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Abstract. Let Jί be a von Neumann algebra with a cyclic and separating vector
Ω. Let δ = i[H, •] be the spatial derivation implemented by a selfadjoint
operator H, such that HΩ = Q. Let Δ be the modular operator associated with
the pair (Jί, Ω). We prove the equivalence of the following three conditions :

1) H is essential selfadjoint on D(δ)Ω, and H commutes strongly with A.
2) The restriction of H to D(δ)Ω is essential selfadjoint on D(A^) equipped

with the inner product

(ξ\η)*=(ξ\η) + (A*ξ\A*η), ξ9ηeD(Δ*).

3) Qxp(itH)JKexp( — itH) = Jf for any ίeR
We show by an example, that the first part of 1), H is essential selfadjoint on

D(δ)Ω, does not imply 3). This disproves a conjecture due to Bratteli and
Robinson [3].

Introduction

In the study of time development of quantum and classical systems one often
encounters the following situation ([5, 10, 22] and references given there). The
infinite volume Gibbs state ω is specified as a state on C*-algebra 9X of
observables, along with a derivation δ of 91, which should be the derivative at time
zero for the time development of the infinite system. This derivation satisfies

ωoδ(χ) = 0, xeD(δ).

If (π, jff*, Ω) is the cyclic representation associated to ω, then there exists a unique
symmetric operator H0, satisfying the properties [3] :

(i) D(HQ) = π(D(δ))Ω,
(ii) H0Ω = V,

(iii) π((5(x))£ = ΐ[H0,π(x)]& ξeD(H0), xeD(δ),

* Part of this work was done while O. B. was a member of Zentrum fur interdisziplinare Forschung
der Universitat Bielefeld
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where [H0, x] = H0x — xH0. The problem of proving the existence of a time
development is therefore in a certain sense the problem of showing essential
selfadjointness of H0 on π(D(δ))Ω, and to show that

exp (itH)3i exp( + itH) = &, t e IR,

where 38 is a suitable C*-algebra containing π(9I), and H is the closure of H0. In
the best cases (free or "almost free" Fermi gases, spin systems with short range
interactions [21, 24]), 3& can be taken to be π(2I) itself. In other cases (low density
Bose- and Fermi gases, spin systems with long range interactions (cf. [5, 20]) one
cannot expect π(9ϊ) itself to be globally invariant, but one can hope, and in some
cases prove that the weak closure π(2l)" is left invariant. Since the weak closure
contains essentially the same observables as 21 itself [12], this is a satisfactory
solution to the problem of time development of the infinite system. Before
proceeding we note that along with the existence of the derivation δ in the
thermodynamic limit for the systems mentioned above, one also obtains uniform
bounds for the derivatives of the approximate Greens functions for the system.
These bounds imply that the vector Ω is separating for π(Sl)" (cf. [28], [5, Theorem
1]). Therefore, we will in the rest of the paper assume that Ω is both separating and
cyclic for π(2l)", and A will denote the modular operator associated with the pair
(π(Sϊr,Ω)(cf.[25]).

In this paper we prove that
exp (if ff )π(SI)" exp (- if H) - π(9l)", t e R

under the following conditions:
a) H is essentially selfadjoint on π(D(δ))Ω,
b) H commutes strongly with the modular operator A (i.e. all spectral

projections commute).
The conditions are also necessary, and we prove by an example that in general

a) does not imply b). This disproves a conjecture in [3]. In the case where Ω is a
tracevector, the condition b) is, of course, empty so the present theorem is a
generalization of the results in [4]. Other special cases of our theorem have been
proved in [3, 6, 10, 14].

In a preliminary announcement of this paper, [7], a proof of the main theorem
was outlined, whose main feature was to lift the derivation δ to the crossed product
R(Jί, σω) of e/^ = π(2I)" with the modular automorphism group ί->σj°, utilizing
σ?°δ=δ°σ?. The crossed product R(Jί,σω) is a semifinite von Neumann algebra
and has a canonical, normal faithful semifinite trace τ, [27]. One verifies that
τ°δ = 0, where δ is the lifted derivation, and then applies a generalization of the
trace vector theorem in [4] to show that δ generates a group of automorphisms of
R(Jί,'σω). This group commutes with the dual action of R=R on R(Jί,σω\ and
since Ji is exactly the fixed points of the dual action, it follows that the
automorphism group leaves Jt globally invariant, ending the proof of the
theorem.

