permits separation of the Helmholtz equation.

Lemma 2. A type El system in flat space permits separation of the flat space
Helmholtz equation.

The second possibility for type E systems is

[E2] * l2WίW4 + 2W2W3 + 2b2W2W4 + (cί+c2)W4

2-] = E (2.14)

κί-κ2

with the condition for Helmholtz separability,

dί2ln(Kί-K2) = 0. (2.15)

Here

_ 3 &Ί&2 i,,, b'2K'2
Kί2 '(K.-K,)2 +2*2 2(Kχ-K2)

so the condition R12 = 0 implies (2.15) although (2.15) doesn't imply R12 = 0.
The third possibility is

[E3] —1— [2W±Wt + W2W3 + ClW
2 + d2W

2] = E (2.16)
Kl ~K2

with the condition for Helmholtz separability

1 2 1 - K 2 ) = 0 (2.17)

which is equivalent to Rί2 = 0.

F. One Ignorable Variable with Three Essential Variables of Type 2

The HJ equation is

[F] 4[(« 2 - q3)W? + {q3 - qι)W2

2 + (q, - q2)W3

2

+ [rMz ~ Is) + r2(q3 ~ id + r3{q, - q2)]Wfi = E, (2.18)
S = sfa - q3) + S2(q3 - β l ) + S3(qt - q2).



292 C. P. Boyer et al.

Since these coordinates are orthogonal the conditions for Helmholtz separability
are #^ = 0 for all i^}. However, the condition Λ/4 = 0, Z = 1,2,3, is satisfied
automatically.

G. One Ignorable Variable with One Essential Coordinate of Type 1
and Two Coordinates of Type 2

There are two cases to consider, the first being

[Gl] -^[W? + W2

2 + 2(1, - 12)W3W4 + K - m2)^4

2] = £, (2.19)

The conditions for Helmholtz separability are equivalent to

0> l ^ i < ^ 3 , (2.20)

which are precisely Rtj = 0.
The second case is

[G2] 1 0 3 W? + l3 W2

2 + 2W3 w\ + (u2l3 + Q3U)WΪ\ = E9 (2.21)

Q = k3 + v2l3+g3rί.

The conditions for Helmholtz separability are

d y l n β = 0, l ^ i < j ^ 3 (2.22)

which are precisely Rtj = 0.

H. No Ignorable Variables

This is the most complicated case and the metric is necessarily orthogonal. The
HJ Equation reads

4 M

[H] Σ~^Wf = E (2.23)

where S is a Stackel determinant and Mjt is the (/I) cofactor of S. Eisenhart [11]
has shown quite generally that the corresponding Helmholtz equation separates
if and only if Rtj = 0 for all i φj. A detailed classification of these coordinates
will be given in Section 4.

Theorem 1. A separable coordinate system for the HJ equation in a four dimen-
sional Riemannian space is equivalent to exactly one of the systems {x1} of types
A - H. If{x1} is not of type El and Rtj = Ofor all pairs of distinct essential variables
x\ x\ then {x1} also separates the corresponding Helmholtz equation. Except for
the coordinates of types El and E2 this condition is also necessary for Helmholtz
separation.
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Since the Ricci tensor vanishes in flat space the following result is an immediate
consequence of Theorem 1 and Lemma 2.

CoroDary 1. A coordinate system in four dimensional flat space provides a sepa-
ration of variables for the HJ equation

if and only if it provides separation for the Helmholtz equation

This result is well known for orthogonal separable systems [11], but we have
extended it to nonorthogonal systems.

Defining the Einstein tensor Gu = Rtj - ^Rgtj it follows immediately from
Theorem 1 that

Corollary 2. Let {x1} be a system, not of type El, which separates variables in
the HJ Equation and such that the vacuum Einstein equations Gtj = 0 are satisfied.
Then {x1} separates variables in the Helmholtz equation.

3. Equations with Partial Separation

We next enumerate the systems {x1} for the HJ and Helmholtz Equations such
that one or two variables can be separated from the rest but the variables are
not totally separable. We should emphasize that while these systems can be
considered as generalizations of the coordinates of types A — G listed in Section 2,
they are not true generalizations of type H coordinates. Indeed the most interesting
and complicated of the type H coordinates (such as ellipsoidal coordinates) do
not permit the splitting of one or two variables from the remaining variables. For
these coordinates all variables must be separated simultaneously.

