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A Rigorous Approach to Debye Screening
in Dilute Classical Coulomb Systems
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Abstract. The existence and exponential clustering of correlation functions for a
dilute’ classical coulomb system are proven using methods from constructive
quantum field theory, the sine gordon transformation and the Glimm, Jaffe,
Spencer expansion about mean field theory. This is a vindication of a belief, of
long standing amongst physicists, known as Debye screening. This states that,
because of special properties of the coulomb potential, the configurations of
significant probability are those in which the long range parts of ! are mostly
cancelled, leaving an “effective” exponentially decaying potential acting be-
tween charge clouds.
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1. Introduction

1.1. Background

In two previous papers [1, 2], the author and Paul Federbush have studied the
quantum statistical mechanics of continuous systems with pair potentials such as
the Yukawa r~'e™*, «>0. Rigorous results on the existence and clustering of
correlation functions were obtained using a type of cluster expansion which is
convergent for a region of parameters physically associated with the plasma phase.
The reason for studying such potentials is that they provide a first step towards
obtaining the same type of results for the matter system, a system of positive and
negative charges, one species of which is fermions, interacting by the coulomb law
r~!. They have in common the difficulties that arise from the singularity of the
potential at the origin. Correlation functions are the next most obvious quantities to
inquire after, following the papers of Dyson and Lenard [3] on the stability of
matter and Lieb and Lebowitz [4] on the existence of the thermodynamic limit.

If one applies the cluster expansion of [1, 2] to the matter system, even
individual terms in the series are divergent because r~! is not integrable. The
coloumb force, however, has a property, which is probably special to a very small
class of long range potentials, that it “screens” itself. Debye and Hiickel [5] in their
theory of dilute ionic solutions gave a physical argument to the effect that the force
between most pairs of distant particles is almost entirely cancelled by the forces
from the remaining particles in the most probable configurations. The zeroth order
approximation is that r~ ! may be replaced by an “effective force” r~1e"/'> between
clumps of particles called charge clouds.

This paper provides a rigorous proof that for an approximate coulomb system
Debye screening holds, in the sense that the infinite volume correlation functions
exist and cluster exponentially. The approximations are (1) the system is treated in
classical statistical mechanics (2) » ! is replaced by a potential that falls offasr~ ! as
r— o0 but which is constant in the interior of (small) cubes of side [ filling IR3. Thus
each particle interacts as if it were at the centre of the cube containing it. (2) may not
be a bad approximation to more physical methods of mollifying the singularity of
r~ ! at the origin because the potential approximates r~ ! as [—0 and the results hold
in a region where the average interparticle spacing is sufficiently large compared
with [ at fixed temperature, i.e. arbitrarily dilute plasmas at fixed temperature.
Lebowitz and Stell [16], taking careful account of short range forces, unlike this
paper, have conjectured exponential decay. Stillinger and White [18] have
suggested an r~® decay. Modulo the short range forces, this paper settles the
question in favour of Lebowitz and Stell.

The techniques used in the proof are the sine gordon transformation, which has
already proved an important technique in the two dimensional coulomb gas [7] and
the Glimm-Jaffe-Spencer expansion about mean field theory [8] from constructive
field theory. Since neither of these are yet standard techniques for this problem,
there follows a brief discussion of these topics and the main technical obstacles.
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1.2. The Sine Gordon Transformation

The partition function for a two component system of charges in a finite region
ACIR? interacting by a pair potential v(x, y) is

(e)n

Z=Y VN1 Y (j dNPe_”Z’i-Esz)( [ dee‘/"B>
N=0 AN

B =B((x)y, (e)y)= Z B(x;, x,)e;e,
15j<k=N
(P)y=(Py, ..., Py) are the momenta, the mass of all particles is set to 1, (x)y are the
coordinates, (e)y are the charges, e;=+1, j=1,...,N. 7z is the activity,
B =(temperature)~!. The P integrals may be done explicitly and absorbed into (z')¥
to obtain

Z= Y ZYN!Y [ dxe F®.
N=0 (@) AN
If (f,g)= [ dxdyf(x)v(x,y)g(y) is a positive definite bounded bilinear form on
L?(R3), there exists a unique gaussian measure d¢, on S'(IR*) with covariance v(x, y)
and

exp{—1/2(f, )} = [ do, exp{ip(f)} .
This follows from Minlo’s theorem. If v is sufficiently regular, supv(x, x) < co and
N

continuity is necessary, one can take f(x)=p'? ) e,6(x—x), so that
j=1

exp{—pB} =exp{1/2/3 .; u(x;, xj)}

Jdé, exp {iﬁ” Zji ejcb(xj)} :

=1

Let dk(x)=exp {1/2fv(x, x)}dx. Then it follows that
Z=[dp,exp {22 [ dk(x) cos ﬂl/zd)(x)}

= [d¢,exp {22 /fl dx :cos B 2¢(x): }

because :exp {ifY2p(x)} : =exp{1/2fv(x, x)} -exp {iB**¢(x)}. Normal ordering is
defined by normal ordering the power series termwise.

It is not possible to set v(x, y)=|x—y|~! in this transformation because (a) the
associated form is not bounded (b) |x — y| " ! is not bounded at x =y. (b) is a genuine
obstruction in the sense that the partition function Z is divergent in finite volume
for v(x, y)=|x—y| 1. The physical interpretation is that such a gas will collapse into
neutral particles. In order to make Z finite, there must be some form of cutoff on the
short distance singularity of 7~ 1. In the ¢ variables this is reflected by the fact that
the cos ¢ field theory is nonrenormalizable in three dimensions.
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The most natural cutoff for physics would be a repulsive potential such as a hard
core between all particles, but this does not pass through the sine gordon
transformation in a simple way. The next best choice is perhaps
vx—y)=[dxf(x—uu—w|"' f(w—y) where [dudwf(u)u—w|~*f(w)<oo. This
can be interpreted as a coulomb interaction between two charge clouds at x and y.
With more work, the theorem can almost certainly be proved for this potential by
the same method.

The easiest cutoff, which is chosen in this paper, is to replace (4nr) ~ ! which is the
kernel of (— Laplacian) ™! by the kernel of (— 4,)~*! where 4, is the finite difference
Laplacian with respect to a cubic lattice IT, CIR® of spacing I. This is a function on 11,
but it may in an obvious way be identified with a potential v~ (x, y), constant for x, y
in the interior of cubes of side / centered on IT,. The sine gordon transformation is
formally the same but the spaces are different, e.g., v~ (x, y) is now a bilinear form on

I*(IT), d¢,- is a measure on @IR, $(x) is a function on IT,, and [dx :cos f*/%¢ :
becomes Y [*:cos BV (x):.

xellinA
Problem (a), which has so far been ignored, is dealt with in this paper by

replacing v~ by v, =kernel of (—4,+2z8¢&.,)7", where ¢_,(x)=1 if
xell,n ~ A, =0 otherwise. This gives rise to a bounded bilinear form on I*(IT)). It
converges to (—4,)”*, as A7IR? suitably, both pointwise and as a form.

1.3. The Glimm-Jaffe-Spencer Expansion about Mean Field Theory

By the sine gordon transformation,
Z={dg,, exp {—2zU(p)}
UB= ) P(:cosp'?p(x): —1).

xell;n A
The partition function has been normalized so that Z=1 when [=0. Set
I, =(22zB)~ /2. Consider the limit f—0, [, fixed. Formally,

2z(:cospr2p: —1)=—1/21;%:p*: + 1/4: 152 B 1% — ...

The first term can be absorbed into the measure which, up to normalization,
becomes the gaussian measure with covariance v, =(I; > — 4,)” *. The kernel of this
is approximately the effective potential r~ * exp (—r/I,)) found by Debye. This will be
the basis of an approximation provided the non-quadratic terms give small
contributions as §—0. A limit at fixed /is rather easy to apply, however this gives no
control over zI® because f—~0=>:z— 0. zI* controls the number of particles in a
cube of side [ which is a dimensionless way of measuring density. Therefore this
approximation will only yield high density results—which is where the type of
cutoff used is significant.

To obtain results which are valid for arbitrarily low density at fixed g, it is
necessary to show that the non-quadratic terms give small contributions as f—0,
[-0 with [, fixed and /I bounded. It is easy to check this in perturbation theory:

after the quadratic term is put in the measure, the interaction is Y I3
xell;nA



Debye Screening 317

(2z:cos BY2p(x) : +1/215 2 : p*(x): —2z). Expand the exponential and then the
cosine in power series. (The resulting expansion is similar to the resummed high
temperature expansion used by physicists, e.g., [11, 16, 17].) The worst behaved
contributions are (I;2f"~*)> Y I°v?"(x,y) for n=2,3,.... These are o(*/*) in
this limit. xyellind

The preceding argument is flawed because it singles out the period of the cosine
containing ¢ =0, whereas only the quantity & _ , in v, a “boundary term” prevents
d¢,, from being translation invariant. In other words if xe 4, dist (x, 04) large, there
is nothing in the argument above to tell one why the cosine should not have been
expanded around ¢(x)=2nf~'?n for some n=+0, neZ. The idea of the Glimm-
Jaffe-Spencer expansion (a semiclassical approximation) is to partition the space of
all field configurations into subsets labelled by “mean fields” h=h(x). These are
piecewise constant functions taking values in 2z~ }/2Z, vanishing outside A. They
serve to label the cosine period to which the preceeding approximation is to be
applied. The choice of length scale L for the lower bound over which 4 is piecewise
constant is heavily constrained. If L is too large, one looses control over fluctuations
of ¢ away from h. If L is too small, the sum over h diverges.

The intuitive reason for the existence of a length scale L which works is a
conspiracy between the cosine interaction which “repells” ¢(x) away from nf~/*Z
and the measure d¢, which assigns significant probability only to field con-
figurations ¢(x) with some continuity properties. Thus the interacting measure only
assigns significant probability to configurations ¢(x) such that ¢(x)~ h(x) for some
h. ¢ is an average over volume L3.

The sum over h will be seen to reflect an underlying Ising model at low
temperature whose spin takes values in 2nf~*/?Z. The control over fluctuations
away from h is a substantial problem (as it was in [8]) which is discussed next.