The method employed to prove the theorem in the present paper is less direct
than suggested in the announcement, although based on the same idea. This is to
avoid some technical difficulties associated with the treatment of the unbounded
trace τ. The present proof does not assume any a priori knowledge of the Connes-
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Takesaki duality theory, by introducing a third step in the proof. The proof is then
as follows :

Step i. If Jfω = {AeJ(\σ?(A) = A9 ίeIR} is the centralizer for ω, then

exp (iίίΓMςexp ( - itH) = Jίω .

Step 2. If ω is periodic, i.e. σ? — 1 for some T>0, then exp (zfH)^exρ ( — itH) — Jί.
The proof is based on a decomposition of Jί in eigenspaces corresponding to σ
(as in [26]), and a 2 x 2 matrix trick employing Step 1.

Step 3. Let Γ>0 and consider the discrete crossed product Jf = R(Jί,σj\ The
dual weight ώ of ω is then a state, and a? is inner. By perturbing ώ as in [8], we get
a vector state ω', such that σ$ = 1, and ω'(A) = (Ω'\AΩf), A^Jf, where (H® 1)Ω' = 0.
Then Step 2 applies to prove that exp(iί(//®l))yrexp(-ίί(/ί®l)) = yΓ, from
which one can deduce that Qxp(ίtH)JίQxp( — ίtH) = Jί.

For application in quantum statistical mechanics it would be nice to have a
version of our main theorem that can be applied when δ is a derivation from
D(δ)QJί to certain unbounded operators affiliated with Jί. In fact, such versions
have been treated in [10] for abelian algebras, and in [4, p. 35] for algebras with
an invariant tracial state. We have not tried to make such generalizations in our
case, because it is difficult even to define such derivations in the general case,
because when Jl is not finite, the set of closed, densily defined operator affiliated
with Jί has no reasonable algebra structure [17, 23].

§ 1. Preliminaries and Technicalities

Let H be a selfadjoint operator on a Hubert space jjf, and let

Qt(A) = exp(itH)Aexp(-itH),

be the corresponding one-parameter group of automorphisms of 5£(^\ Denote
by δ the infinitesimal generator of ρ. Recall from [3, Theorem 4] that
then the following conditions are equivalent

1) AeD(δ).
2) There exists a core D for //, such that the sesquilinear form

(ξ,η)-+i(Hξ\Aη)-i(ξ\AHη)

on D x D is bounded.
3) There exists a core D for H, such that AD C D, and the mapping

is bounded.
If these conditions are satisfied, then the bounded operator associated with the

sesquilinear form in 2) and the bounded mapping in 3) both coinside with δ(A).
If Jί is a von Neumann algebra on ffl , we will in this paper use the

terminology "the spatial derivation of Jί implemented by //" to denote the
restriction of δ to the domain

D(δ) = {A\AeD(δ)nJΐ, δ(A)e
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The map δ satisfies all the axioms for a symmetric derivation stated in [3], with the
exception that the *-algebra D(δ) is not necessarily σ-weakly dense in Jt. The
following lemma is essentially a restatement of results from [3], see also [16].

Lemma 1.1. Let δ = i[H, •] be a spatial derivation of a von Neumann algebra M
implemented by a selfadjoίnt operator H. Then

1) The ranges R(l + aδ) are σ-weakly closed for each αeIR\{0}.
2) The following conditions are equivalent
a) R(l+aδ) = J% for some α>0 and some α<0.
b) R(l+<xδ) = J( for any αe!R\{0}.
c)

Proof. 1) Defining δ on Sf(3tf} as before the lemma, we have that (1 +α<5)~ i exists
as a σ-weakly continuous, bounded operator on £?(3?} for all αeIR\{0} ([3,
Theorem 1]). But

Hence R(l +aδ) is σ-weakly closed.
2) c)=>a): Trivial from [3]. a)=>b): The condition R(l+uδ) = J( is equivalent

to (1 + ttδ}~lJίQJί. If this is true for some positive and some negative α, it follows
by successive applications of the Neumann expansion

valid for |α — α0 |<|α| (cf. [15]), that the conditions is true for any αeIR\{0}.
b)=>c) follows from the expansion

exp(UH)A exp( - itH) = lim ( 1 - — ) (A) ,

where the limit exists in the σ-weak topology (cf. [3]).
We say that two selfadjoint operators on a Hubert space commute strongly if

their spectral projections commute.

