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Existence of Three Phases for a P(φ)2 Model
of Quantum Field

K. Gaw^dzki
Department of Mathematical Methods of Physics, Warsaw University, 00-682 Warsaw, Poland

Abstract. In the two-dimensional model of the quantum field theory with
lagrangean density :^(dμφ)2 — (^ — v)φ2 + λί{2φ4 — ^λφ6: there exist (at least)
three different phases for small λ and some v(λ).

1. Introduction

In recent years much of the work in constructive two-dimensional quantum field
theory was devoted to the study of phase transitions [6, 7, 2, 3]. In most models
considered so far phase transitions were accompanied by spontaneous symmetry
breakdown. The exception is the Frohlich's proof of existence of two phases for a
(λ(Q(φ) + εP(φ))-vφ2-μφ)2 model [3, Theorem 7.6].

We consider a model with the 6th order polynomial interaction \\λφ6 — λ1/2φ4

— vφ2 — μφ: and show that for small λ, some v(λ) (v(/ί)->0 when A->Ό) and μ = 0
there are at least three different states corresponding in the Euclidean framework
to the formal expression

where dμί denotes the free, mass 1 measure. Appearance of only two of them is
connected with spontaneous breakdown of the φκ> — φ symmetry.

Conventional wisdom based on the mean field approximation predicts
existence of three phases for the considered model (see [7, 14]). Our result shows
that the quantum corrections do not distroy the qualitative character of the
picture based on the classical approximation to the effective potential. This does
not seem to be obvious as the Wick ordering tends to fill up the middle minimum
of %λx6 — λ1/2x4 + (^ — v)x2 relative to the two others. The problem of multiplicity
of phases for P(φ)2 models was also studied in [13], where existence of only two
phases was predicted for a class of polynomials however not embracing the case
studied here.

The author is grateful to Professor A. Jaffe for clarifying remarks concerning the mean field picture.
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Fig.l

Our result indicates that the phase diagram in the μ, v plane should look
somewhat as on Figure 1. However we are far from proving this even locally. Our
method, which is patterned after the Frohlich-Simon-Spencer's proof of existence
of phase transition in a statistical-mechanical model with no single-spin symmetry
[3, 5] and after the Frohlich's proof of existence of phase transition for (λ(Q(φ)
+ εP(φ)) — vφ2 — μφ)2 [3], seems not very well suited for deeper analysis of the
phase diagram even in the statistical-mechanical lattice case with discrete spin
where a powerful method of Pirogov and Sinai [11] is available. Giving limited
information it works however for continuous spin and, as we demonstrate here,
also in the continuum case.

2. The Strategy and the Main Result

Our strategy for proving existence of at least three phases in a P(φ)2 model can be
illustrated best in the simpler case of a Zd lattice spin 1 system (d ̂  2). As we
mentioned before it follows closely the Frohlich-Simon-Spencer's proof [5,
Theorem 3.5] of existence of phase transition in the lattice model with no
symmetry single-spin distribution for some value of external magnetic field
(compare also [3, Section 8.2c]).

Denote a spin configuration by σ = (σx)X6Zd, σ^elR1. We consider a model with
the measure on configurations formally given by

Φ, (i)
where £ denotes the sum over pairs of nearest neighbor lattice sites, J^O, v is

real. Take the infinite volume pressure α^v connected with this model. This is a
convex function of v (and J). lim α^v is easily computable and equals 0 for v^O

and v for v^O.
Now by the Gaussian domination bound of Frδhlich et al. [5] it can be easily

shown that for each ε>0 there exists J0 such that for J> JQ (in periodic states)
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d<x,J,V

for any v9x9y. But whenever °° exists <σ2(l —σ2)>JjV clusters (argument of
dv

Guerra [8]). Thus

and there is a forbidden interval for
Take now v0>0.

around

(3)

(4)

When J ^J^ε, v0) we conclude that in the plot of the right-hand derivative
dv

(versus v) there is a jump over the forbidden interval at some v(J), |v(J)|^v0.
Three phases can be constructed as follows. We obtain the 1st state by taking

limit of periodic ones < > J > V when vfv(J). Then we construct < >j;v states by
turning off external magnetic field in periodic states and take their limit when
vJ,v(J) in turn. This way we arrive at the 2nd and the 3rd state. Expectations of σ2

in the 1st state and the two others differ since they lie below and above the
forbidden interval, respectively. Then, using the Peierls argument, one shows that
the 2nd and the 3rd states develope non-vanishing expectations of σx differing by
sign.

