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Abstract. Methods of abstract algebraic geometry are used to study rank 2
stable vector bundles on P3. These bundles are then used to give self-dual
solutions, called instantons, of the Yang-Mills equation on S4.

§0. Introduction

A problem which has recently attracted considerable attention in the gauge
theories of elementary particle physics is the search for self-dual solutions of the
Yang-Mills equation. The solutions found so far depend on a finite set of points of
the 4-sphere S4, and are called instantons. In the language of differential geometry,
this problem can be phrased as follows: find all possible connections with self-dual
curvature on a smooth SU(2)-bundle over the 4-sphere S4. Following the Penrose
program of translating physical problems into problems of several complex
variables, Atiyah and Ward [2] have shown that this problem is equivalent to the
classification of certain holomorphic C2-bundles on complex projective 3-space PC
with an added reality condition (described explicitly in §1).

An instanton has a "topological quantum number" fc, which is a positive
integer. The physicists [7] have already shown the existence of instantons for all
values of k = 1,2,.... In the differential-geometric interpretation, k is the second
Chern class c2 of the SU(2)-bundle it is known that c2 completely determines a
smooth SU(2)-bundle on S4 up to isomorphism. Atiyah et al. [1] have shown that
the moduli (or parameter space) for the set of connections with self-dual curvature
on the SU(2)-bundle with given c2 > 0 is a smooth manifold of dimension 8c2 — 3.
Their proof, which uses deformation theory and the index theorem, is purely local
and tells nothing of the global properties of the moduli space. To find out more
about this moduli space, in particular, whether it is connected, and to give an
explicit construction for the corresponding instantons, it seems that recent work in
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algebraic geometry on the classification of stable vector bundles on P| should be
very useful.

In this paper we will formulate the problem on F^, mention some related
results in algebraic geometry, and begin the program of studying the moduli space
M(k) of instantons with topological quantum number k. In particular, we show
that M(l) is isomorphic to the open unit ball in 1R5. Thus it is connected and
contractible, as was already noted by Atiyah and Ward. For k = 2, we show that
the moduli space M(2) is connected but not simply connected. At the same time,
we find that for fe=l,2, the instantons already constructed by the physicists [7]
are the only possible ones.

The terminology and basic results of algebraic geometry can be found in
Hartshorne [5].

§1. Statement of the Problem

In this section we will state the problem on Pj which is equivalent to classifying
instantons.

First of all, we need some extra structure, consisting of a map π : P|— '•S'4, and a
conjugate linear involution j Fj-^Fc which preserves the fibres of π. To define
these, let H be the ring of quaternions, that is, a 4-dimensional real vector space
with basis 1, z, j, fc, and multiplication determined by ί2 =j2 = k2 = — 1, ij = fc, jk = z,
ki =j9 jί = — fe, kj = — z, ίk = —j. We identify a four-dimensional complex vector
space C4, having coordinates z0, z1? z2, z3, with a two-dimensional quaternion
space H2, having coordinates w0, w1? by setting

Now let j denote left multiplication on H2 by j. This induces a map j :(C4-»C4

which is easy to make explicit:
2= zj + z J = -

and similarly for w^ Here we use the fact that for any complex number z =
considered as a quaternion, jz = zj. Thus j on (C4 is the map

7(z0,z1,z2,z3)-(-z1,z0, -z3,z2).

This map is conjugate linear in the sense that 7(̂ 1;) = λj(v) for any Λ,e(C, t;e(C4. Note
also that j2 is just multiplication by — 1 on C4.

Next we define the map j Pc-^Pc by letting j act on the homogeneous
coordinates z0, z1? z2, z3 as above. This makes sense, because if we multiply_the
coordinates of a point P by λ, then the coordinates of j(P) are multiplied by I, so
they still represent the same point. Since j2 multiplies the coordinates by — 1, it is
the identity map on IPj, i.e. j is an involution.

Now let FH be the projective line over H, defined as equivalence classes of
ordered pairs (w^Wj), v^eH, under the equivalence relation (w0,w1)^(αw0,αw1)
for any αeH. This space FH is topologically a 4-sphere S4. The natural projection
map H2 — {0}->FiH induces a map π :Fc->Fin =S4 via the identification of H2

with (C4 above. Note that by construction the fibres are stable under the map j.
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Note finally that a fibre of π is the image in P| of a 1-dimensional subspace of H2,
namely an H = C2, which gives a PC in P|. This is topologically a 2-sphere S2.
Under this identification, one can show that j is essentially the antipodal map on
each fibre.

Now we can state our problem.

Problem 1.1. Classify all holomorphic rank 2 vector bundles E on IPj , together with a
map j: E—>£, such that

(1) cl(E) = Q, c2(E)>0, where c± and c2 are the Chern classes, which we consider
as integers

(2) E is stable (which in the presence of (1) is equivalent to saying
H°(E) = Q \E has no global holomorphic sections)

(3) for each point peS4, E\π-1(p} is the trivial rank 2 bundle on n~ί(p) = W^;
(4) the map j:E-+E is a conjugate linear map, lying over the involution

j : PC-»PC, such that J2 = - id£.
Furthermore, we should consider E up to isomorphism of holomorphic bundles,

andj up to multiplication by AeC, |λ| = l. (Note that if \λ\ = l, then (λj)2 = λjλj
= λλ]2=]2.)