1.4. Technical Aspects, Size of Constants

The most difficult problem arising in the convergence proof is to show that the
vacuum energy/unit volume is uniformly bounded as f,/—0,z—»00 with
I,=(zB)~ 2 fixed, B/! bounded. For purpose of illustration, take I,=1. The
required inequality is of the form
jd¢ox(¢‘>)exp{ 22 Y (B:cos BPH(x): — 1) }é const. (A)
xell|nQ
Q is a cube of side O(lp). x: characteristic function of the interval
[—np~"?,mp~"/*]. § is the average of ¢ over Q. x arises from the phase boundary
expansion, and in general could localise ¢ in some other period of the cosine. d¢, is
a massless gaussian measure, e.g.,
d¢0=d¢vlexp{1/2 Y BgA(x) }
xell;
This measure, being massless, is inv_@riant under the change of variables
$— ¢ + const, which means that [ d,y (#)=0(8~"/?) as f—~0. However if in (A) the
product of x and the exponent converges to exp { —1/2) I* : ¢*(x) : }, then the left
hand side will be bounded uniformly. Conversely, the uniform bound is required in
order to prove convergence or to use the limit as the basis for an expansion.
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This bound is not trivial because the exponent is the Riemann sum of the
difference of two quantities diverging as f~!. The normal ordering changes cosine
by a multiplicative constant so that :cos: —1%£0. Thus a cancellation must be
performed.

The situation resembles P(¢), in that the only divergence to be cancelled is a
vacuum energy and so it is possible to use some standard techniques such as L,
estimates (because they are homogeneous). However the strength of the divergence
and additional complications from working in three dimensions require one to
exploit properties special to the cosine. The basic philosophy is to use the gas picture
to resolve short distance problems (=1(;,) and ¢ variables to resolve long distance
problems (=1,). The same philosophy lay behind Frohlichs work on the two
dimensional coulomb gas [7].

In comparison with numbers applying to typical plasmas or 1onic solutions, the
values of the constants controlling the region of convergence of this expansion are
ludicrously small. This defect is common to almost all rigorous investigations of
physical problems, especially at the beginning of their development. The actual
radius of convergence of this expansion is presumably much larger but the estimates
to prove it are lacking.

The convergence of this expansion is both a good and a bad sign for the
resummed high temperature expansions used by physicists. It means that these
expansions will almost certainly be asymptotic but not convergent to the correct
results because they do not take into account the phase boundaries which are of
infinite order in the expansion parameter.

2. Definitions and the Result

Let IT,CIR® be the cubic lattice with spacing I centred on the origin. The set of closed
cubes, side /, centred on lattice points is denoted @. Let 4 be the set of closed unit

cubes with disjoint interiors such that R®={ ] 4 with one Ae /A centred on the
Aed

origin. In order that each 4e 4 be a union of we @, it is assumed that [ = (integer) ™.
Associated with II, are the finite difference gradient Fand Laplacian 4, both of
which have [ dependence. Throughout this paper functions on the lattice IT, will be
identified without comment with functions on R3, constant in ™7 for each we ®.
Thus integrals over R3 ‘are frequently used instead of sums over I1,.
The partition function is

Z~=2Z5" Yy Z%N1Y [dVxe F®” .1
© N1

(N
where (e)y =(e;, ..., ey) is summed over ¢;= + 1 for each i=1, ..., N. Z, is chosen to
normalize Z~ =1 at §=0.
B~ =B (x,.... x50, @)= ) eep”(x,x)) (2.2)
1=i<j<N

v~ (x, y)=kernel of (—4)~1.

Three variables with the dimension “length” may be formed from Iz, the
parameters in Z~. These are (1) the cut off length , (2) the Landau length [, = f and
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(3) the Debye length I;,=(2zf)~ */%. By a choice of units, one may assume with no
loss of generality that [;,=1. With this assumption, Z~ may be rewritten

Z~=Z"(MN)=Z,A)? i (LND™LY | dVxe =" (2.3)
N=0 (e)ny AN’

where ACIR? is a union of cubes Ae 4.
Givenasequence A=Ay, A,(x,e,), A,(x{,€,;X,,€,), ... of functions, define the
expectation

7=2""F GNY LY [ dx
N=0

(eyy AN
Ay((x)y, (€)y)e” S (24
The infinite volume expectation, when it exists, is defined as
A”=1lim (4> (2.5)
A7R3

where the limit is taken through a sequence of rectangular parallelopipeds whose
smallest side tends to co. In this paper attention is restricted to expectations of 4’s
with the following special form

A= l—[ Q(yi)'yla ~-~,yn«€nl diStinCt .
i=1

o) =(on(¥; X150 Xys€1, s ey)y=y, . =0-N=0 (2.6)
N
onys(x.e)y)= . ed(y—x))
j=1
n' is arbitrary. Define supp A={y,, ..., ,} CR>.
A considerably larger class of 4’s could be treated with minor changes in the
proof.

The Sine Gordon Transformation. v~ is not the kernel of a bounded operator on
I(I1)), as is necessary for the Sine Gordon transformation. Let ¢, be the
characteristic function of ~A and set v,=kernel of (—4+¢&.,)"'. Define
B, Z(A),<{ >4 < > by replacing v~ by v, in all definitions. It is conceivable that
{ >+ >~ when both limits exist, but most unlikely. This will not be discussed in
this paper. Formally one is still obtaining the Coulomb system in the infinite volume

limit because lim v, =v"~ pointwise and in several other senses also. v, is the kernel
A7R3
of a bounded positive operator on [%(IT,) and it makes sense to define d¢'’, the

lattice gaussian measure with covariance v,. By the Sine Gordon trans{formation

Z(A) =j d¢A1

<IJ1 Q(yi)>A =Z(A)" " [dd, 1:[1 171 ssin 112y, :
d¢ 4=deYexp {— U(A)}

U)=I;"[dx(:cosI12¢p(x): —1).

2.7)
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The easiest way to obtain the expectation of ¢’s is to use
ey =Z(A) fadgPexp 7 | dx(:cosl*(P(x)+ f(x):—1) . (2.8)
4
The result of this paper is

Theorem 2.1. Given any c, >0, there exists ¢, >0 such that for B/l <c,,(2zp*)'? Zc,,

»
lim <]_[ Q(yi)> exists and clusters exponentially, i.e., there are strictly positive
4 R \i=1 A

constants c=c(z, B, 1), ¢'=c'(n'), such that for n, <n’

<I=‘I1 o(y) H Q(yj+a)> - < ﬂ Q(y,-)>< H @(yj)>’

j=ni+1 i=1 j=n1+1

gdap{—c inf |m+a—mq.

iSny <j=n'

Notation for Constants. Constants labelled c,,c,,... denote strictly positive
numbers and keep fixed values throughout the paper. Constants denoted ¢, ¢/, ¢”,
etc. are also strictly positive but need not refer to the same number in different
equations.

Remark. 1t should be possible, by following constants through the paper more
carefully to show that c—~I; ! as f—0, with (2z8)~*/* =1, fixed, /I bounded.

3. The Expansion
3.1. The Peierls Expansion

Let Q be the set of closed cubes, Q, with disjoint interior, side L, such that A= U_ Q.
Qe

L is assumed to be an integral multiple of [ and each Q is a union of cubes €.
Furthermore L is assumed to be 1/integer, so that each A€ 4 is a union of cubes Q. L
will be chosen <1 independently of [, I in the region [, <c,L
Define
15120

w(o=n"12 [ dte ¢V

1512

&(Q)=L_3£dx o(x) (3.1)

(&) =x&—h).
Then
1=T] X u(d)

QeQ h

where h is summed over integral multiples of 2zl; /2.

Change notation so that h=h(Q) is a function on Q taking values which are integer
multiples of 27l 12, Set y,= [ ] %,0,(#(2)). Then the Peierls expansion is
Qe0

do 4= ; Xl 4 - (3.2)
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3.2. Translation of ¢

Identify h=h(Q) with the function h(x) defined a.e. on IR? such that h(x)= h(€Q) for
xe@NT h=0in ~ A. The class of functions obtained in this way is denoted H. Let
2 C /A be the closed set where h(x) has a step discontinuity. X is called the Peierls
contour for h. It is a union of faces of cubes Qe Q.

L'>11is a length, to be chosen later independently of I, [, in the region I, =c,l,
characterising the distance away from 2 where the effects of the contour become
small. Given Z CIR?, set

Z ={xed:Aed, dist(Z,)<L’}. (3.3)
Given h, a function g=g(h) on R?® will be chosen so that
p=¢—yg (3.4)

has small mean and g=h outside X"

Choice of g. Let 7 , be the function on IT, defined by #(x) =7, xe A, = 1x¢A. n will be
chosen later independently of [,[;,1=#>0.

€,(x,y)=kernel of (1, —4)""n,,

go(x)=(2h)(x)
where €, is the operator on I*(IT,) with kernel £ (x, y). Choose a family of functions
{, on I, indexed by L' such that (1) {;(x)=0if|x| = L', (2){,..(x) =1if|x| S L —1,(3)
{;. together with finite difference derivatives up to order 2 are bounded in absolute
value by constants independent of L'. Define

(3.5)

g(x)=(2h)(x) (3.62)
(@R =C00) 3 P 1) (6= ) (3.6b)
cux):{ 2 P x, y)CLxx—y)}-l : (3.6¢)

It is left to the reader to prove that g=h outside X"
The easiest way to understand this translation is to perceive that if the
exponential of [ ! [(:cosl}/?¢ : —1) is replaced by a kind of periodised gaussian,

;exp {—n/zﬁdx H(p—h)? :}

translation by g removes the linear term up to a small error whose size is controlled
by L'. It is technically advantageous to live with this small error in exchange for
having g =h outside X"

The measure d¢ , is translated by using the identity

AP =exp{ =12 [ =12Vl = | gv-+ [wdgl . (37)

The measure dy'?’ may be expressed in terms of dy,, the Gaussian measure with
covariance v(x, y)=kernel of (1—4)"1, by

dp'® = N(A)exp[1/2 | :p? :}dwl . (3.8)
A

N(A) is the normalisation.