Alternatively one can construct three different states using appropriate +, —,
or 0 boundary conditions.

We choose

^-vx 2 , λ>0.

v will be always restricted to the interval [ — ]̂. Let

(5)

(6)

Throughout the paper : : will denote the Wick ordering with respect to the free,
mass 1 measure (Gaussian with covariance —A + ί).
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We deal with the infinite volume half-Dirichlet states dμλjV [12]. Thus

dμλ,v= im e-u*
—•Λ-+OO

f = lim <
1 Λ->oo

(7)

where dμ^Λ is Gaussian with Dirichlet boundary condition co variance —
and the limit of measures is understood in terms of moments or characteristic
functionals [12].

In tree approximation phases are determined by minima of Pλ >v(x) + ^x2. The
latter is a polynomial with three local minima : one at zero (value zero) and two
others at ±ξ+9

(value

E0<0 when v>0, E0 = 0 when v = 0, E0>0 when v<0). Thus from naive
considerations it follows that three phases should occur for small λ at some v(A)
close to zero.

However the Wick ordering tends to change this picture: it deepens the
external wells with respect to the middle one. Nevertheless the behavior of
pressures and expectations in λ is determined for small λ in the leading term by the
naive classical picture. This makes possible application of the strategy described
above.

Introduce in R2 a lattice {Aa} of squares of volume |zl| = 10~2. Our basic
technical result is

Proposition 1. a) For each ε>0 there exists 0</ί0(ε) such that for each λ, 0<λ
^λ0(&\ each v and each α, β

(8)

(9)

b)

Λ , V O
(10)
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c) There exists C>0 such that for 0<λ^λ0 and all v

I—:φ2:(A)\ -(—^φ(A)2) <C.\\A\ φ { yλ}V \iziι2 ψ{ Λ,v -
Let α^v denote the pressure connected with our model. Thus

(11)

α^v is a convex function of v. We shall also need the following

δαλ'v / I 1 \
Proposition 2. // — £_ exzsίs £/ιen / — : φ2 : (zlα) — : φ2 : (Δβ) ) clusters in mean.

From Propositions 2 and l.a with ε^| it follows that for 0<λ^λ0 whenever

exists λ112 ( — : φ2 : (A)} cannot fall into ]f -δ,{ +δ[. Taking, if necessary,

smaller λ0 we can assume that

and (13)

λ,v0

(Proposition l.b). Define

(14)
/λ,v

^A is not empty since -v0e.4λ. Because < :φ2 :(^)>λ>v is non-decreasing in v (2nd
GKS), Aλ is convex. It is also bounded above by v0. Let

v(λ):=supAλ. (15)

- : φ2 : (A) = λ^ Jim - : φ2 : (A)^-*«\|j|

lim lim - - i φ 2 :(J)\ =A 1 / 2 lim lim l^-r'.φ2 :(A)r v ^

^-δ. (16)

(We could interchange the limits because of monotonicity of < :φ2 : (^)> ,̂v both in
A and v.)

Hence, by Proposition l.c,

<5) (17)
λ,v(λ)
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for Q<λ^λ0 and all v I as we can take λ0 such that

Now introduce external field and define dμλ>v>μ as

and limit states < >f v and < >fv

Λ,V,±, , (18)

We use monotonocity of (V[ φ(fi)\λ>Viμ in both v and μ.

λv

Choose a sequence vn [ v(λ) of points such that °° exist.
ov

λίl2 τ Ψ(Δ)2} > lim λi/2 ~ φ(Δ)2 = lim A 1/ 2

\MI2 Λ,v(i)+o~^^ \MI2 Λ,v —
But

A,v n

and hence

,v(A) + 0 λ f v(λ)

States < >ίfV(A) + 0 differ from < >A>V(A).
We are left with showing that < >^v(A) + 0 Φ < >A,V(A) + O

(19)

since it cannot lie in ]%-δ,$ + δ[ and vnφAλ. Thus (Proposition l.c)

(20)

Propositions. There exists D>0 such that for each A, 0</l^λ0, βαcft v, v>v(λ\
each α, j?