This is the problem which Atiyah and Ward [2] have shown is equivalent to
the problem of classifying instantons.

The problem naturally falls into two parts. The first part is to classify all
holomorphic rank 2 vector bundles on PC satisfying (1) and (2). This is a purely
holomorphic question over (C, which does not involve the additional structure j.
Note that in contrast to the differential-geometric version, where there is just one
SU(2)-bundle on S4 with given Chern class c2, and the problem is to classify
certain connections on the given bundle, here there are many different holomor-
phic bundles with the given Chern classes. By virtue of a theorem of Serre [9] this
holomorphic problem is equivalent to the algebro-geometric problem of classify-
ing algebraic rank 2 vector bundles on the algebraic variety PC, subject to the same
two conditions (1) and (2). We will discuss this algebro-geometric problem in §2.

The second part of the problem is to determine which bundles satisfying (1)
and (2) also satisfy (3), and admit a map; satisfying (4). We will see later that such a
j, if it exists on a given bundle E, is unique. Therefore the set of solutions of the
whole problem will be a subset of the set of solutions to the first part of the
problem. This second part also can be phrased in algebraic geometry, this time
algebraic geometry over the real numbers. We will discuss this in §3.

§2. Stable Vector Bundles on PC

Let us consider algebraic rank 2 vector bundles on Pc. For any such bundle E, let
cx(£) and c2(E) be its Chern classes, considered as integers. It is known, for purely
topological reasons, that C1c2^0(mod2). Furthermore, it is known that for any
pair of integers c l 5 c2 satisfying cίc2 = 0(mod2), there is an algebraic rank 2 vector
bundle on P| with those Chern classes. In fact, one can show that for any such
given c1 and c2, there are algebraic families of arbitrarily large dimension of
mutually nonisomorphic bundles with those Chern classes. This may make the
classification problem seem hopeless. However, if one imposes the additional
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restriction .that the bundles should be stable — a restriction first suggested by
Mumford, and later used by many others — the problem becomes manageable. In
this particular context, Maruyama [8] has shown that the family of all stable rank
2 bundles on IP| with given Chern classes c± and c2 can be parametrized by a finite
union of quasi-projective algebraic varieties. Fortunately for us, the bundles which
occur in Problem 1.1 are all stable, so we can ignore the others. Furthermore, we
need only consider bundles with c1 — 0, in which case the stability condition
implies c2 > 0.

Our principal tool for studying these bundles is to associate a bundle with an
algebraic curve in 1PC. This is done as follows. Let (9(1) denote the line bundle on
IPc corresponding to a hyperplane. For any bundle £, we denote by E(n) the
twisted bundle E(x)$(l)®". A theorem of Serre asserts that for n sufficiently large,
E(n) will be generated by global sections. In particular it has non-zero global
sections, even though E itself does not. Let s£H°(E(n)) be a non-zero global
section, and let (s)0 = Y £ IPc be the zero-set of that section. Then (provided s was
sufficiently general) Y will be an algebraic curve in Pc In this way we associate to
E a curve 7, depending of course on n and 5. If we assume that c1(E) = 0 and let
c2(£) = c2, then one can compute the degree d and the genus g of Y as follows:
d = c2 + n2; g~d(n — 2)+l. Furthermore, the canonical sheaf ωγ on Y is isomor-
phic to Φγ(2n — 4). In particular, it is the restriction of a line bundle on IPJ-.

The real importance of this construction is that it has a converse. We can say
exactly which curves arise from vector bundles, and give an existence theorem for a
bundle associated to a given curve. The precise result, following an idea due
originally to Serre, is this.

Theorem 2.1. There is α one-to-one correspondence between (a) the set of pairs
<£,5>, where E is a rank 2 vector bundle on PC vwί/i c1(£) = 0, and seH°(E(n)) is a
global section for some n, and (b) the set of curves Y in IP3, together with a given
isomorphism ωγ^@γ(2n — 4). Furthermore, the bundle E is stable if and only if the
curve Y is not contained in any surface of degree ^ n.

Technical Note. To make this exact, in (a) one must require that the zero set (s)0 of 5
have codimension 2 in PC, and in (b) one should allow the word "curve" to mean a
locally complete intersection closed subscheme of P|, possibly reducible and
possibly with nilpotent elements. A theorem of Kleiman implies that for n
sufficiently large, and for s sufficiently general, the curve Y will be irreducible and
nonsingular however, it is often preferable to use a smaller value of n, even at the
expense of having nilpotent elements in Y.

