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A Rigorous Approach to Debye Screening
in Dilute Classical Coulomb Systems
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Abstract. The existence and exponential clustering of correlation functions for a
dilute classical coulomb system are proven using methods from constructive
quantum field theory, the sine gordon transformation and the Glimm, Jaffe,
Spencer expansion about mean field theory. This is a vindication of a belief, of
long standing amongst physicists, known as Debye screening. This states that,
because of special properties of the coulomb potential, the configurations of
significant probability are those in which the long range parts of r~1 are mostly
cancelled, leaving an "effective" exponentially decaying potential acting be-
tween charge clouds.
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1. Introduction

1.1. Background

In two previous papers [1, 2], the author and Paul Federbush have studied the
quantum statistical mechanics of continuous systems with pair potentials such as
the Yukawa r~1e~αr, α>0. Rigorous results on the existence and clustering of
correlation functions were obtained using a type of cluster expansion which is
convergent for a region of parameters physically associated with the plasma phase.
The reason for studying such potentials is that they provide a first step towards
obtaining the same type of results for the matter system, a system of positive and
negative charges, one species of which is fermions, interacting by the coulomb law
r"1. They have in common the difficulties that arise from the singularity of the
potential at the origin. Correlation functions are the next most obvious quantities to
inquire after, following the papers of Dyson and Lenard [3] on the stability of
matter and Lieb and Lebowitz [4] on the existence of the thermodynamic limit.

If one applies the cluster expansion of [1, 2] to the matter, system, even
individual terms in the series are divergent because r"1 is not integrable. The
coloumb force, however, has a property, which is probably special to a very small
class of long range potentials, that it "screens" itself. Debye and Hύckel [5] in their
theory of dilute ionic solutions gave a physical argument to the effect that the force
between most pairs of distant particles is almost entirely cancelled by the forces
from the remaining particles in the most probable configurations. The zeroth order
approximation is that r~1 may be replaced by an "effective force" r~ 1e~r/lD between
clumps of particles called charge clouds.

This paper provides a rigorous proof that for an approximate coulomb system
Debye screening holds, in the sense that the infinite volume correlation functions
exist and cluster exponentially. The approximations are (1) the system is treated in
classical statistical mechanics (2) r ~ * is replaced by a potential that falls off as r~1 as
r-> oo but which is constant in the interior of (small) cubes of side / filling 1R3. Thus
each particle interacts as if it were at the centre of the cube containing it. (2) may not
be a bad approximation to more physical methods of mollifying the singularity of
r~* at the origin because the potential approximates r~* as /-»0 and the results hold
in a region where the average interparticle spacing is sufficiently large compared
with / at fixed temperature, i.e. arbitrarily dilute plasmas at fixed temperature.
Lebowitz and Stell [16], taking careful account of short range forces, unlike this
paper, have conjectured exponential decay. Stillinger and White [18] have
suggested an r~s decay. Modulo the short range forces, this paper settles the
question in favour of Lebowitz and Stell.

The techniques used in the proof are the sine gordon transformation, which has
already proved an important technique in the two dimensional coulomb gas [7] and
the Glimm-Jaffe-Spencer expansion about mean field theory [8] from constructive
field theory. Since neither of these are yet standard techniques for this problem,
there follows a brief discussion of these topics and the main technical obstacles.
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1.2. The Sine Gordon Transformation

The partition function for a two component system of charges in a finite region
interacting by a pair potential v(x9y) is

Z= £ z'N/Nl £
N=0 (e)N

(P)N = (P1? . . . , PN) are the momenta, the mass of all particles is set to 1, (x)N are the
coordinates, (e)N are the charges, βj=±l9 7 = !, . . . , JV. z' is the activity,
/? = (temperature)" *. The P integrals may be done explicitly and absorbed into (z')N

to obtain

Z= £ z"/W! X J dNxe~β*.
N = 0 (e)N ΛN

If (f,g)=$dxdyf(x)v(x9y)g(y) is a positive definite bounded bilinear form on
L2(IR3), there exists a unique gaussian measure dφv on S"(IR3) with co variance φc, 3;)
and

exp { - 1/2(/, /)} = J dφυ exp {/</>(/)} .

This follows from Minlo's theorem. If v is sufficiently regular, supφc,x)<oo and
N

continuity is necessary, one can take f(x) = βίl2 X ey5(x — x^), so that
7=1

7=1

7=1

Let dfc(x) = exρ{l/2/?φ;,x)}dx. Then it follows that

v exp 2z J d/φc) cosβ1/2φ(x)
( Λ

= J </<£„ exp /2z J dx : cosβί/2φ(x) :
I ^

because :exp{f^1/2(/>(x)} : =exp{l/2^ι;(x,x)} exp{ί^1/2(/)(x)}. Normal ordering is
defined by normal ordering the power series term wise.

It is not possible to set v(x,y) — \x-y\~1 in this transformation because (a) the
associated form is not bounded (b) |x — y\ ~ 1 is not bounded at x = y. (b) is a genuine
obstruction in the sense that the partition function Z is divergent in finite volume
for φc, y) = \χ — y\~1. The physical interpretation is that such a gas will collapse into
neutral particles. In order to make Z finite, there must be some form of cutoff on the
short distance singularity of r~ 1. In the φ variables this is reflected by the fact that
the cos φ field theory is nonrenormalizable in three dimensions.
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The most natural cutoff for physics would be a repulsive potential such as a hard
core between all particles, but this does not pass through the sine gordon
transformation in a simple way. The next best choice is perhaps
v(x — )>) = J dxf(x — u)\u — w| ~ 1/(w — y) where j dudwf(u)\u — w| ~ 1/(w) < oo. This
can be interpreted as a coulomb interaction between two charge clouds at x and y.
With more work, the theorem can almost certainly be proved for this potential by
the same method.

The easiest cutoff, which is chosen in this paper, is to replace (4πr)~ 1 which is the
kernel of ( — Laplacian)"1 by the kernel of ( — zl^"1 where Δl is the finite difference
Laplacian with respect to a cubic lattice Πl ClR3 of spacing /. This is a function on Πl

but it may in an obvious way be identified with a potential v~(x, y\ constant for x, y
in the interior of cubes of side / centered on Πt. The sine gordon transformation is
formally the same but the spaces are different, e.g., υ~(x, y) is now a bilinear form on

12(Π^ dφv~ is a measure on (X)R, φ(x) is a function on 77,, and §dx:cosβ1/2φ :

becomes £ /3 : cos β1/2 φ(x) : .
xeΠinΛ

Problem (a), which has so far been ignored, is dealt with in this paper by
replacing v~ by ι;̂  = kernel of ( — Al + 2zβξ»Λ)~'L9 where ξ^A(χ) = l if
xεΠln~Λ,=Q otherwise. This gives rise to a bounded bilinear form on 12(Π^. It
converges to ( — zlj)"1, as /t/R3 suitably, both point wise and as a form.

13. The Glίmm-Jaffe-Spencer Expansion about Mean Field Theory

By the sine gordon transformation,

U(β)= Σ I 3 ( : c o s β 1 / 2 φ ( x ) : - ί ) .
xeΠιr\Λ

The partition function has been normalized so that Z = 1 when β = 0. Set
lD = (2zβ)~1/2 Consider the limit β-»0, 1D fixed. Formally,

2z( :cos β112 φ :- 1)- - 1/21D

 2:φ2:+ 1/4 :l»2β:φ4 :-....

The first term can be absorbed into the measure which, up to normalization,
becomes the gaussian measure with co variance vί=(lp2 — Δl)~1. The kernel of this
is approximately the effective potential r ~ 1 exp ( — r/lD) found by Debye. This will be
the basis of an approximation provided the non-quadratic terms give small
contributions as /?—»(). A limit at fixed / is rather easy to apply, however this gives no
control over zί3 because β->0=> :z-»oo. z/3 controls the number of particles in a
cube of side / which is a dimensionless way of measuring density. Therefore this
approximation will only yield high density results — which is where the type of
cutoff used is significant.

To obtain results which are valid for arbitrarily low density at fixed jβ, it is
necessary to show that the non-quadratic terms give small contributions as β-»0,
/->Ό with 1D fixed and β/l bounded. It is easy to check this in perturbation theory :

after the quadratic term is put in the measure, the interaction is Σ ^
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(2z:co$β1/2φ(x): + l/2l~2 :φ2(x): -2z). Expand the exponential and then the
cosine in power series. (The resulting expansion is similar to the resummed high
temperature expansion used by physicists, e.g., [11, 16, 17].) The worst behaved
contributions are (l^β"'1)2 £ I6vl"(x9y) for n = 2, 3, ... . These are o(β1/4) in
this limit. ^e/i^

The preceding argument is flawed because it singles out the period of the cosine
containing φ = 0, whereas only the quantity ξ^ΛmυΛ,a ''boundary term" prevents
dφVΛ from being translation invariant. In other words if xe Λ, dist (x, dΛ) large, there
is nothing in the argument above to tell one why the cosine should not have been
expanded around φ(x) = 2πβ~i/2n for some nφO, neZ. The idea of the Glimm-
Jaffe-Spencer expansion (a semiclassical approximation) is to partition the space of
all field configurations into subsets labelled by "mean fields" h = h(x). These are
piecewise constant functions taking values in 2πβ~ί/2Z, vanishing outside A. They
serve to label the cosine period to which the preceeding approximation is to be
applied. The choice of length scale L for the lower bound over which h is piecewise
constant is heavily constrained. If L is too large, one looses control over fluctuations
of φ away from h. If L is too small, the sum over h diverges.