The seven types of partially separable systems will now be classified in terms
of essential and ignorable variables.

/. One Essential Variable of Type 2

The HJ equation can be written as

The condition for partial Helmholtz separation is that either Kί or K is constant,
which is equivalent to Rίj = 0, j = 2,3,4.

J. One Ignorable Variable

The HJ equation has the form

[J] £ GjlWjWt = E (3.2)
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where δGjl/dx1 = 0. The corresponding Helmholtz equation also admits partial
separation in x1.

K. Two Essential Variables of Type 2

The HJ equation has the form

-^\G(X\X4)WX

2 + H{x\x*)W2

2 + Σ Ajjpf^Wjwi] = E (3.3)

Q = K^G + K2(x2)H + K(x\x4)

and the condition for partial Helmholtz separability is that two of the functions
Kί,K2,K are constant, which is equivalent to Rί2 = 0, Rtj = 0, i = 1,2, j = 3,4.

L. Two Ignorable Variables

The HJ equation is

= £ (3.4)

and the corresponding Helmholtz equation is also partially separable.

M. One Essential Variable of Type 2 and One Ignorable Variable

The HJ equation has the form

and partial Helmholtz separability is achieved if either Kt or K is constant,
which is equivalent to Rlj = 0, j = 3,4.

iV. One Essential Variable of Type 1 and One Ignorable Variable

The HJ equation has the form

and partial Helmholtz separability is achieved if either K1 or K is constant. In
this case Helmholtz separability appears unrelated to any Ricci tensor condition.

O. Variable Splitting

Here the HJ equation becomes

(">
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and the corresponding Helmholtz equation partially separates if either K or L
is constant, which is equivalent to Rr = 0, i = 1,2, j = 3,4.

4. Equations with No Ignorable Variables

We now present a detailed classification of the Helmholtz separable systems of
type H. These are orthogonal systems {xm} for which the metric can be written

ds2 = £ H2(dxψ, Hj = S/Mn, (4.1)

S is a Stackel determinant and Mjί is the (J, 1) cofactor of S. Furthermore, none
of the variables xι is ignorable and the Robertson condition Rjk = 0 J φ k is
satisfied. As is well-known [11] the Stackel form condition (4.1) is equivalent
to the system of equations

djkInHf - e.InH2 + djInH2dkInE)

+ 3fe In Hfδ. In tffc

2 = 0, (/ ^ fc)> (4.2)

and the Robertson condition reads

Rjk = ίdjkln(HfHf) = 0, {jXUlφ). (4.3)

From (4.2) we have δ^ l n ^ / H ^ ) = 0. Combining this result with (4.3) we find

ijk' <J>k>l'l + ) ( 4 4 )

Furthermore,

3 « In H? = 3 t t ( In H,2 = dm In Hf = - <3ifci In H 2 = / , (4.5)

where djfj = 0. Integrating (4.5) and making use of (4.4) we see that In H2 is a sum
of functions, each function depending on at most two of the four variables
x\x\xk,xι. Substituting this form for In E2

m into (4.4) we obtain

Lemma 3. If the metric ds2 is in Stackel form and satisfies the Robertson condition,
then there exist nonzero functions Xt = Xt(xι\ ξu = ξipc^x1) = ξμ.Vij = nij(χi>χj) =
ηjt such that

H3 -

\ ~^2 (=34 (=13 v=14 //42 /ί32 fί21 M g)
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Here

^jk^ji^jl^ki^kfljk)= 0 > (jΛJJΦ) (4.7)

Property (4.7) follows from substitution of (4.6) into (4.2) for i =j. The nonzero
functions X. are arbitrary and can be modified at will by the trivial change of
variable xm> = xm\xm\ m = 1,..., 4, which does not affect variable separation.

To complete our classification we need only satisfy the Equations (4.2) for
ίJ,k distinct. Note that the ξ{. and η.j are not uniquely determined by (4.6). Indeed
these expressions are invariant under the replacements

ξ12 -> axc2ξ12 η2ί -> a2b2blClη21

^23 "> ^ 2 3 n*2 ~> a3 ^3C2 b2" %2

^24 °2 4'24 ^42 4 4̂̂ *2 2 ^42

where aυbi9c. are nonzero functions of the single variable xι. In particular, if
djk In ξ .fc = 0 for some j , k then without loss of generality we can assume ξjk = 1.