Proof. To go from (a) to (b), we simply take y=(s)0. To go from (b) to (a), we
construct the sheaf E(n) as an extension

where J>γ is the ideal sheaf of the curve Y. To give such an extension it is equivalent
to give an element ξeEκil^(fγ(2n\Θ^}. Using various exact sequences and
canonical identifications, one can show that this Ext group is isomorphic to
H°(Y, ωγ(4 — 2n)). Thus ξ is determined by giving the isomorphism of ωy with
&Y(2n-4).
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This theorem is valuable in that it gives an existence theorem for bundles
associated to certain curves. It is not so useful for constructing these bundles
explicitly (e.g., giving their transition functions), because it is difficult to chase
through the exact sequences and the Ext construction used in the proof. However,
it is fine if we are only interested in the moduli space of all such bundles, because
we can relate that to the moduli space of curves, which is easier to handle. Of
course the curve Y depends on the section 5 as well as the bundle E, so to get the
moduli space for bundles E, we will have to eliminate the ambiguity introduced
by s.

Example 2.2. Let Y be a disjoint union of r lines Pc in Pc, with r ̂  2. The canonical
sheaf of a line is &( — 2). Thus ωγ ̂  ΦΎ( — 2), and this isomorphism is determined up
to r non-zero complex numbers λί9... ,/l,.e<C*, one for each component of Y.
Taking n=l, we thus get a bundle E for each choice of Y and each choice of
isomorphism ωγ = @γ( — 2). Since deg7=r, we have cί(E) — 0 and c2(E) = r— 1.
Furthermore, for r ̂  2, Y is not contained in a plane, so E will be stable. This
shows the existence of stable bundles for all values of c2 ̂  1.

Now let us compute the dimension of the family of bundles obtained in this
way. To determine a line in PC requires 4 (complex) parameters. [This is the
dimension of the Grassmann variety G(l,3) which parametrizes lines in IP3, or
equivalently, 2-dimensional subvector spaces of a 4-dimensional vector space C4.]
Thus the choice of Y requires 4r parameters. The choice of the isomorphism
ωy £ Θγ( — 2) depends on the r parameters A 1 ? . . . , λr. Thus the pair <E, se #°(E(1))>
depends on 5r parameters. Now we should subtract dimH°(E(l)), which is the
number of parameters in the choice of s. One can show that άimH°(E(l)) = 5 if
r = 2 ; 2 i f r = 3; 1 if r Ξ^ 4. Thus we see that the bundles constructed by this method
form an (irreducible) algebraic family of dimension

5 if c2 = l

13 if c2 = 2

5c2 + 4 if c2 ̂  3.

This example is closely related to the specific instantons constructed by the
physicists. They fix r points in S4 (depending on 4r real parameters) and positive
real numbers λl9... ,/ί/.>0, to construct their instantons. Then gauge transfor-
mations give some equivalences, so that they end up with families of instantons
depending on 5, 13, respectively 5c2-j-4 real parameters. Via the map π : Pc-»S4,
the r points p1 ?... ,prεS4 correspond to r disjoint lines π~1(p1),... ,n~1(pr)QWl.
This shows the connection between the two constructions. Note that the
instantons depend upon a number of real parameters that is the same as the
number of complex parameters needed to describe the algebraic vector bundles.
This is because the lines of the form π~ 1(p) depend on 4 real parameters, and the λ{

are real in the construction of the instantons.

Example 2.3. Let Y be an irreducible elliptic curve (i.e. Riemann surface of genus 1)
in PC, of degree d^5. Then ωγ^θγ, and the isomorphism is determined up to a
single Ae(C*. Taking n = 2, we therefore obtain a bundle E with cί = 0, c2 = d — 4,
and a section seH°(E(2)). For d^ 5, Y is not contained in any quadric surface, so E
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will be stable. (For d = 3, 7 is a plane cubic curve; for d = 4, Y is the complete
intersection of two quadric surfaces.) Thus again we obtain stable bundles for
every value of c2 ̂  1. As before, one can compute the dimension of the family of
bundles obtained in this way. Without going into details, here is the result: the
dimension of the family is

5 if c2 = l

13 if c2 = 2

21 if c2 = 3

29 if c2 = 4

4c2 + 16 if c2^5.

For c2 = 1,2, this gives the same answer (and in fact the same bundles) as the
previous example. For c2 = 3,4 we get a larger family than in the previous example.
These numbers (21,29) are the same as those predicted by the index theorem
(8c2 — 3), so we might hope that this construction would give all possible bundles
with c2 = 3,4. But for c2^5, the dimensions we get here (and in the previous
example) are less than 8c2 — 3, so it is clear that we will need curves of higher genus
to construct all possible bundles. Note also that as c2 gets large, 4c2 +16 < 5c2 + 4,
so the bundles coming from elliptic curves are not more general than those coming
from disjoint lines. They are simply a different family, and presumably both are
subfamilies of some larger more general family.