322 D. C. Brydges

In order to express the result of the Peierls expansion followed by translation,
define

V(A h=UA)=(/2) [ :($=h?: =(L=n)/D) | :9*: (3.9a)
FAR=n/2[ :(p=h)?: +(L—n)2 | v + jA g
—Jwdg+1/2 | g>+1/2]I7g (3.9b)
QA h)=V(A, h)+ F(A, h). (3.9¢)
Then the Peierls expansion, followed by translation, yields the identity
de 4= N(A) ; ae 2y, (3.10)

The definition of g may be used to show that (3.9b) can be rewritten in the simple
form

F(A,h)=F (A, h)+ F (A, h) (3.11a)
Fy(A,)=1/2 Vg +1/2 [ (g~ hy? (3.11b)
FyA,)=[ (14— A)Ng—9g)]p. (3.11¢)

This is left to the reader.

For future reference, define V(A,X,h), F(A,X,h), FyA,X,h), F(A,X,h),
Q(A, X, h) by replacing each range of integration by range NX, X any union of cubes
ed.

3.3. The Cluster Expansion
The cluster expansion is an identity that applies to a quantity of the form
[dp AW(A') (3.13)

where A'is a finite union of cubes € A and W(A') belongs to the ¢ algebra generated
by fields supported in A’ and has the property that it factors across cubes A€ 4, e.g.,
if X C A’ is a union of cubes ded, W(A)= WX)W(A' ~X).

Let Y be a collection of closed subsets Y C A’ with disjoint interiors whose union
is A'. Y contains a distinguished element Y;. (The cluster expansion will be written
down only for the case Y, Dsupp 4. The case Y; Dsupp A4 is left to the reader. In
regard to this, note that 4 factors across cubes A€ A.) Every other element of Y is
assumed to be connected. The letter y will be used to denote a finite sequence
Y,,Y,,..., Y, n arbitrary, of distinct elements of Y. For a given ¥ and parameters

ooy Ly

S=(Sy, .08, 1)€[0,1]"7 1, define

p(x, p,s)= ) SiSia1 -+ Sj— 18(X)E;(Y)

ifi<jsn+1

+ Z SiSiqq e Si—1G(X)C(Y)

1<j<isn+1

+ Y W) (3.14)

<isn+1
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where &, is the characteristic function of Y, for i<n, £, is the characteristic
function of ~ () Y;and s, is set to zero. Define v(x, y, s) =v(x — y)p(x, y, s). Let dp, be

isn
the Gaussian measure with covariance v(x, y,s). This is the kernel of a positive
operator on [* because it is a linear combination with positive coefficients of
operators of the form £vé, where £ is a characteristic function.

The cluster expansion is the identity

[ dvp, AW (A) = ; K(X) | dp, W(A' ~X) (3.15)

where X is summed over all unions of Ye Y containing Y;. Since A is finite, this sum
is finite.

KX)=Y | ds|dpx(y,s)AWX) (3.16)
v [0,1]" ¢
n—1
(¥, s)= ﬂ (i) (3.17)
k()=1/2 | dx [ dyd/ds)v(x,y,s)
Yier  g¥e
(6/0w(x))6/0(y)).

For n=1, KX)= [dyp,AW(Y,) if X =Y, zero otherwise. The sum over y extends
over all j such that () Y;=X, n arbitrary. This is a finite sum.

isn
Proof. Let dy ,,, s=(Sy,...,5,_1), be the measure defined in the same way as dy,
except s,€[0,1] instead of being set to zero. Inductive hypothesis :

[y, Aaw(A)= Z [KX) [ dp, W(A' ~X)+R,(X)]

n—1
R,X)= j ds, dd Y[ dsfdwg, ] k@AW ()

y [0,1]—1 i=1

m

where X is summed over sets of the form U ,m=<n and y is summed over all

n

sequences (Y}, ..., Y,) such that X U X)=0if there isno such y. For n=1,
this hypothesis reduces to -

Jdp AW(A")= [dp AW(Y,) [ dp, W(A' ~Y,)
1
d .., ,
+ 1oL g, away
and this is the fundamental theorem of calculus. To prove the hypothesis for n

replaced by n+ 1 and thereby complete the induction, evaluate R, using integration
by parts (see [10]).

dS jdws sn( )_ Z Idlps snK(n)( )

n+1
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where Y,, €Y, Y, ,nY,=¢ for i<n+1, followed by the fundamental theorem of
calculus

L d
dw;,sn=d%,s,,+ jdsn+ 1 d dw;,sny5n+l *
0 Sn+1

The second term becomes R, , ;. When nis sufficiently large, depending on A’, R, =0
and the inductive hypothesis becomes the cluster expansion.

Remark. This is an expansion in clusters of regions contained in IR? as opposed to
clusters of particles. It may be that this is an essential feature of an expansion
approach to Debye screening, because screening involves the statistical behavior of
large numbers of particles.

3.4. The Combined Expansion

Choice of Y. LetX,CA"be a given union of 4¢ A. Let Y = Y(h) be the set of subsets
of A" whose elements are the connected components 2.C2" together with ded,
A4CA ~2" Take Y, =Y,(h) to be the smallest union of elements of ¥ containing
X,. The remaining elements of Y are the elements of ¥ not contained in Y.
Y Y(h).

Only the case X ;D supp A is considered here. The case X, p supp A is left to the
reader. Apply the cluster expansion (3.15) to each term in (3.10). A'=A"

[d¢ A= ; ;K(X, WN(A) | dy,x,(A~X)exp{—Q(4, A'~X, h)} (3.18)

KO =Y [ ds [ dpgx(F, s)iX) exp{— Q(A,X, h)}A . (3.19)

where, if Z is a union of cubes 4, y,(Z)= l_[ X;.(g)(¢(9)) The next step is a
Qe

resummation of 4 outside X. This yields the flnal form of the expansion. Note that
if X 34, K(X, h) has A dependence which has not been made explicit.

Resummation Outside X. Decompose h=hy+h. 5. The decomposition is uniquely
fixed by the requirements (1) on the interior of the connected component (~X)®
of ~X containing the point at oo, h_, =h. (2) For each connected component X,
(~X), of X, ~X respectively, hy is constant on the interior of ((~X),)" h_y is
constant of X_.

Lemma 3.1. (a) K(X,h)=K(X, hy).
(b) [ dy x(A~X)exp{—Q(A, A" ~X, h)}

=[ dy ) (A~X)exp{— QA A"~X,h_y)}.

By virtue of this lemma, one may write Y =) Y and perform each sum
independently. Define Bk hex

Z'(A4,X)= hZ §dp i (A~X)exp{—Q(4, A"~X, h_y)} . (3.20)

Lemma 3.2. Let 6X =(0X) " n(A ~X). Define
M(A,X)= Z Ty (0X) €XP { 1/2 )J( H(p—hyy)? :}
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where h;y is defined on (0X)UX, is constant on the interior of connected components
of (6X)UX and vanishes in any connected component of X UX that intersects ~ A.
Then

Z/(A,X)= [ d§p? exp{— U(A~X)} M(4,X) .

The last lemma is not used in this paper but it provides some intuition for Z'.
After applying Lemma 3.1 the expansion can be written in its final form

[dd A=) KX)Z'(4,X) (3.21a)
X

KX)= hZ [ ds [ dypg(y,s) .

uX)exp{—0(4,X,h)} A (3.21b)

(h, ) is summed over the set defined by the relations (1) he H (2) y=(Y,,..., Y), n
arbitrary, YeY(h), i=1,...,n. (3) U Y.o2h). 4) X= U Y. For n=1, (3.21b)

reduces to zero unless X DX, in which case
KX) =3 [ dw, 5, exp{— 04X, h)}4 (3:210)
h
where h is summed over the set he H, X=Y,(h), X D "(h). If this set is ¢, K(X)=0.

Proof of Lemma 3.1. (a) Given X, such that X n~A=%¢, it is claimed that
0(A, X, h)=0Q(A, X, hy). 1t is sufficient to prove that on XN, hy=h, hy=g=h.
This in turn is implied by h=hy on (X", which is implied by k. =0 on (X"
Since (2) states that h _ 4 is constant on (X})'NT, this is implied by h _y =h in (~X)®.
This proves claim. Next it is claimed that as functions of p Q(A4,X , h)=Q(A4,X _, hy)
also when X, CA. For this it is sufficient to show that on X'NT h—hy =g — 2h,
=2nl; '/?n, for some neZ. By the same arguments as above this follows from
h .y =2nl; ?n on (X}, which proves the second claim. By summing over X, CX,
0(A,X,h)=0Q(A,X, hy). As a function of y, A is unchanged by h— hy because it is
periodic. This completes the proof of (a).
(b) Follows by the same arguments.

Proof of Lemma 3.2. Undo the translation in (3.20) by setting p=¢ —Lh _. If X,
is a connected component of X intersecting ~A,h_y=0 on (X)™7, so h_y
=h_y=0o0onX™T. Sum over all h_, such that h _ y=h;, in [(6X)UX ™. Proof of
Lemma 3.2 concluded.

3.5. Kirkwood Salsburg Equations

These equations will be used to obtain bounds on the ratio Z'/Z, obtained when
the expansion is normalised.

Z(AX)= Y KW~X)Z'(A, W) (3.22a)

WO X*

KW~X)=Y [ ds [ dy,

K7, )y (W ~X)exp{—Q(A, W~X,h)} . (3.22b)
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The cubes 4e 4 are ordered in some arbitrary way. Given X, let 4, be the first cube
in A"~X. Set X*=Xu4,.

Proof. Apply the cluster expansion to each term in the definition of Z’' with
X,=4,. Resum as before.

Equation (3.22) can be written as an equation for Z’ on a Banach space. Let
P={XCA":X is a union of Ae 4}.|X| denotes the volume of Xe P. B is the space of
functions f : P—IR with || f||, =sup b'*!| f(X)|. & : B— B is the linear operator defined

XeP

by (]NX)= Y. K(W~X)f(W). Set o(X)=Z'(A4,X) if X+¢, =0 otherwise.
Equation (3.23,)3;; in this notation,

Z(AN)I+o=8Ko (3.24)
where I(¢)=1, I(X)=0if X & ¢. The operator norm of & depends on b and will be
denoted [||K]][,-

3.6. Results on Convergence

The expansion is determined once L, L,n are chosen. Theorem 3.3, given below,
assumes a specific choice of L, L, #.