The intuitive reason for the existence of a length scale L which works is a
conspiracy between the cosine interaction which "repells" φ(x) away from πβ~ 1/2Z
and the measure dφ which assigns significant probability only to field con-
figurations φ(x) with some continuity properties. Thus the interacting measure only
assigns significant probability to configurations φ(x) such that φ(x)&h(x) for some
h. φ is an average over volume ZA

The sum over h will be seen to reflect an underlying Ising model at low
temperature whose spin takes values in 2πβ~ίl2Έ. The control over fluctuations
away from h is a substantial problem (as it was in [8]) which is discussed next.

1.4. Technical Aspects, Size of Constants

The most difficult problem arising in the convergence proof is to show that the
vacuum energy/unit volume is uniformly bounded as /J,/->0,z->oo with
lD = (2zβ)~ί/2 fixed, β/l bounded. For purpose of illustration, take 1D=L The
required inequality is of the form

£ (P : cos βll2φ(x) : -l)k const. (A)
xeΠi^Ω }

Ω is a cube of _side 0(1D). χ: characteristic function of the interval
[ — π/?~ 1/2, nβ~ 1/2]. φ is the average of 0_over Ω. χ arises from the phase boundary
expansion, and in general could localise φ in some other period of the cosine. dφQ is
a massless gaussian measure, e.g.,

xeΠl

This measure, being massless, is invariant under the change of variables
φ-+φ+ const, which means that J dφ0χ (φ) = 0(/?~ 1/2) as β-+Q. However if in (A) the
product of χ and the exponent converges to exp { — 1/2 Σ /3 : φ2(x) : }, then the left
hand side will be bounded uniformly. Conversely, the uniform bound is required in
order to prove convergence or to use the limit as the basis for an expansion.
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This bound is not trivial because the exponent is the Riemann sum of the
difference of two quantities diverging as β~1. The normal ordering changes cosine
by a multiplicative constant so that cos: —1^0. Thus a cancellation must be
performed.

The situation resembles P(φ}2 in that the only divergence to be cancelled is a
vacuum energy and so it is possible to use some standard techniques such as Lp

estimates (because they are homogeneous). However the strength of the divergence
and additional complications from working in three dimensions require one to
exploit properties special to the cosine. The basic philosophy is to use the gas picture
to resolve short distance problems (^/D) and φ variables to resolve long distance
problems (^/D). The same philosophy lay behind Frohlichs work on the two
dimensional coulomb gas [7].

In comparison with numbers applying to typical plasmas or ionic solutions, the
values of the constants controlling the region of convergence of this expansion are
ludicrously small. This defect is common to almost all rigorous investigations of
physical problems, especially at the beginning of their development. The actual
radius of convergence of this expansion is presumably much larger but the estimates
to prove it are lacking.

The convergence of this expansion is both a good and a bad sign for the
resummed high temperature expansions used by physicists. It means that these
expansions will almost certainly be asymptotic but not convergent to the correct
results because they do not take into account the phase boundaries which are of
infinite order in the expansion parameter.

2. Definitions and the Result

Let Πl ClR3 be the cubic lattice with spacing / centred on the origin. The set of closed
cubes, side /, centred on lattice points is denoted ώ. Let A be the set of closed unit

cubes with disjoint interiors such that 1R3= \J_Δ with one ΔeΔ centred on the
_ ΔeΔ

origin. In order that each A e A be a union of ω e ω, it is assumed that / = (integer) ~ ί .
Associated with Πl are the finite difference gradient Pand Laplacian A, both of

which have / dependence. Throughout this paper functions on the lattice Πl will be
identified without comment with functions on 1R3, constant in ωINT for each ωeώ.
Thus integrals over IR3 are frequently used instead of sums over Π^

The partition function is

Z~=Zό* Σ zN/N\ Σ ld»xe-β*~ (2.1)
' N=l (e)N

where (e)N = (el9...9eN) is summed over et= ±1 for each ί = 1,..., N. Z0 is chosen to
normalize Z~ =1 at β = 0.

»- = »-(*!,...,%,(*)„)= Σ w~fe*, ) (2 2)
l£i<j<N

v~(x,y) = kernel of ( — A)'1.

Three variables with the dimension "length" may be formed from I9z9β9 the
parameters in Z~. These are (1) the cut off length /, (2) the Landau length lL = β and
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(3) the Debye length lD = (2zβ)~1/2. By a choice of units, one may assume with no
loss of generality that 1D=1. With this assumption, Z~ may be rewritten

Z~=Z~(Λ)=Z0(ΛΓ1 Σ (/JV.'Γ1 Σ ί d»xe->*»~ (2.3)

where ΛcIR3 is a union of cubes zleJ.
Given a sequence ,4 = ̂ 0, A^(x^ e^), A2(xl9 eί x2, e2), . . . of functions, define the

expectation

4ϊ((xUe)w)e-wr. (2.4)

The infinite volume expectation, when it exists, is defined as

(2.5)
yl/lR3

where the limit is taken through a sequence of rectangular parallelepipeds whose
smallest side tends to oo. In this paper attention is restricted to expectations of A's
with the following special form

3>ι, ,3VeIΊ/ distinct.

, X ι , ',xN>eι> '>eNf)N = ι,... =Q N = Q (2.6)
N

QN(yi(x,e)N)=
7 = 1

ri is arbitrary. Define supp^4 = {j;1? ...,jn}ClR3.
A considerably larger class of A's could be treated with minor changes in the

proof.

The Sine Gordon Transformation. v~ is not the kernel of a bounded operator on
/2(77j), as is necessary for the Sine Gordon transformation. Let ξ^Λ be the
characteristic function of ~Λ and set ί ̂ kernel of ( — A H-ξ^)"1. Define
33, Z(A\ < }ylX ) by replacing v~ by VΛ in all definitions. It is conceivable that
< >Φ< >~ when both limits exist, but most unlikely. This will not be discussed in
this paper. Formally one is still obtaining the Coulomb system in the infinite volume
limit because lim VΛ = V~ pointwise and in several other senses also. VΛ is the kernel

Λ/R 3

of a bounded positive operator on /2(77Z) and it makes sense to define dφ(%\ the
lattice gaussian measure with covariance VΛ. By the Sine Gordon transformation

(2.7)

U(Λ) = lllldx( c o s l l

L

/ 2 φ ( x ) : -1).
Λ
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The easiest way to obtain the expectation of ρ's is to use

<eW)>yi = Z(Λ)-l I ̂ (0,eχp /Γ 1 I dχ( . CQS ;l/2((/)(χ) + /(χ)) . _ 1} (18)

Λ

The result of this paper is

Theorem 2.1. Given any c1 >0, there exists c2>0such that for β/l^c^ (2zβ3)112 ^ c2,

/ n' \lim / f} ρ(y.) \ exists and clusters exponentially, i.e., there are strictly positive
A R3 \ i = 1 / Λ

constants c = c(z,βj), c' = c'(n'\ such that for n1<ri

Π β(yj+a)}-(f[β(yί)}( Π
«ι + l / \ i = l / \j = nι+

^c'exp-c inf ly+a-y

Notation for Constants. Constants labelled c l 5c 2, ... denote strictly positive
numbers and keep fixed values throughout the paper. Constants denoted c, c', c",
etc. are also strictly positive but need not refer to the same number in different
equations.

Remark. It should be possible, by following constants through the paper more
carefully to show that c-^/"1 as β^O, with (2zβ)~1/2 = lD fixed, β/l bounded.

3. The Expansion

3.1. The Peierls Expansion

Let Ω be the set of closed cubes, £2, with disjoint interior, side L, such that A= (J_Ω.
ΩeΏ

L is assumed to be an integral multiple of / and each Ω is a union of cubes eώ.
Furthermore L is assumed to be I/integer, so that each A e A is a union of cubes Ω. L
will be chosen <^ 1 independently of /L, / in the region lL^cJ.

Define

(3.1)

Then

ΩeΩ h

where h is summed over integral multiples of 2π/^1/2.

Change notation so that h = h(Ω) is a function on Ω taking values which are integer

multiples of 2π/^1/2. Set χh= Y[ χh(Ω}(φ(Ω)). Then the Peierls expansion is

(3.2)
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3.2. Translation of φ

Identify h = h(Ω] with the function h(x) defined a.e. on IR3 such that h(x) = h(Ω) for
xeΩINT, h — 0 in ~Λ. The class of functions obtained in this way is denoted H. Let
Σ C A be the closed set where h(x) has a step discontinuity. Σ is called the Peierls
contour for h. It is a union of faces of cubes ΩeΩ.