From Proposition 3 it follows that

But, again in virtue of the argument of Guerra [8, 4], (φ(A0)φ(Aβ)y+ clusters.
Hence
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and consequently

λ^l±-φ(Δ)) ^D^. (22)
\\Δ\ /A,v(λ) + 0

Thus

(23)

We summarize the result in

Theorem. Let 0 < v0 5̂ . Let 0 < λ0 = λQ(vQ) be small enough. For each λ, 0 < λ ̂  A0,
there exists v(A), |v(A)|^v0, swc/z ίΛαί ίfce states < >Λ>v(λ), < >JΓ fV(λ)+0 and < >^v(λ)+0

constructed above are different.

The following sections are devoted to proofs of Propositions 1-3.

3. Proofs

The main tools in proving Propositions 1-3 are the chessboard estimate and the
Gaussian domination bound.

1. Chessboard Estimate [4]

We shall need the chessboard estimate in the following form (it is not difficult to
obtain it from the original one of [4]).

Let Fα^0 be a function depending on field φ at points of a lattice square AΛ.
We shall consider functions of the following type

(24)

where / is either a polynomial or f ( x , y ) = exp(ax + by) and χf is the characteristic
function of an interval /.

Then

^.Vv^ eχp ii(^v(^)-^v)Mil , (25)
/ L α J

where

α^(Fa)= Jim -i-lnf Π (F^^dμ, . (26)
Λ I71! ΔβCΛ

Here, as throughout this paper, A runs through the set of squares built up from
lattice squares. (FΛ)β denotes the function "living" in the lattice square Aβ obtained
from Fα by subsequent reflections in lines separating lattice squares.

2. Gaussian Domination Bound [2, 3, 5]

/exp (27)
0,1 A.V i

This weak form of the Gaussian domination bound follows from the Glimm- Jaffe
Vφ bounds.
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We start with the easiest (as standard).

Proof of Proposition 2. We use the argument of Guerra [8,4]. By 2nd GKS

, (28)

Put

Θ(Λ):= £ (:φ2:+B)(Acc) with BeIR1. (29)
ΔΛCΛ

From the Holder inequality and the chessboard estimate we get

for each 0<χgχ0 and each Λ if B is big enough. Hence

and

On the other hand, as free and half-Dirichlet pressures coincide [12]

-
OV Λ^oo VV

by monotomcity of the half-Dirichlet Schwinger functions in A. Hence if ,
cv

exists then
71 \ \2

(-*-:cpi:(A)) + B\ . (30)
AMI Λ,v /

Consequently by (28) and (30)
/ 1 \2 1 // \ \
— :φ2:(A)} ^liminf-—^( 2] :(P2:(^α) )

\ M I / Λ , v Λ-+OO \Λ\ \\jα C yi / /λ,v

and { — :φ2 :(AΛ)— :φ2 :(Aβ)) clusters in mean. D
\ I /I \ ΛI P I
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Proof of Proposition 1. We shall proceed in a series of lemmas. First five lemmas
give bounds on various pressures. In proving them we follow the way paved by
Glimm et al. in [7].

Denote

ι/4. (31)

0<α0<01<α2<03.

Lemma 1. Let £=^Q.

le-«+*Ά Π Xt-«2, JrU^W^'n (32)
ΔxCΛ \\Δ\ I

where 0(1) does not depend on λ, 0<A^A 0 , v and A.

Proof of Lemma 1.

(33)

where δφ(x): = φ(x) - — φ(Δa) if xε Aa. For the rest of the paper we choose η =

Estimation of both terms is more or less standard [7]. The second term, by
conditioning with respect to Neumann boundary condition Gaussian measure
[7,9], is dominated by

Ml
(J ep[ζ:(δφ)2:(Δ) + <± n) <P2'4Δ)]dμN^^p\Δ\

which is easily computable and finite

Ml
(equal (det2[l-K2CP+l-2f/)(-^+l)-1])

under the condition that in L2(A) the operator

1 -p(2ζP +1 - 2η)(-Δ"Δ +1)~1 is strictly positive. (34)

Here P denotes the projection in L2(A) onto the subspace of functions with
vanishing integral and ΔN

Δ is the Laplace operator in L2(A) with Neumann
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boundary condition on dΔ. Since the lowest eigenvalue of —ΔN

ΔP is — , (34) holds
if l /d |

and

This is the case for the chosen values of η, ζ, \A\, and p. Thus the second term in the
right hand side of (33) is bounded by exp(0(l)|yl|).