Theorem 3.3. Given ¢>0, there exist ¢'c">0 such that for I, <c,l, |, <c’, WCA",
union of AeAd,

Y K@) < exp{ — 1/2 dist (X, W)}

X:XnW+¢

¢” depends on A, the observable, as well as ¢/, c,.
14 1

4. Proof of Theorem 2.1 (Using Section 3.6)

By a choice of units, one may, without loss of generality, set I,,=1. Then the
hypothesis (2z8%)/2 < c, becomes [, <c, because (2z8%)*=1,/l,,.
To illustrate the principles involved, a proof, using an idea of Glimm et al. that

[<e(x)e()) 41 S ce 2! (4.1)

uniformly in A4, is first presented. In ¢ language, provided x=+y, o(x)(o(y)
-1 2:sin }2¢(x):sin [}/*¢(y) . In the expansion, take X, to be the cube 4 €4,
4,3x. Set 4, equal to the cube € 4 containing y. By the symmetry ¢ — — ¢, R(X)=0
unless X N4+ ¢, therefore the expansion (3.21) reduces to

[KeeWha=| Y KX)Z'(4,X)Z7}(4)]. (42)

X:Xndy*¢
By Theorem 3.3, (4.2) implies (4.1) provided, for some constant ¢
1Z'(A,X)Z~ () £ (4.3)
uniformly in A. By Theorem 3.3 again

Y IRW~X)|cMXI<1/2

W X*
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if ¢’ is taken sufficiently small, because |W ~X|>1. This implies that |||R]||,. <1/2.
Equation (3.24) implies ¢ =Z(A) (R — 1)~ I, so

ZA)™ el =K== Ml =2 (4.4)
This is exactly (4.3). (R—1)"? is defined and bounded by the Neuman series.

Proof of Theorem 2.1. First it is proved that the finite volume correlation
functions cluster exponentially, uniformly in A. The technique is due to Ginibre. A
new expectation ¢ ), is constructed using the doubled partition function
Z (A) x Z,(A) where Z,(A), Z,(A) are copies of Z(A). For any quantities 4, B of
the form (2.6)

CABD =< A 4<(B) 4 =(1/2)<(A; = A,) (B, = B,)))s - 4.5)

A;=A as a function of the fields or coordinates in Z,(4), i=1,2.
(4, —A4,) (B, —B,)), is expanded using a double phase boundary expansion with
terms labelled by (hy,h,), (2,,2,). Set ¥=2,0%,. The cluster expansion is
performed on both factors of the product measure simultaneously. Take
X ,=smallest union of Ae A containing suppA. The resummation is essentially
unchanged®. The symmetry 12, in the same way as the ¢— — ¢ symmetry above,
is used to show

AUBY,= ) SXI[Z{(AX)ZHAX)Z (A ZyH)71]. (4.6)

X:XnsuppB
2gre

The reader is referred to the proof of Theorem 3.3 to see that with a different
constant the same bound holds for K'(X). The proof of exponential clustering
uniformly in A is completed as for (4.1).

To complete the proof of Theorem 2.1, it remains to be shown that lim (A},
A-R3

exists for all 4 of the form (2.6). By applying the expansion with X, D supp 4, this
reduces to proving that )Ln}{a Z'(A,X)Z "~ 1(A) exists since K(X) is independent of A

for X CA. Theorem 3.3 provides the required uniform bounds.

Proof that lim Z'(A, W)Z ™~ (A) exists for all WCRR3, a union of A€ 4 :assume
aasw
Z/(A,W)Z~ N A) = Z/ (A, W)Z~ N (A))
={Z(A,W)Z(A) = Z' (A, W) Z(A)} [Z(HZ(A)] T (4.7)

Construct a doubled Kirkwood Salsburg expansion for the quantity in curly
brackets taking X , = W. All terms cancel in pairs except those for which either X n
~A%+d or Xn~A'+¢, e, Xn(~Au~A)+¢. The proof is concluded using
Theorem 3.3 to show that (4.7)—0, as A, A’ ~ IR3, This also concludes the proof of
Theorem 2.1.

1 This proof of clustering is easier than that in [8] because unlike the situation in [8], the observable
A has the same symmetry (periodic in ¢) as the interaction and this has been exploited in setting up the
expansion
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5. Combinatorics

The proofs of Theorem 3.3 and 3.4 involve some combinatorics, such as in the
sums over y,h. The Lemma 5.1 given below is addressed to this aspect of the
convergence proof. First a series of definitions which will be used throughout the
convergence proof are presented.

Given an integer n=2, a tree graph on n vertices is defined to be a set of pairs
(1,)), i<j, of integers 1=<i,j<n such that each integer j, 1 <j=<n occurs once and
only once in a pair (i,j). This is not the standard definition. Given y=(Y,,..., Y,), it
is convenient to rewrite (¥, s) as

k(7 5)= ( [1 lYi|)‘IZ > a(T 5, )r(To) (5.1

(i,))eT T «a
where T is summed over tree graphs on n vertices. o is summed over maps
o: T—4 x 4, (i, j)—(e'(i), " (j)) such that o/ (i) C ¥;,«"(j) C Y;. Thus « is summed over a
¥, T dependent class which will be denoted o =a(y, T).

o5 3)= T1 (5511 52)

Gojyer \dS;— 1

| Y| denotes the volume of Y.

K(T; 0() = l_[ K(ia.j’ O‘)

()T
k(i,j,o0)= [ dx' [ dx"v(x',x").

o’ (i) a”(j)
(6/0p(x")) (6/0p(x")) . (5.3)

Given y, T, a, let
d(To)= Y, dist(o,a])
(i, NeT

Lemma 5.1. Given c,,c;, there exists ¢, c",c5 such that for I, <c,l, [, <c

Y MR S ¢ exp{—1/2dist(X,, W)}

X:XnW*¢

sup exp{csn+(1/4)F,(h)+(3/4)-d(T «)}

n,T,s,¥,ha
[ dpg(To)Ay,e ™2 .

The supremum is over the set of n, T, s, J, h, o« such that neZ, n=1, Te set of tree
graphs on n vertices, which is defined to be the null set if n=1, se[0,1]"" 1. (3, h)
belongs to the set defined by heH, y=(Y,,...,Y,), Y,eY(h) for i=1,...,n,
J .0 2(h), aca(y, T).

isn

Notice that, as usual, Lemma 5.1 is written for the case X ;D supp A. If X, 2 supp A4,
there is a parallel lemma with A replaced by the factors of 4 supported inside X ,. An
abbreviated notation has been used in Lemma 5.1, in that Q(h)=Q(A4,X, h),
Xn=1n(ANX), X = U Y.

i<n
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Proof of Lemma 5.1. The bound of Lemma 5.1 is implied by [using the
decomposition (5.1)]

Yyfas ¥ e“"’"qu:s,v)( I1 |Y,-|)-1

n T Vha: XOW*¢ G,j)eT

-exp{ —csn—1/4F ()~ 3/4d(T; o)}

<c"exp{—1/2dist(X,, W)} . (5.4)
This in turn is implied by (5.5), (5.6), (5.7), (5.8), given below.
Y. [ dsq(T5,y) < e (5.5)
T
Y sup Y exp{—1/2(cs —2c, — 3)X| — 1/4d(T, o)} ( IT 1Y~ 1) <. (5.6)
n T 3y,a (i,j)eT

Given n, the sum over y is over all sequences (Y,...Y,), YeP, i=1,...,n. Y,
connected, i>1. Y; DX, each connected component of ¥; contains a cube 4 CX,,
Ae .
Y exp{—1/4F(h)+cs(1/2[X| —n)} < o0 (5.7
h

uniformly in y. Given y=(Y,,... Y,) for some n, Y,e P, h is summed over he H such
that Y,e Y(h), i=1,...,n, X D 2"(h). If there are no such #, set the left hand side =0.

dist(X o, W) <IX|+d(T ) (5.8)
on the subset of {n, T,s,¥,h,a} such that XnW =+ ¢. Inequality (5.8) is obvious
using the definition of d(T,a), aca(y, T) and X 5, W CX.

Proof of (5.5). This estimate is implicitly contained in [9]. First observe that

¥ a(Tis, )= [T S (@/ds,- )5, .. s)IY.

j=2i<j
Substitute for g(7;s,y) in the right hand side of

ds;...ds,_; Y. q(Ts,))< [ ds;...ds,_,
T

0,171t [0,1]"~!

Zq(’l—;sﬁy)exp{ Z sn—l"'si,Yil}
T i<n—1
and perform the integrals in the order s,_,,...,s;, estimating each one before

doing the next by
1
[ dsxe*<e*
0

valid for x=0. The result is (5.5). Proof concluded.

Proof of (5.6). Fix n, T, then ¥ has the form (Y,,..., Y,). Arrange the sum over ¥, « in
the order Y,, a"(n), o' (i), where (i, n)e T, Y,_,, a"(n—1), &'(i'), where (i’, n—1)e T, etc.
The sum over Y, now takes the form

Y. exp{—1/2(cs—2c, - 3)IY[} (5.9)

Ya:YnDa"(n)
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which, provided n=+1, is bounded by
Z 6%V exp{—1/2(cs—2c, —3)N} (5.10)

because, by an argument in [10, p. 219], the number of connected unions of N
cubes in 4 contammg a given cube is less than 6°V. Choose c; large so that (5.10)
converges and set ¢’ equal to the sum. The sum over «”(n), o' (i) now takes the form

YAYI™t Y exp{—1/4dist(e (i), " (m))} (5.11)

a’(i) a”(n)
which is bounded uniformly in y. Set ¢” equal to the bound. After this estimate the
sum over Y,_, is of the same form as (5.10) and is estimated by ¢’ again, unless
n=1.

The sum over Y, is different because Y; may have up to |X,| connected
components, each containing a cube in 4CX,. Thus the Y; sum is bounded by
¢'I¥ol Thus the sum of all terms in (5.6) with n fixed is bounded by

c/|Xo|( / I/)n 1 . (512)
Choose cs large (this does not conflict with previous choice of c¢s) so that
Z (c'c")"~* < oo. The proof of (5.6) is complete.

The proof of Lemma 5.1 will be complete once (5.7) is proved. (5.7) is implied
by Lemmas 5.2, 5.3 given below.