Z/> 1 is a length, to be chosen later independently of /, 1L in the region lL^cJ9

characterising the distance away from Σ where the effects of the contour become
small. Given ZcIR3, set

Z~={xεA:AeA, dist(Z,A)^L'} . (3.3)

Given h, a function g — g(h) on R3 will be chosen so that

Ψ = Φ-g (3.4)
has small mean and g = h outside Σ .

Choice ofg. Let ηΛ be the function on Πl defined by η(x) = η, xεΛ,= IxφΛ. η will be
chosen later independently of /, /L, 1 ̂ .η >0.

flc(x,3>) = kernel QΪ(ηΛ-Δ)~^ηΛ

0c(x) = (flcΛ)(x)

where £c is the operator on 12(Π^) with kernel £c(x, 3;). Choose a family of functions
£L, on Π19 indexed by L' such that (1) £L,(x) = 0 if |x| ̂  L', (2) ζL,.(x) = 1 if |x| ̂  L - 1, (3)
£L, together with finite difference derivatives up to order 2 are bounded in absolute
value by constants independent of L'. Define

0(x) = (£h)(x) (3.6a)

) - ζ'L,(x) X /3£c(x, y)CL/(x - y)h(y) (3.6b)
yeΠz

L'W=j Σ Pficfe^L^-^)!"1 . (3-6c)

It is left to the reader to prove that g = h outside Σ .
The easiest way to understand this translation is to perceive that if the

exponential of /£" 1 J ( : cos l\^2φ : — 1) is replaced by a kind of periodised gaussian,

:(φ- h)2

translation by g removes the linear term up to a small error whose size is controlled
by L'. It is technically advantageous to live with this small error in exchange for
having g = h outside Σ.

The measure dφΛ is translated by using the identity

~ A ~ A }

The measure dip^ may be expressed in terms of dψl9 the Gaussian measure with
co variance v(x9 y) = kernel o f ( l —zl)"1, by

Pi (3-8)

N(Λ) is the normalisation.
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In order to express the result of the Peierls expansion followed by translation,
define

V(Λ, h) = U(Λ) - fa/2) f : (φ - h)2 : - ((1 - η)/2) f : ιp2 : (3.9a)
A A

,h) = η/2$ .(φ-h)2 .+(ί-η)/2$:ψ2:+ J 0φ
~A

(3.9b)

(3.9c)

Then the Peierls expansion, followed by translation, yields the identity

(3.10)

The definition oίg may be used to show that (3.9b) can be rewritten in the simple
form

Λ,h) (S.lla)

This is left to the reader.
For future reference, define V(Λ,X,h), F^(A,X,h\ F2(Λ,X,h), F(Λ9X,h)9

Q(Λ,X, h) by replacing each range of integration by range r\X,X any union of cubes

3.3. The Cluster Expansion

The cluster expansion is an identity that applies to a quantity of the form

(3.13)

where A is a finite union of cubes e A and W(A) belongs to the σ algebra generated
by fields supported in A' and has the property that it factors across cubes AeA, e.g.,
if X C A_ is a union of cubes AeA, W(A) = W(X)W(A ~X).

Let 7be a collection of closed subsets YcA with disjoint interiors whose union
is A'. Ϋ contains a distinguished element Yίt (The cluster expansion will be written
down only for the case I^DsuppA The case Y^supp.4 is left to the reader. In
regard to this, note that A factors across cubes A e A.) Every other element of Ϋ is
assumed to be connected. The letter y will be used to denote a finite sequence
YI } 72> •••? Yn>

 n arbitrary, of distinct elements of Ϋ. For a given y and parameters

p(x,y,s)= X Sisi + 1 . . . s j _ 1 ξ i ( x ) ξ j ( y )
i^ί<j^n+i

+ Σ sjsj+l...sί_1ξί(x)ξj(y)
l ^ j < i ^ » + l

+ Σ Wx&OO (3-14)
1 ^i^n+1
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where ξt is the characteristic function of Ύ{ for zrgrc, ξn+l is the characteristic
function of ~ [J Y and sn is set to zero. Define v(x, y, s) = v(x — y)p(x, y, s). Let d\ps be

ί^n

the Gaussian measure with covariance υ(x,y,s). This is the kernel of a positive
operator on I2 because it is a linear combination with positive coefficients of
operators of the form ξvξ, where ξ is a characteristic function.

The cluster expansion is the identity

X) (3.15)

where X is summed over all unions of Ye Ϋ containing yt. Since A is finite, this sum
is finite.

K(X)=Σ ί ds$dιpsκ(y,s)AW(X) (3.16)
7 [0,1]"-!

κ(3>,s)=Πκ(9 (3.17)
i = l

Jc(0 = l/2 j dx J dχd/<fo>(x,;M)
y i + ι ^u.y^

.(δ/δψ(x))(δ/δψ(y)).

For n= 1, K(X")= ^dψsAW(Y1) i f X = Y l 9 zero otherwise. The sum over y extends
over all y such that (J Y. =X, n arbitrary. This is a finite sum.

i Zn

Proof. Let dψ's Sn, s = (sl9 ... 9 s n _ ί ) 9 be the measure defined in the same way as dιps

except 5Me[0, 1] instead of being set to zero. Inductive hypothesis:

J dψ1AW(Af) =
Λ:

= ί ώn ̂ - Σ ί ds$ dψ'St Sn "fϊ /φ
0 α5« 7 [0, 1]"-1 i = l

where X is summed over sets of the form [J Y^m^n and y is summed over all
i = l

n

sequences (Yj, ... , Fn) such thatX= (J 1J. JRΠ(X') = 0 if there is no such y. For n = 1,

this hypothesis reduces to

o ι

and this is the fundamental theorem of calculus. To prove the hypothesis for n
replaced by n + 1 and thereby complete the induction, evaluate Rn using integration
by parts (see [10]).

( )= Σ
Yn+ί
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where Yn+ίeΫ, Yn+ίr^Yi = φ for i<n+l, followed by the fundamental theorem of
calculus

The second term becomes Rn+ r When n is sufficiently large, depending on Λ', Rn=Q
and the inductive hypothesis becomes the cluster expansion.

Remark. This is an expansion in clusters of regions contained in R3 as opposed to
clusters of particles. It may be that this is an essential feature of an expansion
approach to Debye screening, because screening involves the statistical behavior of
large numbers of particles.

3.4. The Combined Expansion

Choice of Ϋ. Let X0cΛ" be a given union of Δε A. Let Ϋ=Ϋ(h)bQ the set of subsets
of /Γ whose elements are the connected components ΣΛ

ccΣΛ together with Ae A,
A CA"~Σ". Take Yί = Y^h) to be the smallest union of elements of Ϋ containing
X0. The remaining elements of Ϋ are the elements of 7 not contained in 7X.
Ϋ= Ϋ(h).

Only the caseX0 D supp^ is considered here. The caseX0 ~j) supp.4 is left to the
reader. Apply the cluster expansion (3.15) to each term in (3.10). Λ' = A".

ί dφAA = ΣΣ K&, h)N(Λ) J dφιχh(Λ ~X) exp { - Q(Λ, Λ*~X, ft)} (3. 18)

K(X, h) = £ J ds j dψrfy, s)χh(X) exp { - Q(Λ,X, h)}A . (3.19)
y

where, if Z is a union of cubes zl, χh(Z)= ]~| χh(Ω)(φ(Ω)). The next step is a
ΩeΩ,ΩcZ

resummation of h outside X. This yields the final form of the expansion. Note that
if X ~j)A, K(X,h) has A dependence which has not been made explicit.

Resummation Outside X. Decompose h = hx + h^x. The decomposition is uniquely
fixed by the requirements (1) on the interior of the connected component (~X)°°
of ~X containing the point at oo, h^x = h. (2) For each connected component Xc,
(~X)C of X, ~X respectively, hx is constant on the interior of ((~X)CY h^x is
constant of XΛ

C.

Lemma 3.1. (a) K(X,h) = K(X,hx).
(b) Sdy>ιχh(Λ

By virtue of this lemma, one may write Σ = Σ Σ and perform each sum
independently. Define h hχ h~x

Z'(Λ9X) = Σ J dψrfk x(Λ~X)exp{-Q(Λ,Λ"~X,h»x)} . (3.20)
h~χ

Lemma 3.2. Let δX = (dXTn(Λ~X). Define

M(Λ9X) = Σ XhΛX(δX) exp {- 1/2 J : (φ - hδx)
2:

hόx
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where hδx is defined on (δX)vX, is constant on the interior of connected components
of (δX)vX and vanishes in any connected component of δXvX that intersects ~ Λ.
Then

Z'(Λ,X) = J dφ(v exp { - U(Λ ~X)}M(Λ,X) .