Lemma 1.2. Let M be a von Neumann algebra with a cyclic and separating vector Ω,
and let δ = i[H, •] be the derivation implemented by a selfadjoint operator H, such
that HΩ = Q, and D(δ)Ω is a core for H. Let Δ be the modular operator associated
with Ω, and σ™ the modular automorphism group associated with ω = (Ω\ Ω). The
following conditions are equivalent

1) H commutes strongly with Δ.
2) δ°σ? = σ?°

Proof. 1) is equivalent to HAit = AίtH, ίeR, and hence 1)=>2) is an immediate
consequence of the introductory remarks to this section. On the other hand 2)
implies that D(δ) is globally invariant under σf

ω, and hence D(δ)Ω is invariant under
Δlt. Furthermore if ΛeD(δ\ then 2) implies that
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Since D(δ)Ω is a core for H it follows by closure that HAίt = AίtH.
The next lemma is a variant of Lemma 5 in [3].

Lemma 1.3. Let Jί be a von Neumann algebra with a cyclic and separating vector Ω,
and let δ = \_IH, - ] be the spatial derivation implemented by a selfadjoint operator H,
such that HΩ = Q, D(δ)Ω is a core for H, and H commutes strongly with the modular
operator A. Let A,BeJ4 and αeIR\{0}. The following conditions are equivalent

1) BeD(δ) and A = (1 + otδ)(B).
2)

Proof. 1)=>2) is trivial. 2)=>1). Let S be the modular conjugation operator, i.e. S is
the closure of AΩ-^A*Ω, AeJi, and let S = JA^ be its polar decomposition. As
δ(A*) = δ(A)*, we deduce that

AeD(δ) .

Using the fact that H ana A commute strongly, it follows that

and hence

[iH9JΓ\AΩ = 0

for all AΩ in the core D(δ)Ω for H. By closure it follows that

But then

(1 + iαHΓ ^JΔ^gJΔ^l + iαHΓ 1

and hence (l + iαH)-1AΩ = BΩ implies that (1 +ίαHΓ1A*Ω = B*Ω. The lemma
now follows from the proof of Lemma 5 in [3].

§2. Periodic States

Let Ji be a von Neumann algebra on a Hubert space 2tf with a cyclic and
separating vector Ω, and let δ = i[H, •] be the spatial derivation implemented by a
selfadjoint operator H, such that HΩ = Q, D(δ)Ω is a core for H, and H commutes
strongly with the modular operator A associated to Ω. Put ω(A) = (Ω\AΩ), AtJi,
and let σf

ω be the modular automorphism group associated with ω. Recall from
[25] that the centralizer Jίw is the set of AtJt, such that σ™(A) = A for all ίeIR, or
equivalently the set of AeJί, such that ω(AB) = ω(BA) for all BeJί.

Lemma 2.1. Let Jίω be the centralizer for ω. Then ^ωQR(l + aδ)for any αe!R\{0}.

Proof. We start by proving that (J?ωnR(ΐ + aδ))Ω is dense in J^ωΩ. Since D(δ)Ω is a
core for H, the spaces R(l + aδ)Ω = (I + iaH)D(δ)Ω are dense in the Hilbertspace
2tf. Let AeJίω and let ε>0. Choose BeR(l +α<5), so that \\BΩ-AΩ\\ ^ε. Let m be
a left invariant mean on 1R (cf. [11]), and put

oo

£1= J σ"(B)dm(t\ (σ-weakly).
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Clearly σ™(B1) = Bί for any ίeIR, i.e. B1 belongs to the centralizer Jtω. From
Lemma 1.1 and 1.2 we have that R(l + α<5) is er-weakly closed, and invariant under
σ?. Hence B^R^ + aδ). Moreover

- \\σ?(B-A)Ω\\ = \\Aίt(B-A)Ω\\ ge.

Now using that

00

BλΩ = J σ?(B)Ωdm(t)
— oo

in the weak topology on 3tf, we get that \\B^Ω-AΩ\\ ^ε. Hence (R(ί
is dense in Jίω.