Lemma 5.2. There exists ¢>0 such that

Fl(h)écz |6h(f)I?

where f is a face of a cube in Q, considered as a closed subset of R3. |6h /| is the
discontinuity in h across f. Further, if X is a union of cubes in A,

F,X,hyzc 3 [oh(f)?
fIN’l‘C XINT
f™NT=f~0df. (Boundary w.r.t. R?)
Lemma 5.3. Given c,c’, if 1, >0 is sufficiently small,
Texp {—c T M+ (1/2%] - n)} <o
h S
uniformly in y,n.

Proof of Lemma 5.3. 1t is sufficient to prove
Y exp {— 1/2cZ|5h(f)|2—1/2c’lX|} <0 (5.13)
h S
—1/2¢ ) 16h(f)]* +¢'(IX|=n) =0 . (5.14)
S

Proof of (5.14). The conditions on ¥, h imply
X|—n=IZ(h)] . (5.15)



Debye Screening 331

Also
ZRSQLE+DPISfCZh)} - (5.16)

The absolute value signs on the right denote cardinality. (5.16) follows from (3.3).
Furthermore

Hf:f 2 =@nig2)2 ; loh(f)I* . (5.17)

For I, >0 sufficiently small, depending on L, estimates (5.15), (5.16), (5.17) imply
(5.14).

Proof of (5.13). Given h, set X, CIR® = {X : h(X) < 2z, */*n} for neZ. Let I' be the
family of connected components of boundaries dX,, neZ. Let I" be the set of
connected components of boundaries dX,, neZ, ie, I may have repeated
elements, I" does not. If yeT, y is a union of faces f of cubes eQ. Set |y|=N° of
faces in .

;I(5h(f)l= 2 byl 2mip (5.18)

vel'(h)
Therefore provided 2nl; 2> 1,

Sexp{-c/2 L SH(PE}
=2 X f:Xp{~C/2-27tlZ”2 2 W|}

I h:I'thy=r yel'(h)
<Y Y mexp {—c/4.2nl;1/2 y {yl} (5.19)
n=0 I:|l'|=n yel'(h)
where |I'|=card I" and
"= ) exp(—c/4-2nl; 24m) (5.20)
m=0

(5.19) was obtained by estimating the sum over {h:I'(h)=TI},|I'|=n. The right
hand side of (5.19) is less than

0

y c""/n!<zexp{—c/4-2nl;1/2|y|})" (5.21)

n=0
where y is summed over all possible connected components of boundaries 0X’
where X'CX is a union of cubes € Q. The null set is excluded. This in turn equals

exp (c” Zexp{—c/4-2zrl,j”2-ly|}). (5.22)

By a lemma of [12, p. 117], the number of y with [|y| fixed is less than
L73X| [y*31"173, 50 (5.22) is bounded by exp (c'/2|X|) provided I, >0 is sufficiently
small, depending on L, L,c,c. This completes the proof of (5.13) and hence
Lemma 5.3.

2 This is easy to prove, especially if one is content to bound the number of cycles by ¢'c!”!. Simply
build up a cycle face by face with <6 possible choices per face
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Proof of Lemma 5.2. This proof is taken from [8].
LISh()P=L7° 3, [ [ dxdy
S 2,00 Q
|h(x) = h(y)? (5.23)
where Q,Q'eQ, the sum is over all nearest neighbors.

[h(x)— h()I* < 3|h(x) — g(x)I*

+31h(y) — g)I? + 3g(x) — g(y)I? (5.24)
substitute
2
() — g0 = f Vg-ds
<4L j [Vg|*ds (5.25)

estimate (5.23) using (5.24), (5.25). Take the path from x, to y to be a union of three
segments parallel to the x, y, z axes. The right hand side of (5.23) is thus bounded
by

L7°3-122- 3 | |h—gl®

2,2 Q

+L703.14.3.4L- Y [ |pgP? (5.26)

0,0 QU
which is less than
18173 j lg—h|*+216L"* j |Pg|?
<c'Fy(h)

where ¢ = min(1/36nL3,1/432L). All _these estimates continue to hold if everything
is restricted to X, a union of cubes €4. This completes the proof of Lemma 5.2.

6. Estimates on Functional Integrals, Gaussian Integrals

An abbreviated notation, in which dependences on §, i, n, T, s, o are not all explicit
will be used. The objective in this section will be to estimate

| [die(T,00 Aze™] (6.1)

so as to show that the supremum in Lemma 5.1 is finite. This will prove Theorem
33.

There are 2(n—1) derivatives in x(T,a), labelled by variables (x},...,x;_;,
X7, Xy )=(x,x"),_ 1 =(x),- ;. Let = be a partition of these variables into subsets
Xuapi=1,2,...,1,r arbitrary. Using an obvious notation for derivatives, (6.1) may be
expanded by Leibniz rule to yield

Yidwd), T1 vx,x)

@i, ))eT

A (Xp1) X (Xr2)) nz Q' (xz)e” 2. (6.2)
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The subscript o on the integral indicates the region of integration x;ea’(i),

xjea”(j). It will later be necessary to bound the number of partitions = for which

(6.2) is non zero. There are less than 2*" choices for n(1), 7(2). Since Q is a local

function of v, Q'(x,;)=0 unless x,, are all given the same region of integration

by a. Let n(x, 4) be the number of variables assigned the region of integration A€ 4

by a. Then the number of partitions is bounded by 2*"- [ ] -(N° of partitions of
a4

variables localised in 4 by «) which is less than
[1c"®2 n(a, A)! (6.3)
a4

Each factor v(xj,x7) in (6.2) may be replaced by v¢,; ;(xi, x7), where (1)
Eui X X)) =&, (Ixi—=x]]) for x,x[ell;; (2) ¢,,; ;=1 for |x{—x|=dist(a'(d),
a"(j)), =0 for |x;—x;|<dist(e'(i), a"(j))— 1, where x, xjeIT,. (3) &, ;; is bounded
together with its finite difference derivatives up to second order uniformly in a, i, .

Given a function f on II,, define the Sobelev norm

NE ( Y 0T v, y))”z. (6.4)

x,yell;

The corresponding Hilbert space will be denoted H _, (I1)).

Lemma 6.1. v, ; . is a bounded operator on H_ | and

a,i, j
0&,,;,51 = c exp { —dist (e’ (i), 0" ()}
for some constant c independent of o, 1i,j.

Proof of Lemma 6.1. 1t is equivalent to bound (1—4)v¢, ; ; as a convolution
operator on I*(I1;) and this is bounded by its I' norm by Young’s inequality. Since

(1—4) (via,i,j) =—2(W) (Véa,i,j) —v(4 éa,i,j) (6.5)

the bound of Lemma 6.1 follows using (1) &, ;; and its gradient vanishes for
Ix;— x| =dist (o (i), «" (7)) — L; (2) 0], [Vo] =0(exp { —[x;— x][}) for |x;— x| > o0. This
is easily proved from the analyticity properties of the fourier transform of v. For
example, see [13]. If dist (' (i), " (j)=0, &, ; ;=1 and the lemma is trivial. End of
proof.

By taking norms on H_, spaces of functions of several variables, (6.2) is
smaller than

Z Idw ”ﬂa,n(l)Al I ”la,n(z)X, [

: (1—12 Ilm,n(i)Q'll) e 2crem 4T (6.6)

where the norms are taken on the spaces H_,(II]"®)), i=1,..,r. 1, is the
characteristic function of the region of integration assigned to x,, by «, i.e., a
characteristic function of a product of cubes 4.



334 D. C. Brydges

Lemma 6.2. |7, ., A | S(c'I; )" (en)*M! for constants ¢, ¢’ depending only on c;.
|| =card .

Proof.
Lisinlp 2 ¢ (y)):

A= 111
j=1
= [T 12" exp0407,7)/2)sinli 6 (). 6.7)

A'(x,;) is a sum of at most n'/"®I terms arising from Leibniz rule. By a simple
calculation using the bounds [sinl}?¢|<1, |v,(y,y)|Scl™* uniformly in y,

[v(y, y)|Zcl™! uniformly in y, the proof of Lemma 6.2 may easily be completed.
By Lemma 6.2 and the Holder inequality (6.6) is less than

(17" Y e 4T
(Fdp g ny 1 1777
(v i1>_[2 e,y @ 17 (6.8)
p+p'=1. Note that |z(1)|=2(n—1).

Theorem 6.3. Given p'>1, if L’ is sufficiently large,
(I dy [] llna,an’nP') P g Eite < 1em o T (n(as )P
i>2 A4

where m=N° of distinct cubes € in which a variable in n(i) is localised by
. i>2
Mo, iy £ 2-

This theorem will be used on the second integral in (6.8). The following
manipulations prepare for a theorem on the first integral in (6.8), the “vacuum
energy” integral.

Given amap f:71(2)—Q x ... x Q, [n(2)| factors, let 115(x () be the characteristic
function of B(n(2)) considered as a set in (R3)"®|, Write

Wa,n(z)(xn(z))= %"Iﬁ(xn(z)) (6.9)

where f is summed over all maps such that n; <#, ., The number of terms in the
sum is bounded by L~3/"@, By the triangle inequality

112,22 117 = (% ngx’ H) ’
SLTPTONY lng 17 (6.10)
B

pTl4p =1
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Define #(,h) to be the set of functions ¢:Q—R such that (a)
t(Q)e[h(Q)—np~ Y2, h(Q)+nB~Y2]; (b) if Q is one of the factors in B(n(2)),
£(Q)=h(Q)+ np~ 12, Define

1a(@)= sup exp {— Z_(&(Q)—r(mwz}. (6.11)
tet(B,h) Qe
Lemma 6.4.

gl < (Hn(a, A)!) L32@iy >
a4

Proof. Essentially the same inequality is proved in [8]. Referring to (3.1), it is seen
that y(&) is the convolution of a gaussian and a step function, thus

X(l)(§)=n— 1/2(8—(~£+ﬁ‘ ‘/zn)z_e—@—ﬁ“/zn)z) (6.12)

which is already sufficient to prove the lemma when all the factors of f(n(2)) are
distinct. If this is not the case, one needs the following estimate on higher
derivatives

™ (@ISem!  sup om0 (6.13)
t=+p-1/2g
which is obtained by applying the Cauchy formula for the (m— 1)" derivative to
(6.12).
(6.13) implies

sl <™ ([t 2)Y) 25,5 (6.14)
a4
The proof of the lemma is completed by the simple estimate
l=(2)l/2
Imgll = [ [ dx [ dyo(x, y)}
2 Q2
ZcLSRI2N (6.15)

End of proof.
The next theorem is the subject of Section 7.