The last lemma is not used in this paper but it provides some intuition for Z'.
After applying Lemma 3.1 the expansion can be written in its final form

,X) (3.21a)

h,y

χh(X)exp{-Q(A,X,h)}A (3.21b)

(h,y) is summed over the set defined by the relations (1) heH (2) y = (71?..., Yn), n

arbitrary, YeΫ(h\ i=l,.. .,n. (3) (J Y^Σ\h\ (4) X= (J Yt. For n=l, (3.21b)
i^n i^n

reduces to zero unless X DX0 in which case

(3.21c)

where h is summed over the set heH,X=Yl(h),X3Σ"(h). If this set is φ, ftpO =

Proo/ o/ Lemma 3.1. (a) Given Xc such that Z cn^ylΦ0, it is claimed that
Q(Λ,Xc,h) = Q(Λ,Xc9hx). It is sufficient to prove that on X™Ύ

9 hx = h, hx-=g = h.
This in turn is implied by h = hx on (3QINT, which is implied by h^x = 0 on (X^)INT.
Since (2) states that h^x is constant on PQINT> tnis ^s implied by h^x = h in ( ~X)°°.
This proves claim. Next it is claimed that as functions of ip Q(Λ,XC, h) = Q(A,XC9 hx)
also when XCCA. For this it is sufficient to show that on X™τ h — hx = g — 2hx

= 2πl^1/2n, for some neΊL. By the same arguments as above this follows from
h^x = 2πlϊ ί/2n on (X^)INΎ, which proves the second claim. By summing over Xc cX,
Q(A,X,h) = Q(A,X,hx). As a function of ψ9 A is unchanged by h-+hx because it is
periodic. This completes the proof of (a).

(b) Follows by the same arguments.

Proof of Lemma 3.2. Undo the translation in (3.20) by setting ψ = φ — Qh^x. lΐXc

is a connected component of X intersecting ~A,h^x = 0 on (3QINT, so Άh^x

= h^x = 0 onX™τ. Sum over all h»x such that h^x = hδx in [(δX)uX]INT. Proof of
Lemma 3.2 concluded.

3.5. Kirkwood Salsburg Equations

These equations will be used to obtain bounds on the ratio Z'/Z, obtained when
the expansion is normalised.

Z'(Λ,X)= X Λ(W~X)Z'(Λ,W) (

h,y

• κ(y, s)χh( W~X) exp { - Q(Λ, W~X, h)} . (3.22b)
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The cubes A e A are ordered in some arbitrary way. Given X, let A 1 be the first cube

Proof. Apply the cluster expansion to each term in the definition of Z' with
X0 = A1. Resum as before.

Equation (3.22) can be written as an equation for Z' on a Banach space. Let
P= [XcA^'.X is a union o f A e A } . \X\ denotes the volume of XeP. B is the space of

functions/ :P-+1R with \\f\\b = supb]xl\f(X)\. R:B^B is the linear operator defined
XeP

by (Λ/)(X")= Σ &(W~X)f(W). Set ρ(X) = Z'(Λ,X) if Xή=φ, = 0 otherwise.
WDX*

Equation (3.22) is, in this notation,

Z(Λ)I + ρ = $tρ (3.24)

where I(φ) = 1, 1(X) = 0 if X φ φ. The operator norm of Λ depends on b and will be
denoted

3.6. Results on Convergence

The expansion is determined once L,L,η are chosen. Theorem 3.3, given below,
assumes a specific choice of L,L,η.

Theorem 3.3. Given c>0, there exist c'c">0 such that for /L^c1/, lL^c'9 WcΛ",
union of A e A,

l ̂  c" exp { - 1/2 dist (X0, W)}

c" depends on A, the observable, as well as c',cv

4. Proof of Theorem 2.1 (Using Section 3.6)

By a choice of units, one may, without loss of generality, set 1D=1. Then the
hypothesis (2zjβ3)1/2^c2 becomes lL^c2 because (2zβ3)ίl2 = lL/lD.

To illustrate the principles involved, a proof, using an idea of Glimm et al. that

\<Q(x)Q(y)>Λ\^ce-^χ-y\ (4.1)

uniformly in Λ9 is first presented. In φ language, provided xή=y, Q(x)(Q(y)
-»/L2 :sml^/2φ(x):sinl^2φ(y):. In the expansion, take X0 to be the cube AxeA,
Δx3x. Set Ay equal to the cube e A containing y. By the symmetry φ^ — φ, $t(X) = 0
unless XnA +φ, therefore the expansion (3.21) reduces to

\<Q(x)Q(y)>Λ\ = (4.2)

By Theorem 3.3, (4.2) implies (4.1) provided, for some constant c

uniformly in A. By Theorem 3.3 again
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if d is taken sufficiently small, because | VF~XΊ ̂  1. This implies that |||ft|||c, ̂  1/2.
Equation (3.24) implies ρ = Z(/L)(ft- 1)'1/, so

l)-1|||c^2. (4.4)

This is exactly (4.3). (ft— I)"1 is defined and bounded by the Neuman series.

Proof of Theorem 2.1. First it is proved that the finite volume correlation
functions cluster exponentially, uniformly in A. The technique is due to Ginibre. A
new expectation < yA is constructed using the doubled partition function
Zί(Λ)xZ2(A) where Zl(Λ),Z2(Λ) are copies of Z(Λ). For any quantities A,B of
the form (2.6)

(AByA-(AyA(ByA = (l/2K(A1-A2)(B1-B2)yΛ . (4.5)

At = A as a function of the fields or coordinates in Zt(A\ ί=l,2.
<(/!1 — A2) (B1 — B2)yA is expanded using a double phase boundary expansion with
terms labelled by (hίyh2\ (Σ19Σ2). Set Σ = ΣlvΣ2. The cluster expansion is
performed on both factors of the product measure simultaneously. Take
X0 = smallest union of ΔE A containing suppA The resummation is essentially
unchanged1. The symmetry l<->2, in the same way as the φ-+ — φ symmetry above,
is used to show

<AByA= Σ K(X}\_Z',(A,X)Z'2(A,X)Z,(AΓ1Z2(AΓ^ . (4.6)
X:XnsuppB

¥=φ

The reader is referred to the proof of Theorem 3.3 to see that with a different
constant the same bound holds for SV(X). The proof of exponential clustering
uniformly in A is completed as for (4.1).

To complete the proof of Theorem 2.1, it remains to be shown that lim

exists for all A of the form (2.6). By applying the expansion withX 0Dsuppτ4, this
reduces to proving that lim3Z'(A,X)Z~1(A) exists since Λ(X) is independent of A

for XcA. Theorem 3.3 provides the required uniform bounds.

Proof that lim Z'(Λ, W)Z ~ l(A) exists for all We IR3, a union of A e A : assume

Z'(Λ, W)Z-\A}-Z'(A, W)Z~\A)

- {Z'(A, W)Z(A) - Z'(Λ'9 W)Z(A)} \_Z(A)Z(A'}\ ~ 1 . (4.7)

Construct a doubled Kirkwood Salsburg expansion for the quantity in curly
brackets taking X0 = W. All terms cancel in pairs except those for which either Xr\
~Aή=φ or Xn~Λ'ήrφ, i e., Xn(~Λ(j~Λ')ή=φ. The proof is concluded using
Theorem 3.3 to show that (4.7)->0, as Λ, A 7 IR3. This also concludes the proof of
Theorem 2.1.

1 This proof of clustering is easier than that in [8] because unlike the situation in [8], the observable
A has the same symmetry (periodic in φ) as the interaction and this has been exploited in setting up the
expansion
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5. Combinatorics

The proofs of Theorem 3.3 and 3.4 involve some combinatorics, such as in the
sums over y, h. The Lemma 5.1 given below is addressed to this aspect of the
convergence proof. First a series of definitions which will be used throughout the
convergence proof are presented.

Given an integer π^2, a tree graph on n vertices is defined to be a set of pairs
(i,j), i<j, of integers l^ij^n such that each integer j, i<j^n occurs once and
only once in a pair (ij). This is not the standard definition. Given y = (715 . . . , Yn\ it
is convenient to rewrite κ(y,s) as

*(M= ( Yl I4 - 1Σ Σ<K7XJθκ(7>) (5.1)
\(U)eΓ T a

where T is_ summed over tree graphs on n vertices, α is summed over maps
a:T^AxA, (ij)H>(α'(0, α"(/)) such that α'(z') C Yi9 α"(/) C Y, . Thus α is summed over a
y, T dependent class which will be denoted α = α(y, T).

q(T,s,y)= Yl --V l . . .S | | (5.2)
(i,j)eT\asj-l

1 7 1 denotes the volume of Y.