Let now A = A*eJtω. We can find a sequence AnER(l+uδ)r\Jίω so that
\\AnΩ — >4Ω||-»0. As Ω is a trace vector for ^ω we have also \\A*Ω — AΩ\\->Q.
Hence by replacing An by ̂ (An + A*) we get An = A*eR(l + α<5) and H^Ω- AΩ||->0
for n-»oo. Let Bn = B* be the operators in J9(<5) for which An = (l+ttδ)Bn.
Then by Lemma 1.3 5IIΩ = (l + ϊ'αJE/)~1^4llΩ. Since δ commutes with σj°, and

we have βllΩ = σ?>(51)Ω. Since Ω is separating for Ji, we have also
BneJΐω. Moreover BnΩ->(l + ίa,H)~1AΩ for n->oo. Since Ω is a trace vector for
^ω, and since Ω is separating for Jlω, it follows from the proof of [4, Lemma 1]
that there exists a selfadjoint operator B affiliated with J(ω9 such that χ(Bn)^χ(B)
strongly for any C°° -function χ on IR with compact support, and such that

Now by the proof of [4, Lemma 2] we have

(Ω\χ(Bn)BnΩ) = (Ω\χ(Bn)AnΩ).

Therefore in the limit n^oo:

It follows from this equation, that B is bounded, and that ||5|| ̂  \\A\\. Assume
namely that this was not the case. Then there exists a C°°-function χ^O with
compact support, such that supp(χ) is contained in ] — oo, — \\A\\[ or in ]||4||, oo[,
and such that χ(B)ή=0. Using that Ω is a separating trace vector for Jίφ we get

^\\A\\\\χ-(B)Ω\\2

= \\A\\(Ω\χ(B)Ω)
but

\(Ω\χ(B)BΩ)\ >(Ω\\\A\\ χ(B)Ω) = \\A\\ (Ω\χ(B)Ω)

which is a contradiction. Hence BeJίω, and since BΩ = (l + iaH)~1AΩ it follows
from Lemma 1.3, that BeD(δ) and that A = (l+<x,δ)B. This proves that any
selfadjoint operator A in Jίω belongs to ^(l+α^). Therefore J?ωQR(l

Lemma 2.2. Let AtJί, and assume that there exists Λ>0, such that σ™(A) = λltAfor
any ίeIR, then AeR(l + oίδ)for any oceIR\{0}.
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Proof. Let F2 be the I2 -factor of 2 x 2-matrices acting on the Hubert-space 2tf2 of
2 x 2-matrices with Hubert-Schmidt norm \\x\\ = X l x l2. The von Neuman al-

gebra Jt®F2 acts on the Hilbertspace ^® J>f2. Let (eij)i>j= ί 2 ^
e tne set of matrix

units for F2. Put

Then Ω is cyclic and separating for Jί®F2, and the vector functional ώ associated
with Ω is given by

From [8, Chapter I] it follows that

for BeJt. In particular when σ?(A) = λίtA we get σ?(A®eί2) = A®e12, i.e. A®el2

is in the centralizer for ω. Let now <5 be the derivation on Jί®F2 implemented by
H = H®1. Clearly

) = {x = Σxij®eij\xijeD(H)}

and

£(Γxί7.®^ = £#^®eu> for

Moreover it is easily verified that

D(δ) = {B = ΣBij®eίj\BίjeD(δ)}

and

Clearly ΩεD(H\ and HΩ = 0. Moreover,

which proves that D()ί is a core for H. By [8, Chapter I] we get that

1 \B21 B2

for B = ΣBij®eίjε2.
Since <5 commutes with σj°, it follows that δ is σf -invariant. Hence by Lemma

1.2 H commutes strongly with the modular operator A associated with Ω.
Therefore Jί®F2, Ω and δ = i[H, •] satisfy the conditions of Lemma 2.1. Since
A®eΐ2 is in the centralizer of σf it follows that A®e^2eR(\ +ocδ) or equivalently
ΛeK(l + α<5), αεR\{0}.

Recall that the functional ω(A) = (Ω\AΩ) is called periodic if σ£ = l for some
non zero TeR

Proposition 2.3. Lei Jί,Ω, H, and δ be as in the beginning of § 2, and assume that
the functional ω(A) = (Ω\AΩ) is periodic. Then

exp (itH)Jί exp ( - i tH) = M , t e IR .
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Proof. By the assumptions AlT = l for some T>0 or equivalently σ% = l. Put
k= e~2π/τ. Since σω is periodic, the eigenspaces for σω,

span a σ-weakly dense subalgebra of Jί (cf. [1, 26]). By Lemma 2.2
Λ(l+αδ)2 U A Hence by Lemma 1.1 Λ(l+α<5) = Λr for any αe!R\{0} and

neTL

consequently

For the proof of the main theorem in § 3 we need a slight generalization of
Proposition 2.3.