Theorem 6.5. There exist L>0, Ly >0, p>1 such that for L' 2 L, there exist c,c’
such that

@ (Jdpy;Pe PP <y e /2,
(b) (gl w2 [P e PP <™ (ﬂ n(oc,A)!) e Fu2
4
uniformly in the region 1, <c,l, where m'=N° of distinct cubes €A in which a
variable in n(2) is localised by Naom(2) X5 = Xj. e

The second inequality is implied by the first, (6.10) and Lemma 6.4. The result
of applying Theorems 6.3, 6.5-6.8 implies : there exists ¢, ¢’ such that

[ dpr(Ta) Age O S(¢/1; 1Y e 4T ¢~ Fuls

AP T (e, 4)1)3 ' (6.16)
A
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The sum over 7 has been dominated by (6.3). n—n’ Zm+ m’ because every region Y,

in j which does not contain a factor of 4 must have at least one variable in | ) 7 (i)

i>1
localised within it. Inequality (6.16) holds, provided L, L’ are chosen in accordance
with Theorems 6.3 and 6.5.

Proof of Theorem 3.3. Compare (6.16) with Lemma 5.1. The supremum over n, T, s,
¥, h, o will be finite if

e~ WA eneest. T (n(a, 4)!)3 < const (6.17)
A

uniformly in T, e, n. This will hold if [, >0 is sufficiently small by virtue of:

Lemma 6.6.
(ﬂ (n(oz,A)!)s) e~ dT.4 < on
a4

Proof. The construction of the cluster expansion is such that for each A€ 4, d(T, )
must contain n(x, 4)—1 terms, dist(4, «”(j)), with o”(j) all distinct. Therefore it is
sufficient to show

(n!)° [] exp{—dist(4,4)/4} < (6.18)
A'ed

where the product is over any n— 1 distinct cubes A’e A. Evidently the left hand
side is maximised if the cubes 4’ are packed as close to 4 as possible. The proof of
(6.18) for this case is left to the reader. End of proof of Lemma 6.6 and Theorem
3.3.

Proof of Theorem 6.3. Q' contains terms arising from differentiating the linear
terms in . The control of these is the immediate objective. Define

Fy(x)=m,—4)(g—g.)(x). (6.19)
Lemma 6.7. Given ¢>0, if L' is sufficiently large, depending on L, c

)j{ dxF2(x)<cL'™3F , (X")

for all X, union of cubes ed.

Proof. It is sufficient to prove

[F2-dx<cF,(Q) (6.20)
Q
where ¢’ =0(e~ ") as L'— oo and recover the result in the lemma by summing over
QCX. The operator £— £_ annihilates constants, therefore h(x) may be replaced
by W(x)—h(Q) in F, without changing anything. Let {(x)=1 inside Q, zero
outside. An easy argument shows that F’, restricted to € does not depend on
I (x)— h(Q) outside Q" therefore this may be replaced by h~ =[h'—h(2)]&. Thus

Fy()=((na— A (E=L)h7)(x). (6.21)
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By definition of &, for x,yell,

4= DR —L)(x,y)=1,x)({"(x)=1)d(x—)

=2(F&)(x, ) ' () {x =) — L.(x, »)

A (x) {(x—y)). (6.22)
Subscripts L' on {’,{ have been dropped. The V,4 apply to the x variable.
Substitute (6.22) into (6.21) and calculate the square of the I(IT}) norm as in the
right hand side of (6.20). It is sufficient to calculate this for the terms correspond-

ing to the three kernels in (6.22) separately. The following, to be verified below, will
be used

I =1V, 1AL = ¢ (6.23)
uniformly in x, 4 where ¢’'=0 (exp (—#L')), together with
L0698 (x, y) =c”exp(—nlx—yl) for |x—y/=1. (6.24)

For example, the operator norm on /% of the second term in (6.22) is bounded by

(7L - VDI = IVE - PR + (V) C = D)l -
SANVRN+IR) -V C—D)lg-s
which is bounded by O(exp(—#L’)). H—S stands for the Hilbert Schmidt norm,

which is small because ({ — 1) (x — y) vanishes for |[x — y| < L' — 1. The other terms in
(6.22) may also be bounded in operator norm to yield

JFZdx<c? | h~2dx
2 @

where

¢'=0(exp(—nL).

=21 T |h(Q)-h(Q)

Q2
<c?L3Y |6h(f))*-3L' L™t - L3L73. (6.25)
J

The sum is over f such that f™Tc(Q)NT. Estimate (6.20) is now obtained by
taking L' large depending on L and appealing to Lemma 5.2.

The claims (6.23), (6.24) will now be justified. The following fact about the
kernel v(x, y) of (n—4)~* will be used: v(x, y)=v(x—y) for x, yell,, v(x) and its
derivatives are 0(e~"*') as |x]— oo away from the origin. See for example [13].

The kernels of (n,—4)7', 2.(x,y) are positive and bounded by v(x, y). This
may be seen by using the Feyman Kac formula for exp(¢(4 —# ). By the resolvent
equation

=) == =) ) — )1

and the exponential decay of (n—A4)~?, (1,—4)™*, the derivatives up to second
order with respect to x of € (x,y) are 0(e~ ")) as |x — y|—co.
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By definition

U= Y PLexy)(x—y)

yell;

=1+ ) P8(xy)((x—y—1)

yell;

=1-0(e ") (6.26)

which shows that {'(x)=1+0(e”"*) uniformly in x. By differentiating, it follows
that |V'(x)|, |4{'(x)] are bounded uniformly in A by O(exp(—#L’)) because
derivatives of {(x—y) vanish for |[x—y|<L'—1. The proof of Lemma 6.7 is
finished.

Lemma 6.8 (Checkerboard Estimate). Let F;, i=1,...,N, belong to the ¢ algebra
generated by fields y(x) supported in A, A;eA distinct. There exists p>0 inde-
pendent of N, s such that

N N
‘f dy, [1 Fi’ = I1IE,

uniformly in s, where ||(-)|, is the L¥(dy,) norm.

Proof. The covariance of dy,, v(x, y,s), is a convex combination of covariances of
the form v,(x, y)=v(x, y) if x, yeX or x,ye ~X, =0 otherwise. X is any union of
cubes € 4. First it is claimed that the checkerboard estimate holds for the gaussian
measure di,, with covariance sv,, where 0=s=<1. This is because if F is any
function of fields y(x) supported in X

[ dwoxF = [ dyp,F (6.27)

where dy,, has covariance sv. The same is true if F is supported in ~X. It is not
necessary to be concerned about 0X because II;N0X = ¢. Therefore

N
jdlpax l—_[1 F;

factors across dX into two parts involving dy,, for which the checkerboard
estimate is standard. See [13]. The checkerboard estimate for diy, can now be built
up by writing, for a polynomial F

[dp,Fly)= | dp, x ... xdp,Fp, +... +v,) (6.28)

where dy; are gaussian measures with the covariances of the form s,,v,5 occuring
in the convex combination making up v(x, y,s). The checkerboard estimate holds
for each dy; with uniform p. The lemma is proved for the special case F;
= polynomial by iterating the checkerboard estimate for dvy,,...,dy,. p may be
chosen uniformly in r. The general case follows. End of proof.

To begin with, consider the terms

[T 110n) Qi (6.29)

i>2
|n()|> 2
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in the left hand side of Theorem 6.3. Each Q;,, has the form
=88 p(x) I L i cosliZp(x): (6.30)

where r=|rn(i)| = 3. By performing the derivatives and unnormal ordering, (6.30) is
bounded in absolute value by

B2~ exp{l 4(x, %)} (6.31)
and (6.29) is less than
[T ol (6.32)
|n(liﬁ§2

where ¢ depends only on c;.

Given Ae 4, let S(4) be the set of n(i) such that i>2, |n(i)] £ 2, and the variables
in 7(i) are localised by a in 4. Lemma 6.8 and (6.29)—(6.32) show that Theorem 6.3
is implied by

(5 | Hna,an;mll2”)”2”6_”_3‘? WO < e Dn(or, A)1)? 17 (6.33)

n(i)eS(4)

for cubes 4 with S(4) =+ ¢. Without loss, p may be increased to an even integer.
Casel. A¢2", 1e.,, g=h and Vg=0. In this case either (Jn(i)]=1)

O Xe) =1p Y2 :sinlp’? P(Xnpy) : — W (Xpqiy)

1 dz
= idt(l — t)W I 12 sinlp 2 typ(x ) (6.34)
or (In(i)|=2)
QX)) =(:cos 112 p(x'): = 1)6(x', x")
1
= (j) dt% scosIE2 typ(x'): 6(x', x) (6.35)

where x,, =(x',x") in (6.35). Substituting (6.34), (6.35) into (6.33) reduces the dy,
integral to evaluating an integral of the form

[dp[] :sinll/? tﬂP(xy)5H scosl}?e,ap(x,):. (6.36)
Y Y

This integral can be evaluated explicitly as a sum over e;=+1 for ISj<N of

terms

+(1/2) exp {— LY eett vlx, xv)/2} (6.37)
uEv

where 1 =<u, v< N, N=2p|S(4)|.