ιc(ij,α)= J ώc' j dx"υ(x',x").
«'(») «"0')

(δ/δψ(x'))(δ/δψ(x")) . (5.3)

Given y, T; α, let

Lemma 5.1. Given c4,c l 5 ί/zerβ exists c',c",c5 such that for lL^cJ9 lL^c'

| ̂  C" exp { - 1/2 distpf0, W)}

sup exp {c5n + (l/^F^Λ- (3/4) d(T9 α)}

The supremum is over the set of n, T, s, j;, ft, α such that neZ, n ̂  1, Te set of tree
graphs on n vertices, which is defined to be the null set if n=l, se[0, 1]""1. (y,h)
belongs to the set defined by fteH, y = ( Y ί 9 . . . , Y n ) , Y^Ϋ(h] for i = l,...,n,

Notice that, as usual, Lemma 5.1 is written for the caseX0 D supp^. IfX0 $ supp^4,
there is a parallel lemma with A replaced by the factors of A supported inside X0. An
abbreviated notation has been used in Lemma 5.1, in that Q(h) = Q(A,X9h\
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Proof of Lemma 5.1. The bound of Lemma 5.1 is implied by [using the
decomposition (5.1)]

ΣΣ$ds Σ
n T y,h,a:Xn

• exp { - c5n -

^ c" exp { - 1/2 dist(Xo, W)} . (5.4)

This in turn is implied by (5.5), (5.6), (5.7), (5.8), given below.

(5.5)
Γ

Σ sup Σ exp { - l/2(c5 - 2c4 - 3)|X"| - l/4d(7; α)} ί Π I >Γ ] < co . (5.6)
n T 5Γ,α \(U)eΓ /

Given rc, the sum over y is over all sequences (YJ, . . .YJ , ί^eP, i=l,...,n. YJ
connected, i> 1. Yi DX0, each connected component of Yί contains a cube Δ CX0,
ΔεΔ.

X exp { - 1/4FΛΛ) + cs(l/2|X| - n)} < oo (5.7)
_

uniformly in y. Given p = (y l J... YJ for some n, Ύ^P.h is summed over /zeH such
that Y e Ύ(h\ i = 1, . . . , w, X D ΓΛ(/z). If there are no such Λ, set the left hand side = 0.

dist(X0,W)^\X\ + d(T,a) (5.8)

on the subset of {n, T, s, y, h, α} such that XπWή=φ. Inequality (5.8) is obvious
using the definition of d(7Jα), aeΰ(y, T) and X0,

Proof of (5.5). This estimate is implicitly contained in [9]. First observe that

Σ q(T, s,y) = Π Σ
T

Substitute for ^(7^5,3;) in the right hand side of

J dSι...dsn_ιΣ<l(τ>s>y)^ ί dsι~ d

[O,!]""1 T [O,!]"-1

Σ<l(T,s,y)exp
T

and perform the integrals in the order sπ_1,...,s1, estimating each one before
doing the next by

i

o
valid for x^O. The result is (5.5). Proof concluded.

Proof of (5.6). Fix n, T, then y has the form ( Y ί 9 . . . 9 Y n ) . Arrange the sum over y9 α in
the order Yn, a"(n\ α'(i), where (i, n)e ̂  7n_ 1? α"(rc- 1), α'(05 where (Γ, n- l)e 7; etc.
The sum over 1̂  now takes the form

Σ exp{-l/2(c5-2c4-3)|7J} (5.9)
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which, provided nφl, is bounded by

Σ 66N exp { - l/2(c5 - 2c4 - 3)N} (5. 10)
N=l

because, by an argument in [10, p. 219], the number of connected unions of N
cubes in A containing a given cube is less than 66N. Choose c5 large so that (5.10)
converges and set c' equal to the sum. The sum over α"(n), α'(z') now takes the form

Σ ΉΓ1 Σ exp{-l/4dist(α'(OX(π))} (5.11)
α'(ί) α"(n)

which is bounded uniformly in y. Set c" equal to the bound. After this estimate the
sum over Ύn_^ is of the same form as (5.10) and is estimated by c' again, unless
n=l.

The sum over Yί is different because Yί may have up to \XQ\ connected
components, each containing a cube in AcX0. Thus the Yί sum is bounded by
c'l*0'. Thus the sum of all terms in (5.6) with n fixed is bounded by

cΊ*o|(c>c")n-ι B (5>12)

Choose cs large (this does not conflict with previous choice of c5) so that

Σ (c'cff)n- ί < oo. The proof of (5.6) is complete.
n = l

The proof of Lemma 5.1 will be complete once (5.7) is proved. (5.7) is implied
by Lemmas 5.2, 5.3 given below.

Lemma 5.2. There exists c>0 such that

where f is a face of a cube in Ω, considered as a closed subset of R3. \δhf is the
discontinuity in h across f. Further, if X is a union of cubes in A,

/INT = f~df. (Boundary w.r.t. 1R2)

Lemma 5.3. Given c,c', if /L>0 is sufficiently small,

h f

uniformly in y, n.

Proof of Lemma 5.3. It is sufficient to prove

Σexp ί_ i/2c Σ \δh(f)\2 - l/2c'\X\\ < oo (5.13)
* I / J
- l/2c X \δh(f)\2 + c'(\K\ - n) ̂ 0 . (5.14)

Proof of (5.14). The conditions on y, h imply

. (5.15)
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Also

\Σ(hγ\^(2(L + l))*\{f:fcΣ(h)}\ . (5.16)

The absolute value signs on the right denote cardinality. (5.16) follows from (3.3).
Furthermore

\{f:fCΣ(h)}\ί(2πl-V2Γ2Σ\δh(f)\2 . (5.17)
/

For /L>0 sufficiently small, depending on L', estimates (5.15), (5.16), (5.17) imply
(5.14).

Proof of (5.13). Given ft, setXnclR? = {X:hQί)^2πl£lf2n} for neTL. Let f be the
family of connected components of boundaries dXn, ntTL. Let Γ be the set of
connected components of boundaries dXn, neTL, i.e., Γ may have repeated
elements, Γ does not. If ye Γ, γ is a union of faces / of cubes eΩ. Set |y| = N° of
faces in y.

Σ\(δh(f)\ = Σ M 2π/Γ 1 / 2 . (5.18)
/ yef(h)

Therefore provided 2π/

Σ Σ exp|-C/2.2π/Γ"2 Σ I
Γ h:Γ(h) = Γ ( yef(h)

Σ c-expj-c/^π/-1/2 Σ M\ (5.19)
i ( yeΓ(Λ) J

where |Γ| = card Γ and

c"= f exp(-c/4 2πt1/24m) (5.20)
m = 0

(5.19) was obtained by estimating the sum over {h:Γ(h) = Γ}, |Γ| = n. The right
hand side of (5.19) is less than

X c"7»! Σexpί-c/^πt1/2!?!} " (5.21)

where y is summed over all possible connected components of boundaries dX'
where X'cX is a union of cubes eΩ. The null set is excluded. This in turn equals

exp Id' Σ exp { - c/4 - 2π/~ "* - |y |}) . (5.22)

By a lemma of [12, p. 117], the number of y with \y\ fixed is less than
L~3\X\ |y|33'yl-3, so (5.22) is bounded by exp(cV2|XΊ) provided /L>0 is sufficiently
small, depending on L,L9c',c. This completes the proof of (5.13) and hence
Lemma 5.3.

2 This is easy to prove, especially if one is content to bound the number of cycles by c'c'v'. Simply
build up a cycle face by face with ^6 possible choices per face
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Proof of Lemma 5.2. This proof is taken from [8].

Σl<5/z(/)|2=I-6Σf ίdxdy
f Ω,Ω'Ω Ω'

\h(x)-h(y)\2 (5.23)

where Ω,Ω'eΩ, the sum is over all nearest neighbors.

(5.24)

substitute

\g(y)-g(χ)\2 =

(5.25)

estimate (5.23) using (5.24), (5.25). Take the path from x, to y to be a union of three
segments parallel to the x, y, z axes. The right hand side of (5.23) is thus bounded
by

L^1> U 2. £ ί\h-g\2

Ω,Ω' Ω

+ L~63 L4 3 4L Σ J \Vg\2 (5.26)
Ω,Ω' ΩuΩ'

which is less than

where c = min(l/36^yL3, 1/432L). All_these estimates continue to hold if everything
is restricted to X, a union of cubes e A. This completes the proof of Lemma 5.2.

6. Estimates on Functional Integrals, Gaussian Integrals

An abbreviated notation, in which dependences on j>, h, n,T,s,a are not all explicit
will be used. The objective in this section will be to estimate

\ldψκ(T9*)Aχe-<>\ (6.1)

so as to show that the supremum in Lemma 5.1 is finite. This will prove Theorem
3.3.