In order to bound the first term it is sufficient to show that for each q < oo

(35)

since then we can use the checkerboard estimate of Guerra et al. [9].
To prove (35) we introduce the special cut-off field φκ, the same Glimm et al.

use in [7] except for adoption to the length scale of our lattice {AΆ}. It has the nice
property that φ(A) = φy((A). (35) follows in a routine way [see e.g. 1,12, 7] from two
estimates uniform in λ, 0<>l^/l0, and v.

1.

-ζ:(δφJ2:(A)\\ ^0(1)%^ (36)
112

for some δ > 0,

2. ι

A

-^-^}Ψ(Δ -0(l)(lnκ)3 (37)

(both for κ ̂  κ0).
(36) is known (see [7], Lemma Π.3.2.4). We shall prove (37) which is analogical

to the "Wick ordering lower bound" of [7].

_

0(l)(lnκ)3 , (38)

where Cκ = \φlάμv =0(lnκ) for large κ (see (II.2.1.6) of [7]).
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Polynomial ax6 — bx4 + cx2 (a,b,c,(b2 — 3αc)>0) has two local maxima at
ϊ2 = (b — (b2 — 3ac)1/2)βa, a local minimum at zero and two local minima at
>c2 = (b + (b2 —3ac)1/2)/30. In our case we take

ι_*.
(39)

1+ε

fo2_3αc / 4 - τ c - Γ 2 ί / + lv\λ + 6λ3/2C^ + &λ2C2>0f (4Q)

The value of the polynomial at the external minima is equal

1 -_ _ 2(b2 - 3ac)(b + (b2 - 3αc)1/2

27α2

> - -^Γ(fc2-3αc)(fc + (fe2-3αc)1/2)l> -λ~

as

&2-3αc^/l(l + 8/l1/2Cκ)
2 and fc^

In external minima

11/2 , l; 1/2
+ ^

Hence if φκe[ — α3, α3] then

+ ̂  A^CJ^ + _ v + OA1/2^ + f 1C2

\1 Tfi

, value of the polynomial at α3}

-lv-^ε-ivε)(l+εΓ1

}=0. (42)

Moreover

ζ:(^J2:^ζ(^J2-0(l)lnκ^-0(l)(lnκ)3. (43)

From (38), (42), and (43) we conclude that if φκe[-α3, α3] then

(1 + ε) : PΛ>J : + β - j,) : φ2 : + C : (δφx)
2 : ̂  - 0(l)(ln κ)3 . (44)

Now if φκφ[-a3, α3] but — «p(J)e[-α2, α2] then by (38), (41), and (43)

(1 + ε) : PΛ> J : + (i - >?) : <P* : + C : W2 :

+ 8A1/2CJ3 + ζ(^J2

+ 8A1/2Cκ)
3 + ζ(α3 - α2)

2 -

(45)

Integrating out (42) and (43) over A we obtain (37). D
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Lemma 2.

Krf'V Π X[-«2,-αJu[α1,«JrjT^α))^l
ΔΛcΛ \\Λ\ I

(46)

Proof of Lemma 2. We proceed the same way as when proving Lemma 1 and are
left only with showing that for q < oo

\eχpί-Uίv-£-η):φ2:(Δ)-ζ:(δφ)2:(ΔKχlaίM]( — φ(Δ)}\\
\\q

and this follows in turn from the bound

J :PΛ>κ): +(k-η):<P2

x :(Δ} + ζ :(δφκ)
2 :(Δ\

A

If φκe [α0, α3] then

•PiM :+$-η):φ2

κ:+ζ: (δφκ)
2 : ̂

^min {values of

x2 at α0 and α3}-0(l)(lnκ)3

If ΨxΦ[βo,a^ but—φ(A)e[.al,a2] then [compare (41)]

Let fteC^R1), O^ft^l, h(x)= Let for ί>0

(47)

(48)