After the ¢ derivatives, indicated by (6.34) and (6.35) have been performed,
(6.33) is obtained by taking the supremum x N° of terms. The N° of terms is
dominated by the ¢"®*4(n(x, 4)!)* in (6.33). The supremum is estimated using
Y el bt v(x,,x,) = — ) thv(x,, x,) = —0()) (6.38)

"

noveuty
uFv
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together with the method of taking norms on H_, discussed at the beginning of
this section. This leads to a product of quantities of the form

(3 [y, y)lz-Z)m =o([ey 317117 (6.39)
a4 a4

m23. This is the origin of the factor in I, in (6.33). Case 1 concluded.
Case 2. ACZX". In this case either (|n(i) =1)

2

Q= jdt(l —71;”2:sinl,f/2t
“(w+g—h) (xn(i)) c+n(g—h) (xn(i)) + Flz(xn(i)) (6.38)
or (In()|=2)
Qriy= jdti cosl?t(y+g—h) (x):8(x',x"). (6.39)

Proceed as in Case 1. The second and third terms in (6.38) are bounded in H_,
norm by

n(I |g—h|2)”2+F}/2(A*>§2F1/2<A”) (6.40)
A

using Lemma 6.7. Terms in (g—h) which arise in the course of doing the ¢
derivatives are likewise bounded by F}/*(4"). These terms are bounded using part
of the factor exp(— L' ™3 F,(4%)/4) in (6.33), e.g., exp(— L'~ 3F,(47)/8). This requires
another factor n(a, 4)! on the right hand side of (6.33). Finally, the bound in
Lemma 5.2 shows that

F,dmzc Y [5h(f)? = can?l; !
SN
f’ Tc AMNT

because, by assumption AC2X”" so that the sum is non empty. Therefore
exp(— L'~ 3F,(4%)/8)<cl}/*. This provides the factor [}/* on the right of (6.33) in
Case 2. The treatment of (6.39) is similar. This concludes Case 2 and Theorem 6.3.

7. The Vacuum Energy Estimate (Theorem 6.5)

The first step is to use a conditioning inequality (see [ 13]) to reduce the theorem to
an estimate for a single cube Qe Q. Let dy, denote the gaussian measure with
covariance (1—A4y)™!, where 4, is the Laplacian with Neuman boundary
conditions on all faces f of cubes in Q along with cubes of side L and disjoint
interiors filling R®*~ A. v(x, y, s) is a convex combination of covariances v,y(x, y),
(see Lemma 6.8), each of which are easily seen to be bounded in the sense of
bilinear forms by the kernel w,(x, y) of (1 —4y) ™%, because (1 —4)"* <(1—4,)~ .
Construct two independent fields v, y;y with covariances uv(x,y,s), w,(x,¥)
—v(x, y,s). Then

§ dpyazhe 7= [ dp,dip,y a5 e 2. (7.1)
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On the right hand side, y”, exp(— pQ) become functions of y, p,y by writing =1
+w;y- Recall from (6.11) that 3, is the supremum of exponentials. By the
inequality | sup Zsup |, the dy,y integral is moved inside the supremum and then
by convexity into the exponent, so that (7.1) is bounded below by

[ dyp, sup exp{ [ dysy (— Y plv Q)
tet(B,h) NeN

@)+ 52~ (T 2= PO, + v (12)
By evaluating the dy;, integral, this shows that
(J‘dws The” pQyp = 1<(I dypyihe” POy =1 0L H1X]| (7.3)

where the normal ordering on the right hand side in Q is with respect to the dy,
measure. The constant O(L~!) comes from evaluating

[ dpsywin(@=L"° !) dx II? dy[w, (x, y)—v(x, y,5)] (7.4)

for each QCX = U " where y=(Y,, ..., Y)).

Since dyy factors into separate measures for each cube QeQ, this completes
the first step.

Step 2. Reduction to the case = qﬁﬂh ie.,, Q¢ 2" Define

W(X)= j {71 (:cosl22p: — 1) +5/2:(p—h)*:} (1.5)
dtpN,M=d1pNexp{(1—M)/2 | :wzz} (7.6)
XnA

dpy 5 1s not normalised.
By the Holder inequality,

(T dwnz e 2N S dwy, otz e " PP 70!
([ dpy e PPFT e (7.7)

M =p,(1—p(L—n)), py 14+p;t=1,p,>1,p,>1 Choose p>1 small so that M >0.
Given QCX, QeQ, I>(I1,nQ) is invariant for 4. Let P be the projection onto the
subspace complementary to the zero eigenvector in [*(IT,nQ). Let wy(x, y) be the
kernel of (—4y)~ ! restricted to PI*(I1,nQ2) and let d(0y(2)) be the gaussian
measure with covariance w, indexed by PI*(I1,nQ). Then

dpy,o=NX) [] [dp(Q)dEy(@) (7.8)

Qe
Qcx

where dy(Q) is lebesque measure (corresponding to the zero eigenvector)

NG = TT ([ dp(@)e 27
5%

1/2 f:6p2:

(fdop@)e 2 )7L (7.9)
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The normal ordering is with respect to (—Ay+1)" 1.
(7.8) is abbreviated as

dyy, o= NX)dpd(oy). (7.10)
Translate this measure by setting y=¢ —g
= N(X)dpd(3¢) exp { - [y /2— | (ANg)¢}- (7.11)
X X
By (7.11) and the Cauchy Schwarz inequality

(s dwN’ O(XﬁN,he_W)ppl)p"lpl—l
<[NQX) [ dy;zr(| d(S)e2pre)1/2

-(§d<é¢)exp {— [(voy*=2] (ANg>6¢})“2}P"”‘ : (7.12)

The second d(d¢) can be performed explicitly. Thus

[d©d)exp {—2 ] (ANg)5¢} =exp {2)5( <VNg)2} <exp{4F,(X)}. (7.13)

Choose p; > 1 so that 2p~'p; 1 <1/8.
The dyy ,, integral in (7.7) can also be integrated and estimated :

jdw,,,Me"Wz=(§dwN,M1)exp{p2p§/2f F;«M—AN)”F;)}
X

<( dwN,Mnexp{l/zpzp%M“l}f( F'f(x)dx}. (7.14)

Choose L' = Lj, where L is so large that by Lemma 6.7

1/2pp,M~* [ F2<1/8F,(X")=1/8F,(X). (7.15)
X

Note that 4g, F), vanish outside X because g=h=constant in (connected
components of ~X)" Combine (7.3), (7.7), (7.8), (7.12)—~7.15)

(J dw e~ 9P Sexp(O(L X))
NGO ([ dipy 105 e300

([ dyz pri([ d@)e 2rr)Hizyemier (7.16)

p, p, depend only on #. Thix completes step 2.

The third step is to perform the d¢ integral, which can be done by reversing the
sine gordon transformation and estimating in such a way as to extract the ¢
behavior. This is all summarised by Lemma 7.1 which is the technical foundation
for the proof of Theorem 6.5. The final step, the d¢ integral, is the subject of
Lemma 7.2.
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Lemma 7.1. Given n >0, u >0, >0, there exists L>0 such that for alll;, 1,1, <c,l,
QeQ,

jd(éqﬁ(Q))exp{ aly ! [ dx(:cosl2[(Q) + ()] : —1)
2
+1/2n0 | :5¢2(x):} Zcexp{al; 'L3(coslt?¢(Q)—1)
Q2
+120uL3p(R)%} .
Lemma 7.2. There exists n' >0 so that for all o there exists ¢ so that
(jdax,;;' [1 exp{orly *L¥(cosl;*$(Q)— 1)
5cx
#1/20 @) sexplc D
c is independent of ;. n' is independent of L. m' was defined beneath Theorem 6.5.

Choose #'>0 so that Lemma 7.2 holds. Choose n:0<y<#n'. Set u=n'—y,
oa=2pp,, &' =pp,. Choose L so that Lemma 7.1 holds.

Proof of Theorem 6.5. (assuming Lemmas 7.1, 7.2) completed. Combine (7.16),
Lemmas 7.1, 7.2

(J dwy(xz.ne” PP <exp(clX])
-N(X)P~ 0 Jy 1(j dwN,Ml)p— prlg- 3F‘/4l’£" . (7.17)

N(X) can be bounded by Jensen’s inequality
{ d(Ew(@)exp (— 12§ ;&,ﬂ;)
2
>exp {— 1/2 § dx [ d(6y) : 53 (x) :}
Q
—exp {— 1/2 [ dx[wo(x, X)— wy (x, x)]+1/2 | dwN¢2(Q)} =c (7.18)
2

where ¢ is independent of I, Q. The dip integral is easily evaluated by unnormal
ordering

PQ)* =¢(Q)2—L_6gf2dx;)dywl(x, y)

=pQ)*—0(L™1). (7.19)
Thus
NX) e, (7.20)
Also

[ oyl =] dwexp{(l ~M)2 [y :}
=exp{—12Trin(14+ A)+1/2Tr A}
<exp (1/4Tr A%) <exp (c|X]) (7.21)
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where A=(—4y+1)"*(1 — M). The inequality can be obtained by using In(1 + x)
2
=x— %, valid for 0<x<1.
By virtue of (7.20) and (7.21) the right hand side of (7.17) is less than

exp {c|X|—3F,(X)/4}1}
<exp {en—1/2F (X)}I}". (7.22)

The final inequality is obtained from Lemma 5.2 and (5.14) and holds provided
I, is sufficiently small. This completes the proof of Theorem 6.5 assuming Lemmas
7.1 and 7.2.

Proof of Lemma 7.2. The left hand side factors into an integral for each cube Q CX.
Each factor has the form

fdésupexp {ol; L3 (cos [}/>E—1)
120 L3 —of [2(E— )2 (7.23)

Let I=[—nl; 2, =l; }/*]. The supremum in (7.23) is taken over I or dI depending
on f3, h. It is enough to prove that there exists ' >0 so that (a) if the sup is over I,
(7.23) is bounded by a constant uniformly in [, (b) if the sup is over 01, (7.23) is
bounded by 0(l}/#*).

Case a). This is implied by: — there exists #” >0 so that for all {€IR, te[ —mn, 7],
L3(cos{ —1)+1//2L30> — 1/2({ ~1)* £0. (7.24)

This is claimed to be obvious. Moreover #” may be chosen independently of L3
since L3<1.

Case b). Left to the reader.