Now an important question arises. Having found a construction for some
families of stable bundles, how can we tell whether we have obtained all possible
stable bundles with the given Chern classes? Serre's theorem tells us that for any
given bundle E, some twist E(n) will have global sections, and will therefore
correspond to a curve. But as n gets larger, the corresponding curves will have
larger degree and genus, therefore will be harder to classify. Because of
Maruyama's theorem of the existence of a variety of moduli for stable bundles with
given c2, and the fact that the twist n required to make H°(E(n))ή=0 is a
semicontinuous function on the parameter space, we can conclude by quasi-
compactness that for each c2, there exists some n = n(c2), such that for every stable
bundle E with c1 =0, c2(E) = c2, we will have HQ(E(n))ή=Q. If we knew this number
n, then we could in principle find all stable E with the given c2, by looking for all
curves of degree up to c2 + n2 whose canonical sheaf ωγ is isomorphic to a suitable
GΎ(f\ In response to this question we have a conjecture and some partial results.

Conjecture 2.4. Let E be a stable rank 2 bundle on IP^ with cx — 0 and c2>0. Let

n > l/3c2 + l - 2. Then H°(E(n)) Φ 0.

Theorem 2.5. The conjecture is true for c2 = l,2,... ,9. For c2>9 the following
weaker result holds: if 2n*+ 9n2+ I3n + 6>3cl + 3c2, then #°(E(rc))φO.

The proof will appear in [6].

For example, if c2 = 1, then H°(E(1)) Φ 0, so E comes from a curve Y of degree 2
with ωγ = (9Ύ( — 2). Such a curve Y must be either two skew lines, as in (2.2), or a
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scheme structure of multiplicity 2 on a single line. In fact, the latter possibility does
not give any bundles not already obtained from two skew lines, so we see that the
construction of (2.2) for r = 2 gives all possible stable bundles with c2 = 1.

For c2 = 2, we again have H°(£(l)) Φ 0, so E corresponds to a curve Y of degree
3, which must be either three skew lines, or a single line plus a double line, or a
single line of multiplicity three. Again in this case one can show that all possible
stable bundles with c2 = 2 come from three skew lines as in (2.2).

For c2 = 3, 4, we find that if °(E(2)) φO. This means that any stable bundle with
c2 = 3 or 4 must either come from 4 or 5 skew lines, or an elliptic curve of degree 7
or 8, or a scheme which is a degenerate case of one of these. The analysis of all such
special subschemes becomes rather complicated, and has not yet been carried out
in these cases.

For c2 = 5, the theorem gives H°(E(3J) φO. Thus, as suggested before, we do not
expect the construction of (2.3) to give all possible bundles. And indeed, one can
show there are stable bundles with c2 = 5 for which H°(E(2)) = 0.

We conclude this section with a few remarks about the moduli space of stable
vector bundles. Let Mc(c2) denote the moduli space of stable rank 2 vector bundles
on I?! with cί = 0 and given c2. According to Maruyama's theorem, it is a finite
union of quasi-projective varieties over C. We can use deformation theory to study
the infinitesimal structure in the neighborhood of any given point. If xeMc(c2) is a
point corresponding to a bundle £, then one knows that the Zariski tangent space
to M at x (which is defined as the dual (C-vector space to mjm2) has dimension
equal to dimH1(S>nd(EJ), where Snd(E] is the sheaf of endomorphisms of E.
Furthermore, if H2(S' nd(E}) = 0, then M is nonsingular at x, so that the dimension
of M itself is given by the dimension of the Zariski tangent space, namely
Hl(gnd(E)\

One knows that a stable vector bundle has no global endomorphisms other
than scalar multiplication, so H°(S'nd(E)) = (C. Therefore we can use the Riemann-
Roch theorem, applied to $nd(E) on IPc to compute these dimensions. The result is

dim Jϊ VwΛ(E)) - dimH2(/nd(E)) = 8c2 - 3 .

If H2 =0, then Mc(c2) will be a complex manifold of complex dimension 8c2 — 3,
which is the same as the real dimension of the space of instantons M(c2) given by
the index theorem. In some cases, including all the bundles constructed in (2.2) and
(2.3), we can prove that H2(/nd(E)) = Q. However, in contrast to the differential-
geometric situation, where the analogous H2 always vanishes, there are examples
of stable bundles with H2(<$nd(E)) Φ 0.

§3. Real Structures on Complex Varieties

In this section we will show how conditions (3) and (4) of (1.1) can be reinterpreted
in the language of real algebraic geometry. First we will study the general notion of
a real structure on a complex variety.

It is well known that the set of solutions of a polynomial equation over the real
numbers may not sufficiently reflect properties of the equation itself. For example,
the equation x2 + y2 = 1 describes a circle in the plane, which is fine. On the other
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hand, the equation x2 + y2 = — 1 has no real solutions at all. Surely we do not wish
to identify the "algebraic curve over 1R defined by x2 + y2= — 1" (whatever that
means) with the empty set. So we need to deal with real algebraic varieties in some
way which is more sophisticated than merely looking at the real solutions of
polynomial equations. One way of doing this is to use the notion of a scheme over
R Another equivalent way, more suitable for our purposes, is to use the notion of
a real structure on a complex variety.

Definition. Let X be an algebraic variety over (C (or scheme over (C, or a complex
manifold). A real structure on X is a conjugate linear map σ :X-+X with σ2 = iάx.
The fixed points of σ (if any) are called the real points oΐX with respect to the real
structure σ.