+ ζ(min {a3 - a2, a, - α0})2 ̂  - r 1/2(1 + 8A1/2Cκ)
3 + f r 1/2

-0(l)(lnκ)3 ̂  IA- 1/2 -0(l)(lnκ)3 . (49)

Gathering (48) and (49) we get (47). D

Let

V = -(1-©1/2)A-1/4, b,:=X-^, b2:=2λ~^. (50)
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put

(51)

Next lemma will be used to estimate the input of minima of the action at
φ= ±ζ+ to expectations

Lemma 3. Let ε =

AacΛ °' \MI /

[where, as always, 0(1) does not depend on λ,0 <λ ^ A0, v, and A], We remind that

Proof of Lemma 3. The left side of (52) equals

\e (1+ε)i( P'

Π Y
Λ[b0,

-η):φ2:(Λ) + ζ:(δφ)2:(Λ) ]\\p (53)

for q large enough (we have used the checkerboard estimate).
Conditioning with respect to the Neumann boundary condition measure we

bound the second norm by exp [0(1)|Λ| + Cλ v|ίM|]. As before we shall be finished if
we show that

, (54)

2. (l+ε):P + ξ :-E + +±
A

«)3 (55)
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To prove (54) we notice that

:φ2:. (56)

Since all coefficients at Wick powers are bounded uniformly in λ, 0 < λ :g λ0, and v
(54) follows similarly as (36) before.

We pass to proof of (55) which constitutes the most involved part of the paper.
Denote φκ + ξ+ = : x.

~v + 6λ1/2Cκ+

(57)

Consider the polynomial

wκ(x): = \ λx6-λίl2(\

+ (i-v + 611/2Cκ+f λC2)x2. (58)

wx takes its minimal value at x= ±ξ+ >x, where

_ κ f AC2))1/2]

=λ-1/2[f +5A1/2Cκ + (i + f l1/2Cκ

=A-1/2[| + (i + f v)1/2 + A1/2Cκ[5 + (f + 10A1/2Cκ)

•((i + f v+ f A1/2Cκ + 10AC2)1/2 + (i + f v)1/2)-1]

(59)

Straightforward computation gives for the minimal value £κ of wκ

£« = £o~[(έ +5v)Cκ + 5A1'2C2+

(60)

If φκ + ξ+e[a1, +oo[ then

)3. (61)
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Fig. 4

Indeed, from a simple analysis based on Figure 4 it follows that (61) is a consequence
of three facts :

a) wκ(£ + >κ)^E0-0(l)(lnκ)3 which is (60),
b) v^(ξ + κ)^ £ which holds as the direct inspection shows,
c) wM^ύfa-ξ + J + Eo-WQnκ)3. (62)

To show (62) we notice that

12 '= 12

0 + 0(l)(lnκ)2

ίtfe-vμ-1/2+0(l)(lnκ)2 if v^O,
2 if v^O.

From (63) and (64) we get (62).
Now for xe[α1; + oo[ (60) and (61) give

(63)

(64)

WX(X)-EO-

where we have used
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Hence by (59)
ε

η+2
wx(x)-E0- —— (x-£+)2-0(l)(lnκ)3

i ~r ε

a ^ -0(l)(lnκ)3 . (65)

Gathering (57), (65), and (43) we get

if φx + ξ+e[a1> +oo[. (66)

Now if (?„ + <!; + £!>!, +co[ but — <jo(J)e[fc0, +oo[ then by (57) and (60)

)3. (67)

Now

ζ(φx-b0)
2^ζ(a1-ξ+-b0)

2

~Ί^= (aι-ξ^ for ^<^-^
By direct computation

M6|U, + £.

Thus from (67) and (68)

if φκ^K-ξ + ?+α)[ and -φ(J)6[6 0 , + oo[. (69)

(66) and (69) give (55). D

Lemma 4. Let ε = j$.
Γ e-(ί+ε)[£(:PΛtV(φ + g):-Eo) + φ((-A+l)g) + ±(g\(-Δ+l)g)L2-^

• Π χ[62+«,Iί4ϊ^j)^1^exp[(0(l)-9λ-1'2)U| + Cja^]. (70)
4 α CΛ V l ^ l /

Proof of Lemma 4. Proceeding as in Proof of Lemma 3 one is left with showing an
analog of (55) :

(71)
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We shall distinguish three cases.