Corollary 2.4. Let M, Ω, H, δ satisfy the assumptions in the beginning of § 2, and let
T>0. Assume that there exists a unitary operator UeJί, so that

σ"(A)=UAU*, AeJf, and [J7, 17] =0

then

exp (itH)Jί exp ( - itH) = Jt .

Proof. Since ω(17y4C7*) = ω(σ£(4)) = ω(,4) for AeJ(9 it follows that 17 belongs to
the centralizer of ω (cf. [8, Proof of Theorem 1.3.2]). Put A = — i log(l/), where log
is the branch of the logarithm function for which — π<Im(log(α))^π. Then

A = A* and ||^4||^π. Put B=Qxpl — A\. Then B is positive selfadjoint with

bounded inverse, Biτ= U and BeJίω. Moreover as [#, 17] =0 we have [#, £α] =0
VαeC. In particular B«eD(δ). Put Ω' = B~^Ω. We will prove that J(9Ω'9 H, and δ
satisfy the conditions of Proposition 2.3 :

Since B* and B~^ are bounded we have that Ω' = B~^Ω is cyclic and separating
for Jί. Put ω'(A) = (Ω'\AΩ'\

Then

because B~^<ΞJtω. Hence by [19]

i.e. ω' is a periodic state. Since B*9B~*eD(δ) we have D(<5)Ω' = D(δ)Ω. Therefore
D(δ)Ωf is a core for H. Let zΓ be the modular operator associated with Ω'. To prove
that H and Δ' commute strongly, it is enough to prove that δ is σ^'-in variant (cf.
Lemma 1.2). However σf(A) = B~itσ?(A)B + ί\ and since δ commutes with σ? and
δ(Bίt) = δ(B~it) = Q the assertion follows.

Hence by Proposition 2.3:

exp (itH)Jί exp(-itH) = Jΐ, t e R .

§3. General Faithful States

We are now ready to prove the main theorem of this paper. In the end of this
section we will derive an alternative way of stating Condition 1) in terms of the
graph Hubert norm associated to zl% and in §4 we show by an example, that the
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condition that H and A commute strongly cannot be excluded from the main
theorem (Theorem 3.1).

Theorem 3.1. Let Jt be a von Neumann algebra on a Hilbert space ffl with a cyclic
and separating vector Ω, and let δ = i[H, •] be the spatial derivation on M
implemented by a self adjoint operator H, such that HΩ = Q. The following conditions
are equivalent

1) D(δ)Ω is a core for H, and H commutes strongly with the modular operator A
associated with Ω.

2) exp(itH)J(exp(-itH) = J( VίeR

Proof. 2)=>1). If 2) is satisfied it follows from Lemma 1.1 that (I + ίaH)D(δ)Ω
= R(l + ίaδ}Ω = JΐΩ for αeIR\{0}. Thus D(δ)Ω is a core for H. Put
at(A) = eitHAe~itH, AeJΐ, ίeR Put ω = (Ω\ Ω). Since exp(itH)Ω = Ω we have
ω(at(A)) = ω(A\ and by the uniqueness of the modular automorphism group

Thus ΔiseitHAΩ = eitHΔisAΩ for AεJί and hence Aiseita = eitHAis, i.e. A and H
commute strongly.

1) => 2). Let T> 0 be a fixed real number. Consider the discrete crossed product
l,σ™\ Let J" be the Hilbert space

where ̂ n = ̂ ,neTL. The von Neumann algebra Jf is generated by the operators
π(A) defined by

ana the unitary operator U given by

Note that Uπ(A)U* = π(σ%(A))9 AeJΐ.
Consider the vector Ωe 2tf given by

and let ω be the positive functional on Jf given by

ώ(A) = (Ω\AΩ)9 A^Jf.

For the rest of the proof we need a lemma :

Lemma 3.2. 1) Ω is cyclic and separating for Λf.
2) The modular automorphism group associated with ώ is given by

σf(π(A)) = π(σ?(A)) ,

σ™(U)=U, ί

3) σ™(B)=UBU*,
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4) The modular operator A associated with Ω is given by

Proof. Lemma 3.2 is in fact just a very special case of the general theory of dual
weights for crossed products cf. [9, 13] but for convenience of the reader we give a
selfcontained proof.