There are 2(n— 1) derivatives in /c(7^α), labelled by variables (x/

1,...,x^_1,

x'ι , . . ., x'ή- 1) = (*', x")n-ι = (x)n- 1 Let K be a partition of these variables into subsets
xπ(ί), ί = 1, 2, . . ., r, r arbitrary. Using an obvious notation for derivatives, (6.1) may be
expanded by Leibniz rule to yield

(iJ)eT
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The subscript α on the integral indicates the region of integration xjeα'(i),
xjeα"(/). It will later be necessary to bound the number of partitions π for which
(6.2) is non zero. There are less than 24" choices for π(l), π(2). Since Q is a local
function of φ, β'(xπ(ί)) = 0 unless xπ(ί) are all given the same region of integration
by α. Let w(α, zl) be the number of variables assigned the region of integration ΔeA
by α. Then the number of partitions is bounded by 24" γ[ >(N° of partitions of

Δ

variables localised in Δ by α) which is less than

Πcn(M)w(M)! (6.3)
Δ

Each factor v(x'i9x'j) in (6.2) may be replaced by υξΛij(x'i9x'j)9 where (1)

ω4*;θ = 4,fj*ί-*;i) for x;,x;e77,; (2) £ α f ί j =l for Vί-*;i^dist(α'(i),
α"(/)), =0 for |xj — x7 ^dist(α'(i)> α"0)) — 1> where xj, xJeTI/. (3) £ α j / j is bounded
together with its finite difference derivatives up to second order uniformly in α, ij.

Given a function / on 77/? define the Sobelev norm

i i / i i = ( Σ /6/w/ωΦ,jθ)1/2. (6.4)
\x,yeΠι I

The corresponding Hubert space will be denoted H_1(Πl).

Lemma 6.1. vξaίij is a bounded operator on H_1 and

for some constant c independent of α, ij.

Proof of Lemma 6.1. It is equivalent to bound (l — A ) v ξ Λ f i ί j as a convolution
operator on 12(Π^ and this is bounded by its I1 norm by Young's inequality. Since

(1- J)«lf7)= -2(Vv)(Vξ^-v(Δξ^ (6.5)

the bound of Lemma 6.1 follows using (1) ξ Λ ί j and its gradient vanishes for
|x;-x;|^dist(α'(0, α"(/))-l; (2) |ϋ|, |R;|=0(exp{-|x;-x;|}) for |xj-x;|->cx). This
is easily proved from the analyticity properties of the fourier transform of v. For
example, see [13]. If dist (α'(z), α"(/) = 0, ξα>f>J.= l and the lemma is trivial. End of
proof.

By taking norms on H_ί spaces of functions of several variables, (6.2) is
smaller than

. (6.6)
i>2

where the norms are taken on the spaces H_1(Π\7t(ί}\\ z=l,...,r. ηπ(i) is the
characteristic function of the region of integration assigned to xπ(ί) by α, i.e., a
characteristic function of a product of cubes εA.
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Lemma 6.2. | |τ/α>π( l )-4ΊI ^(c'/I^
1)"'(cn/) |π(1)l for constants c,c' depending only on c±.

|π|=cardπ.

Proof.

A = l : s

(6.7)
j=ι

A'(xπ(ί)] is a sum of at most nr'π(1)' terms arising from Leibniz rule. By a simple
calculation using the bounds |sin/£/ 2φ|:gl, l^ί^^l^c/"1 uniformly in y,
\v(y, y)\^cl~l uniformly in y, the proof of Lemma 6.2 may easily be completed.

By Lemma 6.2 and the Holder inequality (6.6) is less than

ΠKπ<oδτr~' (6-8)
ί>2

p + p' = l. Note that

Theorem 6.3. Given p'^l, if L' is sufficiently large,

dv n ii^^e'p
i>2

where m = N° of distinct cubes eΔ in which a variable in (J π(i) is localised by

This theorem will be used on the second integral in (6.8). The following
manipulations prepare for a theorem on the first integral in (6.8), the "vacuum
energy" integral.

Given a map β : π(2)-»Ω x ... x Ω, |π(2)| factors, let ηβ(xπ(2)) be the characteristic
function of j8(π(2)) considered as a set in (R3)|π(2)l. Write

(2)) (6 9)

where j8 is summed over all maps such that ηβ^ηa)π(2y The number of terms in the
sum is bounded by £~~3|π(2)l. By the triangle inequality
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Define Γ(j8,Λ) to be the set of functions ί:Ω-^lR such that (a)
t(Ω)ε[_h(Ω)-πβ~112, h(Ω) + πβ~l/2]; (b) if Ω is one of the factors in ]8(π(2)),
t(Ω) = h(Ω)±πβ'1/2. Define

Xβth(φ)= sup exp j- Σ (0(0)-ί(ί2))2/2l (6.11)
tet(β,h) { ΩeΩ J

Lemma 6.4.

Proof. Essentially the same inequality is proved in [8]. Referring to (3.1), it is seen
that χ(ξ) is the convolution of a gaussian and a step function, thus

/1>(ξ) = π-1/2(e-(«+^ l/2«)2-g-«-^1/2">2) (6.12)

which is already sufficient to prove the lemma when all the factors of /?(π(2)) are
distinct. If this is not the case, one needs the following estimate on higher
derivatives

\χ(m\ξ)\^cml sup <r«-'>2/2 (6.13)
ί=±/5- 1 / 2 π

which is obtained by applying the Cauchy formula for the (m— l)th derivative to
(6.12).

(6.13) implies

n ( < * 9 Δ ) ΐ \ χ ϊ t h η p . (6.14)
A I

The proof of the lemma is completed by the simple estimate

ιι i i Γ Γ 7 Γ 7 / \\\ηβ\\= \ } d x ) d y v ( x , y )
[Ω Ω

2 ) 1. (6.15)

End of proof.
The next theorem is the subject of Section 7.

Theorem 6.5. There exist L>0, Z/0>0, p>l such that for Z/^Z/0, there exist c,cf

such that

(a) (j

(b)( j

uniformly in the region lL^cJ, where m' = N° of distinct cubes eΔ in which a
variable in π(2) is localised by ηa>π(2)Ίβ = Xβ,h'

The second inequality is implied by the first, (6.10) and Lemma 6.4. The result
of applying Theorems 6.3, 6.5-6.8 implies: there exists c,c7 such that

(6.16)
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The sum over π has been dominated by (6.3). n — n'^m + m' because every region Ύt

in y which does not contain a factor of A must have at least one variable in (J π(i)
i> 1

localised within it. Inequality (6.16) holds, provided L,Z/ are chosen in accordance
with Theorems 6.3 and 6.5.

Proof of Theorem 3.3. Compare (6.16) with Lemma 5.1. The supremum over n, T, s,
y, h, α will be finite if

(6.17)
A

uniformly in T^α, n. This will hold if /L>0 is sufficiently small by virtue of:

Lemma 6.6.

Proof. The construction of the cluster expansion is such that for each AeA, d(T,a)
must contain n(a,A)—i terms, dist(zl,α"(/)), with α"(/) all distinct. Therefore it is
sufficient to show

(n!)5 Π_exp{-distCM')/4}^c' (6.18)
A'eA

where the product is over any n— 1 distinct cubes ΔΈΔ. Evidently the left hand
side is maximised if the cubes A' are packed as close to A as possible. The proof of
(6.18) for this case is left to the reader. End of proof of Lemma 6.6 and Theorem
3.3.

Proof of Theorem 6.3. Q contains terms arising from differentiating the linear
terms in ψ. The control of these is the immediate objective. Define

gc)(x). (6.19)

Lemma 6.7. Given c>0, if L' is sufficiently large, depending on L, c

x

for all X, union of cubes e A.

Proof. It is sufficient to prove

(6.20)
Ω

where c' = 0(e~ηL') as Z/-»oo and recover the result in the lemma by summing over
ΩcX. The operator £ — £c annihilates constants, therefore h(x) may be replaced
by h'(x) — h(Ω) in F'2 without changing anything. Let ξ(χ)=i inside Ω" zero
outside. An easy argument shows that F'2 restricted to Ω does not depend on
hf(x)-h(Ω) outside £T, therefore this may be replaced by h~ =[h'-h(Ω)]ξ. Thus

(6.21)
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By definition of flc, for x, j

- 2(P£C) (x, y) - F(ζ'(x) C(* - J>)) - fic(x, )>)

K(x-J>)). (6.22)

Subscripts L' on £',£ have been dropped. The V,Δ apply to the x variable.
Substitute (6.22) into (6.21) and calculate the square of the 12(Π^ norm as in the
right hand side of (6.20). It is sufficient to calculate this for the terms correspond-
ing to the three kernels in (6.22) separately. The following, to be verified below, will
be used

\ζ'-l\\Vζ'\,\Δζ'\^c' (6.23)

uniformly in x,Λ where c'=0 (exp ( — ηL')\ together with

2c(x,y),\Vϊic(x,y)\^c"exp(-η\x-y\) for \x-y\^l. (6.24)

For example, the operator norm on /2 of the second term in (6.22) is bounded by

||(F£C) P(ΓOII g || Pζ' FflJI + ||(FCC) r(ζ'(ζ- 1))||H_S

which is bounded by 0(exp( — ηL')). H — S stands for the Hubert Schmidt norm,
which is small because (ζ — ί)(x — y) vanishes for \x — y\^L' — L The other terms in
(6.22) may also be bounded in operator norm to yield

\F'2dx^c'2 \h~2dx
Ω Ω~

where

c'=0(exp(-»;L')).

= c'2L3 Σ \h(Ω')-h(Ω)\2

3LfL-^Lf3L-3. (6.25)
/

The sum is over / such that /INT C (ΩOINT Estimate (6.20) is now obtained by
taking Lf large depending on L and appealing to Lemma 5.2.