1st Case. φκe[fr1 ? +oo[ i.e. xe[b1 + ξ + , + oo[ and

fci + f + ^ f ί + .x (72)

Then (compare Fig. 4)

Indeed, we must only check that

wκ(bί + ξ+)^γ2(bί + ξ+-ξ + }κ)
2 + E0 + 9λ~1/2-Q(l)(lnκ)3. (74)

But

wκ(b1+ξ + )^wκ(©1/2A~1/4) (75)

as

b1+ξ+^)ί/2λ~ί/4^ξ+ κ. (76)

But

^κ(©1/2^"1/4)^10/l-1/2-0(l)(lnκ)3. (77)

Furthermore by (59)

(78)

Thus (73) is proven.
Proceeding further as when proving (66) we obtain from (57) and (73)

)3 . (79)

2nd Case.

By (59)

Hence

f^-1/2^0(l)Cκ. (80)

From (66) and (80) we get

(81)

3rd Case.

, — φ(Δ)e[b2, +oo[.
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An analog of (67) holds :

(82)

/ ε \
Minimal value of — [w+ ~ Φ*+C(<Pκ —W 2 *s attained at φ» = b1. Hence

\ 2/

-Sφχ + C(φκ-b2)
2^-(^ + ίbι+C(bι-fc2)2^9A-1 / 2. (83)

(71) follows from (79), (81) and (82) with (83).
Lemmas 1-4 provide upper bounds on pressures. We shall also need a lower

bound on α^v.

Lemma 5.

α^;v ̂  max {0, — E0 } . (84)

Proof of Lemma 5. 1. By the Jensen inequality

α^v= lim —-lnJe~ l7A vdμ1^ lim — lne~ ί l/;ι>vdμι = 0.

2. We translate dμλ by the function g [see (51)] and use (compare 1.4.10 of [7])

Hence

\e Λ ' Λ > v φ ' ° dμ1=^^e *

-2dμι

έ $ (\\rg\\2 +\g\2)}dμι]=™p -\ ί
~Λ

ι (86)

where we have used (56). From (86) we get

= -£0. D

Having proven inequalities for pressures we can now employ the chessboard
estimate in estimation process.
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Lemma 6. Let Fλ v be a positive polynomial in :φ2 :(A) and φ(Δ) such that for each
q<co there exists Cq<co such that for each λ, 0 < λ g A0, and each v

<87)
Then

/°(1) , w ι

 fθΓ V=°- (88)101 ' for v>0

Proof of Lemma 6. By the chessboard estimate (25)

(89)

(90)

where we have used Lemma 1 to bound the first term and the checkerboard estimate
[9] together with (87) to bound the 2nd one.

Inserting (90) and (84) to (89) we get (88). D

Lemma 7.

fi-^-.^.αdfAίW)) ^expR-ϊfelJμ-^+OWMI, (91)
\\Δ\ //λ,v

where \A\ denotes the number of elements of A.

Proof of Lemma 7. By the chessboard estimate (25)

1 1 X[-α2, -αι]u[αι fα2] lϊ^T ̂ α) /
.xeA \\Δ\ J/λ,v

in virtue of Lemmas 2 and 5. D
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Lemma 8. Let Fλv be a positive polynomial in :φ2 \(Δ) and φ(Δ). Define F^v by

F'λ,v(T):=Fλ>v(T+ξ+). (92)

Suppose that for each λ, 0<λ^λ0, and each v

WλJq^Cq. (93)

Then

for

for v g O (94)

Fr , 2 + , o o M.
λ,v

o/ Lemma 8. We estimate

.v^ + ̂ . + coE^^))). ' = 0,2,

translating rf//! by f̂ [see (51) and (85)].

r 1 1 f -J: ίΆ f= lim — - In \e *
Λ-oo \A\ J

Π χ[bi, + Go[(riT
V l ^ l

1 .

if i = 2' l ;

We have used Lemmas 3 and 4 and (93).
(94) and (95) follow from (96) and Lemma 5 by the chessboard estimate. D

Denote

We shall also use shorthand fa for χai-—φ(A0)}, 0 = 0, ±1.
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Lemma 9. Let a, b = 0, ± 1, a Φ b.