1) Let </Γ0 be the σ-weakly dense subalgebra of Λf generated by n(Jί] and U.
We have

Since the maps A^An, AeJf^ are σ-strongly continuous, any element AeJf has
an expansion

A~ £ U"π(An), AnεJl
n — — oo

which converges in the sense that for all ξe 2tf with finite support

Aξ= Σ Unπ(An)ξ.
n— — co

In particular

AΩ= Σ Unπ(An)Ω .
n = — oo

Hence the n-te coordinate is (AΩ)n = AnΩ.

oo

Therefore \\AΩ \\2 = Σ \\A

nΩ\\2.
n= — oo

This proves that Ω is separating for J\f. Clearly JfΩ contains all vectors
(ξn)ne<& with finite support, for which ξneJ^Ω. Hence Ω is also cyclic for J\f.

2) Let Vt be the one parameter unitary group on $f, given by (Vtξ)n = Δuξn. It is
trivial to check that

Vtπ(A) V? = π(σ?(A)) , A e Jl

vtuv* = u .

Hence Vt implements a one parameter automorphism group σt of Jf. We will prove
that ώ is K.M.S. with respect to σt. For AeΛf, we have

σt(A)~ Σ Unπ(σ?(An)} , σt(A*)~ Σ U"π(σ?_nT(A*n)) .
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Hence for A,

ω(σt(A)B) = (σt(A)*Ω\BΩ)

= Σ (σr-nτA*-n

= Σ ««-»τW-nR)= ω(σΐ+nT(An)B_n) .
n= — oo n= — oo

A similar calculation gives

= Σ
n= — o

00

= Σ
n — — oo

where we have used that ω is ^-invariant. Since ω is σ^-K.M.S. and since one
easily verifies that the above sums converge uniformly in ί, it follows that ώ is
σ^K.M.S. Hence by [25, § 14] we have σt = σf.

3) For AeJ? we have by (2) that

) = Uπ(A)U* .

Moreover

σf (17) =17 = 171/17*.

Hence

σf(B) - L7J3 (7* for any 5 e Ji .

~ ] [7ππ(ylπ).
/!= — 00

We have

(AΩ)n = AnΩ

and

Since

J^Ω - Δ ilA A ~ UΩ = σf(A)Ω

we get for ξ = (AnΩ)ne&, that

Since JfQ, is dense in J^ the assertion follows.
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End of Proof i)=>2). Define a selfadjoint operator H on 3& by

and

and put (Hξ)n = Hξn for £ = (

Let (5 = ί [H, - ] be the derivation on Jf implemented by H. We shall prove that
Λ^QHtδ, and U satisfy the conditions of Corollary 2.4. Clearly HΩ = 0. Since
δ-σ^ = σ^oδ one has that AeD(δ) implies τφ4)eD(<5) and δ(π(A)) = π(δ(A)).
Moreover UH = HU. Hence UeD(δ) and <5(l/) = 0. Therefore D(<5) contains all
operators of the form

Σ [/"πμj where A
« = -p

In particular D(<5)Ώ contains all vectors (<!;„)„ eJf7 of finite support for which
ξneD(δ)Ω. Hence D(δ)Ω is a core for H. Since H commutes with Alt, we get by
Lemma 3.2. 4), that H commutes with Δu. As σ£ is implemented by U and
[//, [7] =0, Corollary 2.4 can be applied. Hence

exp (itH)JV exp ( - itH) = Ji , ί 6 R .

~ °°
Now let P be the projection from ffl= ΣΘ «̂ onto tne zerotn component.

Then for AtJf, A~ Σ t^X^J we

Moreover

Let now AtJf. Put β=exp(ΐίJΪ)π(>l)exρ(-iίH)6^f and let

be the expansion of β. Then

exp (iίH) A exp ( - itH) = exp (ίtH)Pπ(A)P* exp ( - iί H)

= P exp (itH)n(A) exp ( - ϊί£)P*

Hence exp(zίH)^exp( — itH)ζ,Jί for any ίeIR, ending the proof of the theorem.
In the last part of this section we will derive an alternative formulation of

Theorem 3.1. This will be in terms of the graph Hubert space Jf# of the square
root of the modular operator Δ associated with Ώ, i.e. ̂  is the linear space
equipped with the inner product
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Lemma 3.3. Let Jί be a von Neumann algebra with a cyclic and separating vector
Ω, and let δ = ϊ{H, •] be the spatial derivation on Jί implemented by a self adjoint
operator H, such that HΩ = Q. It follows that

a) D(δ)Ω g Jf# and HD(δ)Ω g JT# .
b) The restriction of H to D(δ)Ω is symmetric with respect to the inner product

(•!•)*•
Proof, a) Clearly

and

iHD (δ)Ω = R(δ)Ω £ JίΩ ζ J^# .

b) Let S = JA* be the modular involution associated with Ω. Since
δ(A*) = δ(A)*9 AeD(δ), we get for AeD(δ):

= HA*Ω=-iδ(A*)Ω

= -iδ(A)*Ω=-SHAΩ.