For example, letXgC 2 be defined by the equation x2 + j;2 = l, and let σ be
complex conjugation. Then σ is a real structure on X whose real points form the
circle x2 + y2 = 1 in R2. On the other hand, if X is defined by x2 -i-y2 = — 1, then X
is a curve over (C, with a real structure σ given by complex conjugation, having no
real points.

Definition. Let X be a variety over C with a real structure σ. Let 2F be a coherent
sheaf (or vector bundle) over X. A real structure on 3F is a conjugate linear map
σ : 3F-^3F lying over the map σ :X^>X, such that σ2 =id^. A symplectic structure
on 2F is the same, except that σ2 = — id^. We say two real or symplectic structures
σ and σ' are equivalent if σ' = λσ for some Ae(C, |Λ,| = 1.

For example, if X has a real structure σ :X-*X9 the induced map on the
structure sheaf σ ' ®x-*®x will be a real structure on Θx. For another example, the
map j on ^p3(l) induced by the real structure j on IPc above is a symplectic
structure on $p3(l). This is because the global sections of (9(1) form the vector
space (C4 with basis z0, z l5 z2, z3, where we saw that;2 acted as — 1. Finally, the
map j \E-*E postulated in (1.1) is a symplectic structure on E.

To illustrate these notions, we will classify the possible real and symplectic
structures on a complex vector space. The proofs are elementary (conjugate) linear
algebra.

Proposition 3.1. Let V be an n-dimensional complex vector space. If σ is a real
structure on V, then there is a basis eί,...,enof V such that a(et) = et for each i. Thus
the only real structure on V is the usual one: for any v= YJaiei in V, σ(v) = Σ^i V
σ is a symplectic structure on V, then n must be even, say n — 2r, and there is a basis
el9 e'l9...,er, e'r such that σ(^) = ̂  and σ(eβ= — e{ for each i. Equivalently, V has a
structure of r-dimensional vector space over the quaternions H, with σ being
multiplication by j.

Next we will classify the possible real structures on complex projective space
IPS. The key point is that if σ is a real structure on IPc, then anything which is
functorially associated with IPC will inherit a real or symplectic structure. Consider
for example the sheaf 0(1) associated to a hyperplane. This sheaf can be
characterized as the generator of the Picard group of Fc (which is isomorphic to T£)
having global sections [which distinguishes it from Φ(— 1)]. Therefore σ*$(l) must
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be isomorphic to (9(1). An isomorphism / : @(l)->σ*&(l), which is (C-linear, can be
considered as a conjugate linear map / : $(1)-»0(1) lying over σ. It is determined
up to multiplication by /ίe(C, /IΦO. On the other hand, /2 is a linear isomorphism
of 0(1) with itself, hence f2 = μ-iά for some μe(C. One sees easily that μ is real.
Then, replacing / by λf for suitable λ, μ is replaced by |λ| μ, so we can arrange that
/2=±1. Thus / is either a real or a symplectic structure on 0(1), uniquely
determined up to equivalence.

Now / induces a real or symplectic structure on the vector space H°((9(ί)),
which is an (rcH-l)-dimensional space with basis Z O , . . . , Z M , the homogeneous
coordinates on Pc. Applying (3.1), we have the following result.

Proposition 3.2. // n is even, then P£ has a unique real structure, the usual one, given
by complex conjugation of the coordinates. If n is odd, then P£ has two possible real
structures : the usual one, and another, which has no real points. In the second case,
(9(1) has a symplectic structure, and one can choose homogeneous coordinates
z0,zί,...,zn such that σ is given by σ(z0,z1, ... ) = (-z1,z0, -z3,z2, ... ).

Note that if (9(1) has a symplectic structure, then (9(m) will have a real structure
for m even, and a symplectic structure for m odd.

Now let us return to Pc and the real structure; on it, defined in §1, which we
recognize as the unique nonstandard real structure on Pj. We will need to study
the Grassmann variety G(l,3) which parametrizes lines in PC. Classically this is
constructed as follows : a line L Q Pc corresponds to a 2-dimensional subspace of
(Cc. Let it be spanned by the vectors (a0,a1,a2,a3) and (b0,bί,b2,b3). Then
consider the quantities pij = aibj — ajbί for 0^i<j^3. These are the Plύcker
coordinates of the line L. They define a point in Pc which depends only on L, not
on the two vectors chosen. On the other hand, the quantities ptj satisfy the
quadratic equation

and one can show that the set of lines Pc is in 1 — 1 correspondence with the set of
points in PC satisfying this equation. This then is the Grassmann variety G(l, 3),
realized as a quadric hypersurface in Pc.