Oώdί>;ι,v-— 0 uniformly in v,α,β. (97)

Proof of Lemma 9 (Following the Frόhlich's proof [2, 3] of existence of phase
transition in (λQ(φ) — vφ2)2).

By use of the Peierls argument in the form established in [6] and [3] (97) can be
derived from

Π CXλ ^αφK-^-'/' + OWMI, <5>0. (98)

Here γ is any set of \γ\ neighboring pairs of lattice squares and aaβ φ baβ. We can also
assume that all pairs in y are disjoint (using the Holder inequality to separate them if
this is not the case) and that bΛβ φ 0.

Write

Xo = %o + f o , (99)

where

and

Put also χ±1:=χ±ί.

Π α β \ <V / ΓΓ Va Vβ \ 1/2 / Π Vα\ 1/2 /ΊΓVn
Aαα/Λα/Λ = Z ^ ( 11 Aαα/Λα/Λ / 11 A O \ (102)

In ]Γ y' runs through the subsets of y composed of pairs (AΛ, Aβ) such that a^ = Q.

Π yα Ύβ

ΛClvβΛbocβ
(Aol,Δβ)eγ / λ , v

1 v

j-j bΛβ ^(φ(Δβ) φ(Δu)) (a2 α l }\ ^ ^10^

'.,Δβ)eγ / λ,v

It is easy to choose functions 0^ such that

^ i
a β \ A \ φ β α

 f = 0

 l aβ

(see [3, proof of Theorem 7.2]).
Using the Gaussian domination bound (27) we get

Π ΐ I1 1 Λa<χβΛ

(104)

Inserting (104) and (91) of Lemma 7 into (102) we obtain (98). D
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Lemma 10.

λ\(:φ2:(Δ))2"\^(\),

λ"«φ(Δ))*"\vίO(l). '

Proof of Lemma 10.

as
λ,v

Now using Lemma 6 with Fλv = (:φ2 :(Δ))2n and Lemma 8 with Fλ v=λ"(:φ2 :(Δ))2"
(i.e. F'λ>v = (λll2:φ2:(Δ) + 2λ1'/2ξ+φ(Δ)+λ1/2ξ2

+\Δ\)2n) we obtain

Proof of the second inequality is identical. D

Now we are prepared to prove Proposition 1.

ί φ(Δβ)]ι
λ,v

2\ \ 1 / 2

in virtue of Lemmas 6 and 10.
1 \ 2 \ \ l / 2

— :φ2:(A)

(106)
λ,v

We bound the terms of the right hand side of (106).

1/2

(108)
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where we have used Lemma 10 and Lemma 8 with

139

i.e.

which is ίfy^-integrable with any power uniformly in λ small and v.

I \4\ \ l / 4

— : φ 2 : ( A ) \ )
\ \\\Δ\ I / A , v /

λ,v

if (109)

in virtue of Lemmas 9 and 10.
(106) together with (107)-(109) give (8) and Proposition l.a) is proven. We pass to

point b).

λί/2

λ, — vo

1 , ' χ 2 1/2

(110)

2 / 1 2 \1/2

l/2

(Ill)
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We have used Lemmas 6 and 8. (110) and (111) prove Proposition l.b).
Now

/ / I 1 \2 / I \\1 / 2+2 w*':(/i)- wφ(Δ)) ̂  +4w\φ(Δ))\v
in virtue of Lemmas 6 and 8 estimating the second term from Lemma 8 we put

Fλ,v= (u\:<P2:(A)~ MJ2 V(An =F'λ,vl (112) proves (11) and completes the proof

of Proposition 1. D

Proof of Proposition 3. First notice that for v > v(λ) and λ small enough

[see (20)]. Using Lemma 6 and (95) of Lemma 8 we obtain

(114)

for A small enough.
(113) and (114) give

Now, with use of the notation of Lemma 9

λ,V

λ,v
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By Lemma 6

(117)

for λ small enough. Moreover

"λ ,v

4\ \ l / 2

< V h/|_!_j

for /I small enough (and all v) by Lemmas 9 and 10. Using (117) and (118) we obtain
from (116)

(119)

again for A small enough and all v (Lemma 9).
From (11 5) and (119)

Taking D = | 10 ~ 2 we are done. Π
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