Hence for ξ,ηeD(δ)Ω we get

(ξ\Hη)#=(ξ\Hη) + (SHη\Sξ)

= (ξ\Hη)-(HSη\Sξ)

= (Hξ\η)-(Sη\HSξ)

Therefore the restriction of H to D(δ)Ω is symmetric on ffl%.
Lemma 3.3 implies that the first statement of the following proposition makes

sense.

Proposition 3.4. Let Jί be a von Neumann algebra on a Hilbert space jjf with a
cyclic and separating vector Ω, and let δ = i[_H, •] be the spatial derivation on M
implemented by a self adjoint operator H, such that HΩ = 0. The following conditions
are equivalent.

1) The restriction of H to D(δ)Ω is essential self adjoint as an operator on &#.
2)

Proof. 2)=>1). By Lemma 1.1, Condition 2) implies that (l + faH)D(δ)Ω
= R(l+aδ)Ω = JΐΩ for αeR\{0}. But JΐΩ is a core for A*, i.e. JίΩ is dense in Jt?#.
As the restriction of H to D(δ)Ω is symmetric on 2?^ by Lemma 3.3, it follows that
H \D(δ)Ω is essential selfadjoint as an operator on 34f#.

1)=>2). It is enough to prove that 1) implies Condition 1) in Theorem 3.1. By 1)
(L + faH)D(δ)Ω is dense in JV# for αeIR\{0} but then (l + iaH)D(δ)Ω is dense in tf
with respect to the usual norm, i.e. D(δ)Ω is a core for H. To prove that H
commutes strongly with A, note first that by the proof of Lemma 3.3 :
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for ξeD(δ)Ω and αeIR\{0}. Thus

for all ηe(l + ίotH)D(δ)Ω. But by assumption 1) (1 + ίaH)D(δ)Ω is dense in
) = D(S) with respect to the graph norm of Δ*. Hence

Γ1Sη for any ηeD(Δ*)

i.e.

Sίl + iαHΓ^l + iαtfΓ1^ for any αeR\{0} .

Thus S commutes both with 1 + iuH and its adjoint l — ia,H, and hence the
components J and Δ* of the polar decomposition of S commute with (1
In particular H commutes strongly with A.

§ 4. A Pathological Example

Let M be a von Neumann algebra with a cyclic and separating vector Ω, H a
selfadjoint operator, such that HΩ = Q, and <5 = i[ίί, •] the spatial derivation of Jί
implemented by H. We will show by an example, that essential selfadjointness oϊH
on D(δ)Ω is not alone sufficient to ensure that δ is a generator, and thus the
condition that H and Δ commute strongly is necessary in Theorem 3.1. This settles
a conjecture of [3] in the negative. Note that as δ(A*) = δ(A)* we have

for any ξeD(δ)Ω, and hence H and A are close to commuting only under the
assumption that D(δ)Ω is a core for H. It is, however, known that two selfadjoint
operators may commute on a common invariant core without commuting
strongly [18], and similar phenomena can happen in our set-up.

Example 4.1. There exists a von Neumann algebra Jί with a separating and cyclic
vector Ώ, and a selfadjoint operator H, such that HΩ = Q and the spatial derivation
δ = [iH, ] of Jί implemented by H is σ-weakly densely defined, and such that
D(δ)Ω is a core for H, but

exp (itH)J( exp ( - itH) φ M

for some ίeR There exists even such an example, where Ji is a Type I von
Neumann algebra.

Proof. Let Ω0 be a unit vector in a Hubert space J»f0, and assume the existence of
two von Neumann algebra Λ^ and Λ^ on J 0̂, such that ^gjf29 Λ^ ΦΛ^ and
Ω0 is cyclic and separating for both algebras. Examples of this sort occur in
quantum field theory, where the Reeh-Schlieder theorem implies the existence of
quasi-local algebras with a ground state, which is cyclic and separating for each of
the local algebras ([2], Section 24.2). In Example 4.2 we will show that there even
exists examples where Jiv and Jf2 are Type I factors.
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Let ΊΓ^IR/Z be the circle group equipped with the normalized Haar measure.
Consider the von Neumann algebra ^f(^f7