This Grassmann variety and the PC in which it is embedded are functorially
associated with PC. Therefore the real structure j on P| induces a real structure on
G(l,3) and on PC. Since the ptj are quadratic in the coordinates of Pc, we can
expect that this PC will have the usual real structure. Indeed, this is easily verified
directly. We know how j acts on the coordinates of PC. So we can compute the

action of 7' on p0ι
=αo^ι~flι^o'~>'^ι^o + ̂ o^ι==Poι Similarly

To see that this is the usual real structure on P|, introduce new coordinates

X0=Pθl+P23 X2

Then X-^X for all i.
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In these new coordinates, the equation of G(l, 3) becomes

X^ ~Γ X2 ' ^3 ' -̂ 4 ' "^5 ̂  *^0 '

Thus G(l, 3) inherits a real structure whose set of real points is a 4-sphere. We can
identify this 4-sphere with the one in the map π : Pj-^of § 1 in the following way.
A real point of G(l, 3) is a point left fixed by the real structure σ on G(l, 3). Thus it
corresponds to a line in P| which is sent into itself by the map j. But these lines are
precisely the fibres of the map π. We will call them the real lines in P|: they are
those lines L Q PC which have an induced real structure. That induced structure is
of course the non-standard real structure on Pc, with no real points.

Now we are ready to apply these ideas to vector bundles and reinterpret
conditions (3) and (4) of (1.1). For any rank 2 bundle E on P£, consider its
restriction E\L to a line LgPc. It is known that any vector bundle on a line is a
direct sum of line bundles. Therefore E\L^(9(a)@(9(b) for some integers a,b. If
c1(£) — 0, then α-fέ> = 0. Furthermore, if E is stable, a theorem of Grauert and
Mϋlich [4] asserts that a = b = Q for almost all lines L, that is, for lines
corresponding to an open dense subset of the Grassmann variety G(l, 3). A line for
which β,fcφO is called a jumping line of E. Barth [3] has shown that the set of
jumping lines of a given bundle E corresponds to a divisor Z£G(1,3), i.e. a
subvariety of codimension 1 in G(l,3), and that Z has degree =c2(E).

The condition (3) of (1.1) says that for every peS4, E\π~1(p) is the trivial bundle
on π~ 1(p). In other words, π~ 1(p) is not a jumping line for E. Since the lines π~ 1(p)
correspond exactly to the real points of G(l, 3), the condition (3) is equivalent to

(3') The divisor Z of jumping lines of E has no real points.
As for condition (4), we have already noted that the map j would be a

symplectic structure on E. Let us consider this condition in terms of the moduli
space MC^). This moduli space is functorially associated with P|, depending only
on the integer c2. Therefore it inherits a real structure σ. What are the real points
of this real structure? If E corresponds to a real point of Mc(c2), that means
j*(E)^E on Pc. Just as in the case of the sheaf $(1) discussed earlier, to give an
isomorphism ofj*E with E is equivalent to giving a real or symplectic structure on
E furthermore, that structure is uniquely determined up to equivalence. Therefore
we can rephrase condition (4) as follows:

(4') E corresponds to a real point of Mc(c2), and has a symplectic structure (not
a real one).

Summing up, we can divide the problem (1.1) into four steps.
Step 1. Classify the stable rank 2 vector bundles on P^ with c1 = 0, c2 > 0, and find
their moduli space Mc(c2).
Step 2. Identify the real structure on M€(c2) induced by j, and find its real points
MR(c2).
Step 3. Among the real points MR(c2), find which ones correspond to bundles E
with a real structure, and which to bundles with a symplectic structure.
Step 4. Among those E with a symplectic structure, find those whose divisor of
jumping lines Z has no real points. This will be the moduli space M(c2) of
instantons, which thus appears as an open subset of MR(c2), defined by algebraic
equalities and inequalities.
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Of course these steps may be very difficult to carry out. Note also that even if
the complex moduli space Mc(c2) is irreducible and nonsingular, for example, that
tells us very little about M(c2), because the real points may fall into many
connected components, and Step 4 may require removing some lower-dimensional
subvarieties, and then taking certain connected components of the remainder.

We will carry out this program for c2 = 1,2 in the next section.

§4. The Moduli of Instantons with c2 = l,2

First we treat the case c2 = 1. If E is a stable bundle with c2 = 1, then its divisor of
jumping lines Z£G(1,3) is a divisor of degree 1. In other words, it is the
intersection of G(l,3) with a hyperplane H in Pj. Now the quadric G(l,3)
determines a duality of the projective space P| with itself, whereby the hyperplane
H corresponds to a point P£. Geometrically, PE is obtained as the common
intersection of the tangent spaces to G(l, 3) at all the points of Z = G(l, 3)n# (see
Fig. 1).

Fig. 1

Theorem 4.1. A stable bundle E with c1=Q and c2 = l is completely determined by
the point PE described above. Conversely, any point PePc not on G(l, 3) comes from
a bundle. Therefore the moduli space Mc(l) = Pc —G(l,3).

This result is proved by Wever in his Berkeley thesis [10], also independently
by Barth [3]. Atiyah et al. have a new differential-geometric proof of the
corresponding statement in differential geometry, to appear in the expanded
version of [1].