Denote each of the twelve Equations (4.2) for ij9 k distinct by [ί j , fe] ( = [ί kj~]).
Differentiating each equation [z;j,fc] with respect to xι and xι where 7, fc, i, Z are
distinct, we obtain twelve equations which are equivalent to the eight conditions

Aί2(A34 + 2B34) + Aί3(A24 + 2B24) = 0

A34(Aί2-2B12) + A24(A13-2Bί3) = 0

A23(Aί4 - 2Bί4) - A34(Aί2 + 2B12) = 0

^ 1 4 μ 2 3 - 2B23) + ^ 2 4 μ i 3 + 2B13) = 0 (4.9)

^23(^14 ~ 2Bu) + ^13(^24 ~ 2 524) = °

Aί2(A34 - 2B34) - A23(A14 + 2B14) = 0

Aί2(A34 - 2B34) + A24(Aί3 + 251 3) = 0

Our analysis of the possible Helmholtz separable systems depends strongly on
which of the various factors vanish in expressions (4.9). We examine all possible
cases.

Case 1. Au ± 2Btj = 0 for all ίj.
Then A(j = 0 and we can assume that ξ.. = 1.

Case 2. Atj(Akl ± 2Bkl) =/= 0 for some choice of iJ, fe, /.
To be definite we assume (ij,kj) = (1,3,2,4). Then it follows from (4.9) that
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A12,A23,A34 and Aί4 are nonzero, as well as A34 + 2B34,Aί4 — 2B14,A12 +
2B12,A23 + 2B23. Furthermore, relations (4.9) imply that d12\nAί2 —d23ln
A23 — d34\nA34 = d14\nAί4 = 0. Integrating these equations and substituting
into

a special case of (4.7), we see that this last condition cannot be satisfied. Thus
Case 2 doesn't occur.

Case 3. Case 2 doesn't hold but for some choice of distinct ij> fc, l,A.(Akl + 2Bkl) φ

< U u - 2 B H = 0.
Without loss of generality we can assume (z J , fc, /) = (1,3,2,4). It follows from

(4.9) that A12,A34 + 2B34,Aί4,A23 + 2B23 are nonzero. Since Case 2 doesn't
hold, we have A34 = 2B34 φ 0, A23 = 2B23 φ 0, A14 = - 2B}4 and A13 ± 2B13 = 0.
This last pair of equalities implies A13 = 0, which is impossible.

Case 4. Case 2 doesn't hold but for some choice of distinct iJ,kJ,A.(Akl —
2B)±0A 2B 0

By a computation analogous to Case 3 we can show that this is impossible.
It follows from the above that

Aij(Akl±2Bkl) = 0 (4.10)

for all distinct ij, fc, /. The possibility that the second factor is always zero has
been treated in Case 1. We now treat the remaining possibilities.

Case 5. A{. = 0 for all distinct ij.
Here we can assume that ξtj = 1.

Case 6. Atj, Aik, Au φ 0, ij9 fe, / distinct.
Without loss of generality we can assume that (ίj,kj) = (1,2,3,4). Then

A12,A13,A14φ0 and from (4.10) A34 = A24 = A231= B34 = B24 = B23 = 0. We
can use (4.8) and assume without loss of generality that η34 = η24 = η23 = 1,
ξ34 = 1, ξ24 = ξ24{x4). Differentiating equation [3; 2,1], (4.2), with respect to
x 4 and [4; 2,1] with respect to x3 we obtain

A14(2d2 In ξί2 - d2 In ξ23 - d2 In η12) = 0

Aί3( - 2d2 In ξί2 - 3d2 In ξ23 - d2 In η12) = 0

which implies A12 = 5 1 2 = 0, a contradiction.

7. AipAjk,AkiφQ.
Without loss of generality we can assume that (ΐj,/c) = (1,2,4). Then A12,A24,

A4ίφ0 and A34 = A13= A23 = Bί3 = B34 = B23=0. We can use (4.8) and
assume without loss of generality that η34 = η3ί = l, ξ34 = ξ34(x% ξ3ί = ξ3ί(x3\
ζ32 = ξ32(x3\ η32

== ^3 2(χ 3) Writing the simultaneous equations 5X[4;2,3],
34[2;1,3],32[4;1,3],<94[1;2,3],32[1;3,4],31[2;3,4] we see that these equations
are consistent only if ξ34, ξ3ί, ξ32 and η32 are constants. Thus, x3 is an ignorable
variable, which is impossible.
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Case 8. Aip Ajk =/= 0, all other Ast = 0.
Without loss of generality we can assume (zj,fc) = (1,2,4). Then A12,A24

are the only nonzero Ast and B34 = B13 = 0. Employing (4.8) we can require

3̂4 = ̂ i3 = ̂ 34= =^i4= 1^i^i3 = 5 2 ^ 2 3 = 0 τ h e n equations δ1[4;2J3],δ2[4;l5

3],d4[l;2,3] are consistent only if δ 3 £ 1 3 = δ 3 £ 2 3 == δ3;723 =0. It follows that
x3 is ignorable and this is a contradiction.