0)(x)L00(T) = L00(^f(^f0),T) realized as
multiplication operators on jf = L2pf0, T). Define an action ρ of IR on

(Qtf)(s)=f(s-t)

for all /eLTO(c£f(J(f0), T). Let Jί be the sub von Neumann algebra consisting of
those /eL°°(JSf(H), T), such that

if 0^

for ί^Z. Let Ωe Jf be the vector given by Ω(s) = Ω0 for all seΊΓ.
Then Ω is cyclic and separating for Jί. Moreover (U(t)ξ)(s) = ξ(s-t), £eL2pf0, ΊΓ)
defines a unitary representation of IR on J^ such that

ρ t(/)=l/ f/l/*

for /6L°°(jSf(^f),T), and UtΩ = Ω, ίeR Let δ be the infinitesimal generator of ρ
and let ιΉ be the generator of C7f. Then D(δ) consists of the uniformly Holder
continuous functions from T into jSf(^0), i.e. the functions /, such that
\\ρtf—f\\ = 0(ί) as ί->0. Let δ be the restriction of δ to

Then (5 is a σ- weakly densely defined derivation of Ji, such that δ(f) = i[H,f\ for
/e^. Now D(δ)Ω contains the set 3) of all elements in ϊtf of the form s-»/(s)Ω0

where s-»/(s) is uniformly Holder continuous and /(sje^ for all 56 T. Hence 3)
is dense in ffl, and as Ut2 = Sf for ίeIR, it follows that 2 is a core for H, [15].
Hence D(^)Ω is a core for H. Moreover HΩ = 0, but clearly

for

The last statement of this example follows from Example 4.2 :

Example 4.2. There exists two Type I factors Jt± and M2 on a separable Hubert
space Jf, such that Ji^Ji2, Jίv φ^2, and a vector ί2e ffl such that Ω is cyclic
and separating for both Jt± and Jt2.

Proof. Define Jf = L2(0,2π) and J^-JΓ®^ where ̂  is the conjugate Hubert
space of ctf. Let PG^f(JΓ) be the orthogonal projection on L2(0,π), and define

Clearly Jf^N^ Jf± ΦΛ^ Let re]0,1[, and let Ωe Jf be the vector defined by

00

O— V* r\n\F fiλ?-
/ TIM^S'TίM J

n- - oo

where ξn = eί77S. We will show that Ω is cyclic and separating for both Λ^ and
l/2π
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Jf2. As {ξn}neZ forms an orthonormal basis for JΓ it is clear, that Ω is separating
and cyclic for ^V29 and hence separating for Jf^. It remains to show that Ω is cyclic
for Λ/;, or equivalently separating for Jf[ = P®&(&] + (1 - P)(g) ̂  (JT). Note that
2tf = tf®3C is isometricly isomorphic with the Hubert-Schmidt operators on Jf
by the identification

By this identification Ω becomes the Hubert-Schmidt operator with kernel

1

~2^

1

2π

oo

Σ
n~ —

l + ι

/'«*-'
l-r2

2 — 2rcos(s — ί)

which is a real analytic function in s,ίe[0,2π]. If
where B, Ce^f(Jf), then ,4Ω identifies with the Hubert-Schmidt operator

-P)ΩC .

If AΩ = 0 it follows by multiplication by P and 1 -P that

= Q, and (1-P)ΩC = 0 .

But as the kernel Ω0(s, ί) is analytic, it follows that the range R(Ω) of the Hubert-
Schmidt operator Ω consists of analytic functions in L2(0, 2π). Hence if ξeL2(0, 2π)
and PΩξ = Q then ί2ξ = 0, because Ω^ is analytic and zero on the interval [π,2π].
But as Ω is injective we have ξ = 0, i.e. PΩ is injective.

Therefore PΩB = 0 implies B = 0. Correspondingly (1 - P)ΩC = 0 implies C = 0.
Hence if AE^[ and AΩ = Q it follows that ,4 = 0, i.e. Ω is separating for J\f[.

Let now J be the modular conjugation associated with the pair (Λ^Ω), and
put

and

Clearly ̂  g JJ/^J = JΓ^JV2 = M2.
Moreover Jiv and Jt2 are Type I factors. Since Ω is cyclic and separating for

Jf2, JΩ = Ω is cyclic and separating for JJ/

2

/J = ̂ 1.
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Added Note. We have been informed by Dr. Christian Skau that the conclusion of Example 4.2 ist due
to Kadison [29]. The result follows also very easily from Dixmier and Marechal [30].
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