We have already discussed the induced real structure on P£ and on G(l, 3).
Thus we see that the real points of this space are MR(l) = PiR — S4. This space has
two connected components: the inside of S4 and the outside of S4. The points of
MR(1) correspond to stable bundles E with a real or a symplectic structure. Since
dimcH°(JE(l)) = 5, the induced structure on E(l) cannot be a symplectic structure
(3.1). Therefore E(l) has a real structure, which implies that E must have had a
symplectic structure. So both components of P^ — S4 correspond to bundles with
a symplectic structure.

It remains to determine which bundles E have no real jumping lines. We can
recover the divisor Z of jumping lines by drawing all tangent lines from PE to
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G(l,3) and taking their points of contact. If PE is a real point, the real jumping
lines can be obtained by taking all real tangent lines from PE to S4. So we see that if
PE is outside S4, there will be many real jumping lines if PE is inside S4 there will
be none. So we have

Theorem 4.2. The moduli space M(l) of instantons with c2 = l is the inside of S4 in
IR5. In particular, it is a contractible real open 5-manίfold.

We make two further remarks about this moduli space. We have already seen
for c2 = l that f/°(E(l))=t=0, and that any stable E with c2 — l corresponds to a
union of two lines in Pc. The space H°(£(l)) corresponds to the lines through the
point PE. Such a line meets G(l, 3) in two points, which correspond to the two lines
in PC determined by the given section sejFf°(E(l)). So we see that the possible pairs
of lines which occur for a given bundle E correspond to pairs of points on G(l, 3)
which are collinear with PE. In particular, if PeM(l), there always are pairs of
points on S4 collinear with P, so the bundle E can be constructed from two points
of S4. The scalars λ0,λ1 depend on the position of P along the line joining those
two points; λQ9λί>0 since P is inside S4. Therefore we have

Corollary 4.3. The only possible instantons with c2 = i are those already constructed
by the physicists using two points p0,p1eS4 and real scalars λ0,λ1>0.

Our other remark concerns the action of the group PGL(3) of automorphisms
of P|. This group acts transitively on Mc(l), so we see that any two stable bundles
with c2 = l are equivalent by an automorphism of PC- Since PGL(3) depends
functorially on Pc, it inherits a real structure from the real structure j. The group
of real points of PGL(3) for this real structure is just the connected component of
the identity in SO(5,1). It acts transitively on the inside of S4, so we see that the
space of instantons M(l) is a homogeneous space under this group.

Now we come to the case c2 = 2. Our main result is this.

Theorem 4.4. The moduli space M(2) of instantons with c2 = 2 is a connected, but not
simply connected, real i3-dimensional manifold. Every instanton with c2 — 2 can be
obtained by the physicists' construction starting from 3 points p0,p1,p2εS4 and
three real numbers λ0,λ1,λ2>Q.

Step 1. We start by describing the moduli space Mc(2) of stable bundles on PC
with c1=Q and c2 = 2. We have already seen that for any such bundle E,
H°(E(l)) Φ 0, so that E corresponds to a curve Y of degree 3 with ωy = (9Ύ( — 2). One
can show that the degenerate cases of Y give no new bundles, so we may assume
that Y is three skew lines. A theorem of classical projective geometry asserts that a
set of three skew lines in Pc lies on a unique nonsingular quadric surface (λ This
quadric β can be constructed as the union of all other lines which meet each of the
three given lines. Furthermore, one knows that a nonsingular quadric β in Pc is
isomorphic to PC x PC. The points of the two factors correspond to the lines on the
quadric surface.

Of course the curve Y depends on the choice of a section se//°(E(l)). If
s'eH°(E(l)) is another section, then we get another curve Y' which is a union of
three lines, but one can show that Y' determines the same quadric surface (λ Thus
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Q depends only on E; as seH°(E(ΐ)) varies, the curves Y move in a linear system
on Q of type (3,0), meaning that each divisor Y consists of three lines in one of the
two families of lines on Q. This picks out for us one of the two factors P£ of Q, and
the linear system of curves Y then corresponds to a linear system g\ of degree 3
and dimension 1 on P<C. Degree 3 means sets of 3 points moving; dimension 1
means it is a 1-ρarameter family—this is because άimH°(E(l)) = 2. Furthermore,
one can show that this g\ has no base points, that is, all three points are effectively
moving.

Theorem 4.5. A stable bundle E on Pj with c1=0, c2 = 2 determines
(a) a nonsingular quadric surface Q
(b) a choice of one of the two factors β —Pi x Pi, and
(c) a linear system g\ without base points on P^.
Conversely, any set of such data (a), (b), (c) comes from a unique bundle E.

This enables us to describe the moduli space Mc(2) as a fibre space. The
quadric surfaces in P| are parametrized by P|. Let Λ£P| be the subset
corresponding to the singular or degenerate quadric surfaces. Then Mc(2) is fibred
over PC-A

Mc(2)

JΓ71L17

P|-^
The fibre is the disjoint union of two copies of the variety U which parametrizes
the set of possible g\ with no base points on Pc. A g\ is determined by a
2-dimensional subspace of the 4-dimensional vector space #0(P£, $(3)). Thus the
set of all possible g\ is parametrized by the Grassmann variety G(ί, 3); those with
no base points form an open subset U. Note that even though the fibre of this
fibration is disconnected, the whole space Mc(2) is connected, because by moving 3
lines in P|, one can get from one factor of Q to the other.