Case 9. Only one nonzero function Ar.
Without loss of generality we can assume that A12 is the only nonzero A.

Thus £ 3 4 = 0 and by employing (4.8) we can require *?34 = £ 3 4 = £ 1 4 = 1, d2ξ24 = 0.
From equations ^ [ 3 ; 2,4] and 52[3;1,4] we find that <34ln*724= - 2 δ 4 l n £ 2 4 ,
d 4In*7 1 4= - 3 δ 4 t a £ 2 4 , β 1 4 = £ 2 4 = 0 and by (4.8) we can require d±η14 =
52^24 = 0 τ h e additional condition S34(ξ13ξ23ξ14ξ24η34)=:O from (4.7) implies
4̂̂ 24 = 0 so ξ 2 4, ηί4 and ̂ 2 4 are constants. It follows that x4 is ignorable, which

is a contradiction.
We have strengthened Lemma 3 to

Lemma 4. // the metric ds2 satisfies the hypotheses of Lemma 3 and admits no
ignorable coordinates, then

H2 = Xfή Π f M A ηβ = ηtJ, 1 ύ iύ 4 (4.11)

In consequence of the Stackel conditions (4.2), the components of the Riemann
curvature tensor for ί J, k distinct may be written [11]

Rm = lHfdjk\nHf. (4.12)

An immediate consequence of Lemma 4 is

Lemma 5. If ds2 satisfies the hypotheses of Lemma 3 and admits no ignorable
coordinates, then Rjiik = 0.

It is remarkable that the strong condition Rjίik = 0 is automatically satisfied
by a Helmholtz separable system with no ignorable variables. In Ref. [18] two
of the authors computed all Helmholtz separable systems in four variables such
that the technical condition Rjiik = 0 was satisfied. The results were also reported
in Refs. [1], [17] and were obtained by substituting expressions (4.11) into the
twelve equations [i'J,k~\ and solving for the ηiy We now see that the answer to
our present problem can be obtained by eliminating the separable metrics with
ignorable variables from our previous list. Thus we have

4

Theorem 2. The metric ds2 = Σ,H2(dx1)2 defines a Helmholtz separable system
1

with no ignorable variables if and only if the metric coefficients take one of the
following forms:

[Ha] Hi = Xfa - σ2), E\ = X2(σt - σ2)

Hi = X3(σ3 - <r4), Hi = Z > 3 - σ4)
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[Hb] Hl^Xfa-σάHl-Xfa-σJ

[He] flf = Xfa - σ)(σt - σk)(σ. - σ()
with i,j, k, I distinct,

[Hd] Hl = X19H
2

2 = X2φ,{σ2, + σ3 2)(σ
3 2 ) ( σ 2 4 + σ4 2)

= XΆ$\(°42^ H l = XΆ

Here σi} is a function of xι alone.
We will now use our results to prove a theorem about Ricci-fΊat spaces, i.e.

complex Riemannian spaces which satisfy the vacuum Einstein equations. (At
this point it is convenient to write xt in place of xι.)

Theorem 3. If in a Ricci-flat (R{j = 0) complex Riemannian space the HJ equation
admits a separation of variables with no ignorable coordinates, then the space is
flat.

Before proving this we prove a simple but useful lemma.

Lemma 6. Suppose the metric ds2 is in Stάckel form, is Ricci flat (i.e. Rtj = 0),
and admits no ignorable coordinates. Furthermore, suppose that for a fixed value ofi
R = Ofar two values ofj φ i. Then the space is flat.