The claims (6.23), (6.24) will now be justified. The following fact about the
kernel υ(x,y) of (η — A)'1 will be used: v(x,y) = υ(x — y) for x,yeΠly v(x) and its
derivatives are ΰ(e~η\x\) as |Λ;|->OO away from the origin. See for example [13].

The kernels of (ηΛ — A)~~1, 2c(x9y) are positive and bounded by v(x,y). This
may be seen by using the Feyman Kac formula for exp(ί(zl — ηΛ)). By the resolvent
equation

and the exponential decay of (η — Δ)~l, (ηΛ — A ) ~ 1 , the derivatives up to second
order with respect to x of Qc(x,y) are 0(β" ί ί |x~y|) as |x — j;|-»oo.
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By definition

C'"1(χ)= Σ ?3£c(χ,3θC(χ-y)

= l-0(e-ηL') (6.26)

which shows that ζ'(x)=l + Q(e~ηL') uniformly in x. By differentiating, it follows
that |FΓ(x)|, MC'(x)| are bounded uniformly in A by 0(exp( — ηL')} because
derivatives of ζ(x — y) vanish for |x — y\^L — 1. The proof of Lemma 6.7 is
finished.

Lemma6.8 (Checkerboard Estimate). Let Fi9 i = l, ...,JV, belong to the σ algebra
generated by fields ψ(x) supported in Δi9 ΔteΔ distinct. There exists p>0 inde-
pendent of N, s such that

N N

*Ψ. Π F, £ Π \\Ft\\p
ί = l i = l

uniformly in s, where \\( )\\p is the Lp(dψs) norm.

Proof. The co variance of dψs, υ(x,y,s), is a convex combination of co variances of
the form vdx(x,y) = υ(x,y) if x,yeX or x,ye ~X, =0 otherwise. X is any union of
cubes eΔ. First it is claimed that the checkerboard estimate holds for the gaussian
measure dψdx with co variance sυdx where O^s^l. This is because if F is any
function of fields φ(x) supported in X

J dψdXF = J dψsvF (6.27)

where dιpsυ has covariance sv. The same is true if F is supported in ~X. It is not
necessary to be concerned about dX because Πlr\dX = φ. Therefore

factors across dX into two parts involving dψsυ for which the checkerboard
estimate is standard. See [13]. The checkerboard estimate for dψs can now be built
up by writing, for a polynomial F

j dψsF(ψ)= j dψl x ... x dψrF(ψ1 + ... + w) (6.28)

where dψt are gaussian measures with the covariances of the form sdxvdx occuring
in the convex combination making up ι;(x, y, 5). The checkerboard estimate holds
for each dψt with uniform p. The lemma is proved for the special case Ft

= polynomial by iterating the checkerboard estimate for dψl,...,dψr. p may be
chosen uniformly in r. The general case follows. End of proof.

To begin with, consider the terms

Π ii^oeyi (6 29)
i>2

|π(ϊ) |>2
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in the left hand side of Theorem 6.3. Each Qκ(i} has the form

-δr/δrψ(x)l^ :coslί

L

/2ψ(x): (6.30)

where r = |π(z)|^3. By performing the derivatives and unnormal ordering, (6.30) is
bounded in absolute value by

ί*,*)} (6.31)

and (6.29) is less than

Π c |π(ί)l/i/4 (6.32)
1>2

|π(i) |>2

where c depends only on c1.
Given AeA, let S(A) be the set of π(z) such that z>2, |π(z)| ̂ 2, and the variables

in π(ΐ) are localised by α in Δ. Lemma 6.8 and (6.29)-(6.32) show that Theorem 6.3
is implied by

dψ, n ii^oβ wii'1'2^"1"^11^4^^'"^^)'-)2^4 (6-33)
π(ί)eS(Δ) ]

for cubes A with S(A) + φ. Without loss, p may be increased to an even integer.

Casel. A([ΣΛ

9 i.e., g = h and 170 = 0. In this case either (|π(z)| = l)

(ί)): (6.34)
0 at

or(|π(0| = 2)

,x") (6.35)
o ar

where xπ(ί) = (*', x/r) in (6.35). Substituting (6.34), (6.35) into (6.33) reduces the dψs

integral to evaluating an integral of the form

( x γ f ) : . (6.36)

This integral can be evaluated explicitly as a sum over β; — + 1 for i^j^N of
terms

±(1/2)" exp j-/L X eμevtμtvv(Xμ9Xv)/2\ (6.37)

where l^μ, y^N, Ar-
After the t derivatives, indicated by (6.34) and (6.35) have been performed,

(6.33) is obtained by taking the supremum x N° of terms. The N° of terms is
dominated by the cn(Λ'Δ)(n(oι,A)\)2 in (6.33). The supremum is estimated using

Σ eμevtμtvv(xμ,xv)^ - ΣίΦcμ>*μ)= -0(0 (6-38)
μ φ v μ
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together with the method of taking norms on H_ί discussed at the beginning of
this section. This leads to a product of quantities of the form

j dx f dyvm(x, y)l™~ 2V / 2 = o([cΓ 5/2 1£/2] 1/2) (6.39)
A A ]

m^3. This is the origin of the factor in 1L in (6.33). Case 1 concluded.

Case 2. ΔcΣ". In this case either (|π(i)| = 1)

jί - h) (xπ(0): + η(g - h) (xπ(i)) + F2(xπ(0) (6.38)

or(|π(OI = 2)

β;(ί) - f Λ ̂ : cos /i/2 ί(φ + g - h) (x'): δ(x', x"). (6.39)

Proceed as in Case 1. The second and third terms in (6.38) are bounded in H_1

norm by

(6.40)

using Lemma 6.7. Terms in (g — h) which arise in the course of doing the t
derivatives are likewise bounded by Fj/2(zΓ). These terms are bounded using part
of the factor exp( — L'~3F1(JΛ)/4) in (6.33), e.g., exp( — Lf~3F1(Ay%). This requires
another factor π(α,zl)! on the right hand side of (6.33). Finally, the bound in
Lemma 5.2 shows that

because, by assumption ΔcΣΛ so that the sum is non empty. Therefore
exp(-L'"3F1(Jx)/8)^c/i/4. This provides the factor l£/4 on the right of (6.33) in
Case 2. The treatment of (6.39) is similar. This concludes Case 2 and Theorem 6.3.

7. The Vacuum Energy Estimate (Theorem 6.5)

The first step is to use a conditioning inequality (see [13]) to reduce the theorem to
an estimate for a single cube ΩeΩ. Let dψN denote the gaussian measure with
covariance (1 — ΔN)~l, where ΔN is _the Laplacian with Neuman boundary
conditions on all faces / of cubes in Ω along with cubes of side L and disjoint
interiors filling R3~/L v(x,y,s) is a convex combination of covariances vdx(x,y),
(see Lemma 6.8), each of which are easily seen to be bounded in the sense of
bilinear forms by the kernel w^x.y) of (1 —zl^)"1, because (1 — zl)"1^(l — ΔΉ)~l.
Construct two independent fields φs, ψδN with co variances v(x,y,s), w1(x, y)
— v(x,y9s). Then

->Q. (7.1)
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On the right hand side, χ~ exp( — pQ) become functions of ψs, ιpδN by writing ψ = ψs

+ ψδN. Recall from (6.11) that χ~βfh is the supremum of exponentials. By the
inequality j sup ̂  sup J, the dψδN integral is moved inside the supremum and then
by convexity into the exponent, so that (7.1) is bounded below by

ί dψs sup expί J dψόN I- £ p[ίps(Ω)
teτ(β,h) [ \ ΩeΩ

(7.2)

By evaluating the dψδN integral, this shows that

1 e^'1™ (7.3)

where the normal ordering on the right hand side in Q is with respect to the dψN

measure. The constant 0(L~1) comes from evaluating

ί dιpδNψ2

δN(Ω) = L- 6 J dx J dyfy^x, y) - v(x, y, s)] (7.4)
Ω Ω

for each ΩcX= (J Y> where y = (Yl9 ..., YJ.
i = l

Since dψN factors into separate measures for each cube ΩeΩ, this completes
the first step.

Step 2. Reduction to the case ψ = φ—h, i.e., Ω (|I Σ~. Define
^-/l)

2:} (7.5)

j :V

2:l (7.6)
XnΛ J

dψNtM is not normalised.