So we see that Mc(2) is an irreducible nonsingular variety of dimension 13.
Step 2. Next we must determine the real structure on Mc(2) and find its real
points. We do this by using the fibration just described.

Since P£ parametrizes quadrics in P£, it is the projective space associated to
the vector space H°(0V3(2)). Since 0P3(1) ^as a symplectic structure, 0^(2) will
have a real structure. Therefore the induced real structure on P^ is the standard
one, and its real points are P^.

Next, what are the real points of A ? They correspond to singular or degenerate
quadric surfaces in P^, which can have no real points, since Pi has no real points.
This rules out a quadric cone (the vertex would have to be a real point) and a
doubled plane (that plane would have to be real, but Pc has no real planes). The
only possibility is the union of a plane with its conjugate plane. Since the planes in
PC are parametrized by another Pj, with the same real structure j9 we see that ΛR is
isomorphic to the quotient space Pj//, which is a compact real 6-manifold.

Notice that P^ — AR is connected (since zJR has codimension >1) but not
simply connected (because P| is not simply connected).

To study the fibre 1/1117, fix a point in the base PR — zlR. This corresponds to a
nonsingular quadric Q with a real structure σ. We know that Q ̂  P£ x P^ over C.
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The real structure σ cannot interchange the two factors, because then the
intersection of a line with its conjugate line would be a real point. Therefore σ
leaves each factor fixed, so each factor Pc has a real structure. The sheaf (9Q(i) on Q
is induced from 0p3(l). Therefore it has a symplectic structure. On the other hand,

where p1 and p2 are the two projections. Therefore 6^(1) must have a real
structure on one factor, and a symplectic structure on the other. Thus one factor
IP1 has the standard real structure, and the other has the nonstandard structure.
Correspondingly, the G(l,3) of which U is an open subset has the standard real
structure in one case, and the nonstandard one, described above, in the other case.
Step 3. It is not hard to see that the bundles E with a symplectic structure
correspond to the choice of factor Pc with the standard real structure those E
with a real structure correspond to the other factor. So we can ignore one U in the
fibre. The one we need is an open subset of a G(l,3) with its standard real
structure.
Step 4. The analysis of the divisor of jumping lines and the determination of which
bundles have no real jumping lines is the most delicate part of the proof.

First we show how to describe the divisor Z of jumping lines of a bundle E. As
before, E determines a quadric Q £ Pc, and a choice of factor Pc of Q. The points of
PC correspond to lines in Q, which in turn correspond to points of the Grassmann
variety G(l, 3) of lines in Pc. As pePc varies, its image in G(l, 3) describes a conic
γ £ G(l, 3). Let π be the unique plane of PC containing y. Now on γ we have the g\
coming from E. For each divisor Pί + P2 + P3 in the g\ , draw the tangent lines to y
at P19 P2, P3, and let them intersect atXί9X2,X3. Then as Pί + P2 + ̂ 3 varies in
#3, the points X19 X2, X3 move on another conic Γ (see Fig. 2).

Fig. 2

Now let π* £ Pc be the dual plane to π under the duality determined by the
quadric G(l, 3). Let W be the cone over the conic Γ with vertex π*. Then W is a
quadric hypersurface in PC, and the divisor Z of jumping lines of E is just

The question whether Z has any real points is equivalent, by projection into
the plane π, to the question whether the conic Γ meets the inside of the conic y.
This depends of course on the g\. One can show that there is just one connected
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component of UΆ for which the corresponding Γ does not meet the inside of γ. In
terms of three real points on y, this corresponds to specifying three positive real
numbers Λ,0, λί9 λ2. Thus these solutions are the same as the ones found by the
physicists.

We conclude that the space of instantons M(2) is fibred over P| — 4κ, with
fibre an open connected real 4-manifold. Therefore M(2) itself is connected but not
simply connected, since the same is true of the base. This completes the proof
of (4.4).

A couple of further remarks. One can also show in this case that the bundle E is
uniquely determined by its divisor of jumping lines Z. It is not known whether this
is true for stable bundles with arbitrary c2.

The group PGL(3) of automorphisms of F^ acts on Mc(2), but it is not
transitive. There is a 1-parameter family of inequivalent bundles under this action.
I am not sure how to distinguish them, but a good guess seems to be the following:
a g\ without base points determines a degree 3 map of PC-»!?£. This map will have
4 branch points in Pc. The cross ratio of these four points (modulo action of the
symmetric group on 4 letters) will give an invariant of the bundle E, similar to the
j-invariant of an elliptic curve. Perhaps this invariant characterizes the equivalence
classes under the action of PGL(3).
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Note Added in Proof

Recently Atiyah and Hitchin in Oxford and Drinfeld and Manin in Moscow have found a linear algebra
construction, based on earlier work of Horrocks and Barth, which gives all stable vector bundles
coming from instantons.