Proof of Lemma 7.1. Let w(x,y) be the kernel of (—A4y—#na)~! restricted to the
complement of the zero eigenspace in I*(IT,n€). If L is sufficiently small, this is the
kernel of a bounded operator. Let d, (6¢(€2)) be the associated gaussian measure. It
is sufficient to prove the same bound with a different constant ¢ for

jdw(aqs(g))exp{al; L g& dx( :cos IL2[(Q) + 5 Q)] : — 1)} (7.25)

where the normal ordering is with respect to d (6¢(€2)). For since the normal
ordering is multiplicative and cosine is <1, the change in normal ordering changes
the exponent by an additive factor of at most

alp Hexp {I,w;(x, x)/2} —exp {I,w(x, x)/2}|
which is bounded as /; -0 uniformly in xeQ provided sup |, w(x,x)|<c and

sup [w, (x, x) —w(x, x)| = ¢’ uniformly in [, for I, <c,l. Both these assertions are

proven in Lemma 7.6.
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By reversing the sine gordon transformation, (7.25) may be rewritten as

© N
Y ZN/NVY (j deexp{—lLW}) exp(ili”q_b Y ej> (7.262)
N=0 @~ \ON =1
W(x,ey)= >  eje;wx;,x;) (7.26b)
15j<j =N
2=1/20l 1 (7.26¢)

#(Q) has been abbreviated to ¢. The expression (7.26a) will be denoted Z,,.
The next lemma requires some preparation. It will be recognised as a form of
the high temperature expansion, Ursell’s method, used by physicists.

W(X, &)y 8)= 2, €. - W(Xj %) (7.27)

1Sj<k<N

where s=(s,...,sy_)e[0, 1]V L.

Wi(x, )y 8)= Y. ejek—gd——(sj S WX ) (7.28)
Sk—1

1=5j<k

The principle underlying the definition (7.27) is the same as in (3.14) and the
definition of dy,; namely, W(s)=W((x,e)y,s) is a convex combination of in-
teractions of the form Wi(x e, X, €5 .. Xpe)+ WXt €415 Xns €N,
I=1,...,N, which have no interaction between pairs of particles when one belongs
to the cluster labelled by coordinates (x e;); <, and the other belongs to the cluster
(x;,¢;);>;- Since w(x, y) is the kernel of a positive operator

1
W((x,e)c )= —1/2 Y w(x;, x;). (7.29)
j=1
This, together with a similar estimate for W((x, e). ) implies for N>2

W((x, €}y, 8) 2 —1/2 .i Wi ;). (7.30)

i=
Lemma 7.3. Provided the sum over N is absolutely convergent,
_ o N NIN—1 “i’zd_’g ej — 2z vol(2)
Zw—exp{ Y VNI Y et s IN((e)N)}e
N=1 (e)n
where vol (Q)= L3 ( =volume of Q) and
N
()= | ds| d”x( I - W,f(s))e“m
[0,1]¥-1 on j=2
Ii(e)=fdx=L3.
2

The quantity in the exponent is the virial expansion. The next lemma specifies a
region of convergence.
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Lemma 7.4. For all I, >0, [>0 such that I, <c,I,

Ze

(e)n
for N=2.
Lemma 7.1 is a corollary of these two lemmas. By Lemmas 7.3 and 7.4,

Z,,<exp {2z(cos I} ¢ —1)L3}

_N
43=Z <CNL2(N 1)L3 San ll/2¢ +C/NL2NZ

Iy((e)y)

-exp {L-” Y 2NN 1N LAV Dgin? (126 4 N[ 2N - 31L)}. (7.31)

N=2

Since (sin I}*$)* <1, ¢?, the sum over N can be made to converge uniformly in [,
and the coefficient of L3¢? made <1/2ou by taking L small. This concludes the
proof of Lemmas 7.1, assuming Lemmas 7.3 and 7.4.

Proof of Lemma 7.4. Write I as the sum of two parts

N
Iyolley)= | ds | de(H - Wj’(s)) (7.32)
[0,1]N-1 ON j=2
1
Iny(ey)=—=1fdt | ds | d®
0 [0,1]¥-1 v
N
( IT - Wj’(s)) W(s)e "LV, (7.33)
ji=2
As in Section 5,
N
[IWs)=2a(Ts) [] wix,x)ee, (7.34)
ji=2 T (i, j)eT
where T is summed over tree graphs on N vertices and
d
q(Ts)= ]_[ I (Sj—1 -+ 5)- (7.35)
(i, )eT *2j—1

By substituting (7.34) into (7.32)

2 eXp{ll”2¢ Z e }IN ol(e)y)

(e)n
<Y [ dsq(Ts)2Y [ dNx ( [T wx, ])|)sin2 1124, (7.36)
T [0,1]V -1 @i, HeT
Lemma 7.5.

sup | dylw(x, y)| <cL?
xe 0
sup | dylw(x, y)* <L
xeQ

¢, are uniform in L.
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By applying the first inequality to (7.36), estimating the integrals in the order
{dxy, fdxy_q,...,[dx,, and then using

dsq(Ts)<eV (7.37)

[0’ 1]N—1
which is a special case of (5.5), (7.36) is less than
VL3 Vsin? 112 (7.38)

which accounts for the first term in the bound in Lemma 7.4.
The estimation of (7.33): the ¢ integral is estimated by taking the supremum
over t. By (7.30)

exp (—tl, W(s)) <exp ( i Lw(x;, x J.)/2) <exp(cN) (7.39)

where c is independent of [}, [, L in the region [; = ¢,l. The second inequality comes
from Lemma 7.6, Part (a).

Lemma 7.6.
(a) [w(x,x)<c
(b) [wy(x, x)—w(x,x)| =’
uniformly in xe€2, 1}, I, in the region |, <c,l. ¢ is also independent of L. (¢’ is not).

By the Cauchy Schwarz inequality
N N 2\1/2
[T W)= ( [ a"x|TT wys) ) (J d”x|W(s)|2)“2 (7.40)
j=2 QN j=2 QN
(7.39), (7.40), Lemma 7.5 may be assembled to prove

|IN, ()l é’CNLZNlL . (7.41)
Proof of Lemma 7.4 completed.

| a¥x
QN

Proof of Lemma 7.5. The first inequality is implied by the second by the Cauchy
Schwarz inequality. The eigenfunctions of 4, restricted to I*(II,nQ) are

Jlx)=(L/2)"

32 {cosk;x;} {cosk,x,} {cosk;x;}

{sink,x,} {sink,x,} {sink;x;} (7.42)

where x=(x,X,,x;), k=(ky, k;, k3)e TnIl,, ;- T,=

3
- %,ﬂ . The reader is re-
ferred to [14] for details. If k; is even cos k;x; is selected, otherwise sin k;x;. Set

(k)= (41-2 S sin? kil/2—noc)—1 . (7.43)

i=1
Then

[ dylwGe, > = dy| Y wk)f(x) /)]

(2] Q k+0
=k;O W2 (k) f2(x)
<) WAL)TPE )y WALT'm)L/2)73=cL. (7.44)

k*0 n+0, ne2nZ3

Proof of Lemma 7.5 concluded.
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Proof of Lemma 7.6. By the eigenfunction expansion

1Lw(x, x)=1, k;{) Wk) f2(X) S 1(L/2) 72 Y WL tn) (7.45)

n¥0

where nis summed over [ — [~ !Lr, [ ! Ln]N2nZ. It is an easy calculation, left to the
reader to see that the right hand side is bounded uniformlyin L, [, I; for I; <c¢,l. This
completes Part (a). Part (b) may also be proved using the eigenfunction expansion
and is likewise left to the reader.

Proof of Lemma 7.3. Let

zZ,=Y exp{ ilt2e i } [ dVxe W (7.46)
@ =1 o~

Jy=1" 1Zexp{ll”2 i }I((e)N) (7.47)
(e)n Jj=

First, it is claimed that it is sufficient to prove that
Zy= z; 1—1[ Iyl =1)! (7.48)
ye

where P is summed over all partitions of {1,2,..., N} into subsets y. |y|=N° of
elements in .

Verification of Claim. The number of partitions into subsets y,,...,y, with
cardinalities n,, ...,n, is N!/(n;!n,!...n,!) so that (7.48) can be rewritten

=N!1Y (@)t Y nJ/n (7.49)

ny, ..., Zng=Ni=1

The (r!)~! compensates for the elements of a partition being unordered whereas
Y15 ...}, are ordered.

0

S NNIZy= Z(r')‘ (Z ”/an)r

N=0 n=1

= exp( i Z"/an> . (7.50)

n=1

Comparison of (7.50) with Lemma 7.3 shows that the claim has been vindicated.
Equation (7.48) is implied by iterating
Zixi= Y. (SI=DWY 9 Z x5 (7.51)
ScX

Sax
where X C{1,2,...,N}. x is the first element in X. (7.51) is equivalent to
[ d¥xexp(—I, W)=Y (IS|— D g [ d*~Slxexp(—1,W). (7.52)
Scx 0Ix~s|

0lx|
Sax
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This is the same as the cluster expansion of Section 3.3 except that the interaction
between particles is interpolated rather than regions of R, Instead of repeating
Section 3.3 with the appropriate substitutions, the following informal discussion is
given: consider the case X ={1,2,...,n}. Let W(s;)=s,W(x, e, ..., Xy, €x)
+(1—s,)W(x,,e,, ..., Xy, ey). Then

1 d
fdVxe 'tV = [ dVx e~ "W O1 [ g5, Ef dVxe LWy (7.53)
0 1
The first term corresponds to S = {1} in (7.52). Perform the derivative. The result is

1 .
I, Y, [dsy [dVx(—e epm(x,,x))e =7 e0. (7.54)

j>10
For each j>1, set W(s,,s,) equal to

SZW(Sla xl: el, erey xN5 eN)+(1 —82){W(Sl’x1a e1’ xja ej)

Py

+ W(X,,5,X3,€3, .0 %), 85 .0y Xy, €4)} -

The “means omit the indicated variable. Express the j term in (7.54) as the sum of
a term labelled by S={1,j} in (7.53) and an error by using the fundamental
theorem of calculus on exp(—I, W(s,,s,)) as in (7.53). Continue until the error
vanishes. End of proof of Lemma 7.3.
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Note Added in Proof. The author should have included Reference [19] in the preprint version of this
paper. At the time he was unaware of this work by Lenard and Edwards in which the sine gordon
transformation is applied to a one dimensional coulomb system to obtain exact results including
screening.

Equation (6.5), page 333 and Equation (6.22) on page 337 are incorrect because they rely on Leibniz
rule, which for a finite difference gradient reads V(fg)=(Vf)g +f(Vg)+I(Vf)(Vg). The final term has
been overlooked. However it may easily be checked that including it does no harm.