Proof. Since R{. = 0 implies the Robertson condition, it follows from Lemma 5
that Rjiίk = 0. Now without loss of generality we take as our two vanishing compo-
nents of RWi,Rί22ί = ̂ i33i = 0. ^ follows immediately from Rίί=0 that
# 1 4 4 1 = 0. The remaining Ricci equations are

p _ ^ 2 3 3 2 i ^2442 _ Π
K 2 2 - rr2 "•" τj2 " U

Ώ = 2332 i ^ 3 4 4 3 _ Q
3 3 rτ2 """ rτ2

tt2 H4

n _ ^2442 i ^ 3 4 4 3 _ r\
^ 4 4 " " rτ2 "• rτ2 ~~ ̂ '

H2 H3

It is easy to see that the only solution to these equations is #2332 = ^2442 =

i ? 3 4 4 3 = 0 . Q.E.D.
In order to prove Theorem 3 we will need the following expression ([19],

p. 44).

(4.13)
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Proof of Theorem 3. Since # 0 = 0 HJ separation implies Helmholtz separation
and by Theorem 2 we need only prove the result for the four types of metrics
[Ha-d]. We proceed by cases:
(Ha) It is easy to see from (4.13) that Rί33ί = Rί4.4ί=0 and by Lemma 6 Rijkl = 0.
(Hb) If either σt or σ2 is constant, we can redefine variables to obtain an ignorable
coordinate. Thus, σ19σ2 are not constant and we redefine x19x2 such that H\ =
Xί(x1-x2\ Hl=X2(xί-x2\ Hl = X3xίx2(σ3-σ4\ Hi = X4x1x2(σ3 - σ4).
From (4.13) we find

and

^1331 = ^1441 = i f 1 I- 1 I 1 X Ί I 1 ^ 1 Ί

H\ Hi \x\ x1{x1-x2) XlXx x2(xί-x2)X2J
Forming the Ricci component

we find

\Xί ~ X2'

Consider the operator (xx - x2)
2d2 = A. Computing A3Rlί = 0 we obtain an

expression independent of X<. Equating, then, coefficients of powers of xΛ to
' • \(3) *

zero, we find I — I = 0. By symmetry of the coordinates xt and x2, we conclude
\X2/

= 0. Plugging this information back into RίX = 0, we find

—- = cx2

1+dxί, — = - (cx2

2 + dx2)
A l A 2

from which ^ 1 3 3 i = ^ i 4 4 1 = 0 . Thus the desired result follows by Lemma 6.
(He) This is the most difficult case. We can assume that no σ. is constant; for if a
σt were constant, we could find an ignorable coordinate. Thus we can take o^x^
and from (4.13) we find

HfH] (x, - x ίx, - x^ίx, - x() ̂ (x, - x / 2(x, - x^x, - xk)

) +

,

2(Xi - x)(Xi - xjjyx;) + 2(χ. - x/(x£ - xk)(x. - x;) \X.
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1 / 1 1
[Xj - Xt) (Xj - Xk) (Xj - X,) \ (X. - Xj)2 2(X. - Xj) (X. - Xk)

l V l \ l V l
Δ\Xi Xj) \XJ Xt J \ Λ j J zVXfe X^

1 / 1

"2(x z -x ί )
2 (x / -x/(x / -x f e )VX / <

for ij9k, I different. Computing the Ricci component R1X from (4.14) we find

1 - x4) [ \Xχ JZ"\{x1 - x)2 ' {x1 ~ x)(x1 -

+i V Q

(Xi - x/(x7. - x^ίXy - Xz)

Multiplying this expression by (xx — x 2) 3(x 2 ~ x 3)(x 2 — ^ 4 ) and differentiating
/ ! \(5)

five times with respect to x2, we obtain I — J = 0. By symmetry we conclude

Plugging this information back into R119 we see by equating powers that the

coefficients in ( —- ) of the powers of x. are independent of ι, i.e.
^ x i /

— ) = axf + fexf + ex2 + dxt + er
x i /

A straightforward but tedious computation then shows that Rίin = 0, and our
result follows from Lemma 6.
(Hd) Notice that if φx is constant we can make xx an ignorable coordinate.
Assuming φx =/= constant we redefine xx so that φ1 = x1. An easy computation
using (4.13) shows that

It follows from (4.14) that

Λ \ 1 ~ -*r I*

Thus K n = 0 implies Run = 0 and invoking Lemma 6 once again we obtain
the theorem.

We have the following simple result:
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Corollary 3. // in a Ricci-flat complex Riemannίan space the Hamilton-Jacobi
equation admits a separation of variables, then the space admits a Killing vector
{i.e. an infinitesimal isometry).
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