By the Holder inequality,

(Hv>*(κ£Λ*~Q^

M = p2(l— p ( ί — η)\ pϊ1 +P2 1 = 1, Pi >15 P2>1 Choose p>l small so that M>0.
Given ί2c^, ΩeΩ, ΐ2(Πlr\Ω} is invariant for AN. Let P be the projection onto the
subspace complementary to the zero eigenvector in P^nΩ). Let w0(x,y) be the
kernel of ( — Λ^)~l restricted to P/2(77zn£2) and let d(δψ(Ω)) be the gaussian
measure with covariance vv0 indexed by P/2(77ίnί2). Then

dιpNy 0 = N(X) Π_ ί dψ(Ω) d(διp(Ω)) (7.8)
ΩeΏ
ΩcX

where dιp(Ω) is lebesque measure (corresponding to the zero eigenvector)

N(X) =
Ωe
ΩcX

- l / 2 : δ ψ :

•(\d(δψ(Ω))e Ω Γ 1 . (7.9)
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The normal ordering is with respect to ( —zl^ + 1)"1.
(7.8) is abbreviated as

dψN9θ=N(X)dψd(διp). (7.10)

Translate this measure by setting ψ = φ — g

= N(X)dφd(δφ)exp[- \(VNg)2/2- $(ANg)φ\. (7.11)
ί x x }

By (7.11) and the Cauchy Schwarz inequality

-1"-1. (7.12)

The second d(δφ) can be performed explicitly. Thus

f-2$(ANg)δφ\ = exp/2j(PJV0)2l ^Qxp{4F1(X)}. (7.13)

Choose pl > 1 so that 2p~ lp^ 1 ̂  1/8.
The dιpN>M integral in (7.7) can also be integrated and estimated:

(7.14)

Choose L'^L'o where Z/0 is so large that by Lemma 6.7

1/2PP.M-1 ί F2

2gl/8F1(YΛ) = l/8F1(X:). (7.15)x
Note that zlgi, F2 vanish outside Z because g = h= constant in (connected
components of '~X)~. Combine (7.3), (7.7), (7.8), (7.12)-(7-15)

2pί'^)1/2}ί'"ί'rl (7.16)

p, px depend only on η. Thix completes step 2.
The third step is to perform the δφ integral, which can be done by reversing the

sine gordon transformation and estimating in such a way as to extract the φ
behavior. This is all summarised by Lemma 7.1 which is the technical foundation
for the proof of Theorem 6.5. The final step, the dφ integral, is the subject of
Lemma 7.2.
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Lemma 7.1. Given η>0, μ>0, α>0, there exists L>0 such that for all lu I, lL^cJ,
ΩeΩ,

+ l/2ι/α f :δφ2(x) : I ̂  cexp {α/~ lL\co^2φ(Ω) - 1)
Ω J

Lemma 7.2. There exists η'>0 so that for all a! there exists c so that

~α ΠM 1L
\

+ l/2afη'L3φ(Ω)2}Y'~i^

c 15 independent of 1L. η' is independent of L. m' was defined beneath Theorem 6.5.

Choose 77' >0 so that Lemma 7.2 holds. Choose η:Q<η<η'. Set μ = η' — η,
oί = 2pp1, a'=pp1. Choose L so that Lemma 7.1 holds.

Proof of Theorem 6.5. (assuming Lemmas 7.1, 7.2) completed. Combine (7.16),
Lemmas 7.1, 7.2.

pr l(J dψN9Miγ~ ip2~ le~ 3Fl/4^' . (7.17)

N(X) can be bounded by Jensen's inequality

^ exp J - 1/2 J dx J d(δψ) : δψ2(x) :
I Ω

- exp {- 1/2 j ώc[w0(x, x) - w^x, x)] + 1/2 j d\pNip2(Ω)\ = c (7.18)
1 « J

where c is independent of /, Ω. The dip integral is easily evaluated by unnormal
ordering

Ω Ω

ΰ(L-1). (7.19)

Thus

N(X)^e°W. (7.20)

Also

(7.21)

=exp { - l/2Trln (1 + A) + l/2Tr A]
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where A = ( — AN + l)~1(ί—M). The inequality can be obtained by using ln(l + x)
x2

^x-—9 valid for O^x^l.

By virtue of (7.20) and (7.21) the right hand side of (7.17) is less than

. (7.22)

The final inequality is obtained from Lemma 5.2 and (5.14) and holds provided
1L is sufficiently small. This completes the proof of Theorem 6.5 assuming Lemmas
7.1 and 7.2.

Proof of Lemma 7.2. The left hand side factors into an integral for each cube ΩcX.
Each factor has the form

J dξ sup exp {α't ̂ (cos li/2ξ - 1)
t

)2}. (7.23)

Let /= [ — π/^ 1/2, π/^ 1/2]. The supremum in (7.23) is taken over / or dl depending
on /?, h. It is enough to prove that there exists η' >0 so that (a) if the sup is over /,
(7.23) is bounded by a constant uniformly in 1L (b) if the sup is over dl, (7.23) is
bounded by 0(/£/4α').

Case a). This is implied by: — there exists η">ΰ so that for all ζelR, £E[ — π,π],

L3(cos C - 1) + η"βL3ζ2 - l/2(ζ -ί)2 ̂ 0 . (7.24)

This is claimed to be obvious. Moreover η" may be chosen independently of L3

since L3^l.

Case b). Left to the reader.

Proof of Lemma 7.1. Let w(x,y) be the kernel of ( — ΔN — ηu)'1 restricted to the
complement of the zero eigenspace in l2(ΠtnΩ). If L is sufficiently small, this is the
kernel of a bounded operator. Let dw(δφ(Ω)) be the associated gaussian measure. It
is sufficient to prove the same bound with a different constant c for

ϊ1$dx( :coslί

L

/2\~φ(Ω) + δφ(Ω)'] : -1)1 (7.25)
Ω I

where the normal ordering is with respect to dw(δφ(Ω)). For since the normal
ordering is multiplicative and cosine is ^ 1, the change in normal ordering changes
the exponent by an additive factor of at most

lL^(x9 x)/2} - exp {lLw(x, x)/2}\

which is bounded as /L— »0 uniformly in xeΩ provided sup|/Lw(x, x)|^c and
X

sup|w1(x,x) — w(x,x)|^c' uniformly in 1LJ for lL^cJ. Both these assertions are
Λ;

proven in Lemma 7.6.
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By reversing the sine gordon transformation, (7.25) may be rewritten as

Σ zN/W Σ n ΛexP ί - W) exP (ίlL2Φ .Σ ̂  (7.26a)

W((x,e)N)= ^Σ ^ ejej.vtxj.Xf) (7.26b)

1 . (7.26c)

) has been abbreviated to </>. The expression (7.26a) will be denoted Zw.
The next lemma requires some preparation. It will be recognised as a form of

the high temperature expansion, UrselΓs method, used by physicists.

W((x, e)N9 s)= Σ ejeksj - - - sk-.iW(Xj, xfc) (7 27)
l ^ j < k ^ N

where s-(s1,...,sJV_1)e[0,l]N-1.

Wk((x,e)N9s) = Σ efk-^—(Sj...sk_.Jw(xj9xJ. (7.28)
l ^ j < f c ask-l

The principle underlying the definition (7.27) is the same as in (3.14) and the
definition of dψsι namely, W(s)=W((x9e)N9s) is a convex combination of in-
teractions of the form W(xl9 el9 x29 e2, - - ., xί9 et) + W(xl+l9 el+1,...9xN9 eN\
1=19...9N9 which have no interaction between pairs of particles when one belongs
to the cluster labelled by coordinates (xj9 ej)j^l and the other belongs to the cluster
(xj9ej)j>l. Since w(x9y) is the kernel of a positive operator

.). (7.29)

This, together with a similar estimate for W((x9e)>l) implies for N>2

W((x, e)N, s)^- 1/2 Σ ^(xj, xj) - (7.30)
J = l

Lemma 7.3. Provided the sum over N is absolutely convergent,

Zw = exp

vol (Ω) = L3 ( = volume of Ω) and

J d"x ( ft - WJ(s) e-'
ΩN V=2

The quantity in the exponent is the virial expansion. The next lemma specifies a
region of convergence.
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Lemma 7.4. For all /L>0, />0 such that lL^cJ,

_ N

n ilWφjζej Nτ2(N-l)τ3 : 211/21, >Nτ2Nι
tί i N\\ )N) ~~^ ^ *-^ •*-' 3111 I T U-' i ^ C Λ-^ι lr

for N^2.

Lemma 7.1 is a corollary of these two lemmas. By Lemmas 7.3 and 7.4,

(7.31)

Since (sin l^φ)2 ^ /L02, the sum over JV can be made to converge uniformly in 1L

and the coefficient of L3φ2 made :gl/2αμ by taking L small. This concludes the
proof of Lemmas 7.1, assuming Lemmas 7.3 and 7.4.

Proof of Lemma 7.4. Write IN as the sum of two parts

Vo(fev))= ί ds S P x l -Wj(s)
-

ί
ΩN

-W;(s)w(s)e -tlLW(s}

As in Section 5,

Π W{s) = Σ<l(T>s) Π "(xtxfaej
j = 2 T (i f j )eΓ

where T is summed over tree graphs on N vertices and

T,s)= Π -Λ-(S;-ι. •*,-)•

By substituting (7.34) into (7.32)

j = l

rfs q(T, s)2N

ΩN \(i,j)eT

sin

Lemma 7.5.

sup
xeΩ

xeΩ

c, c' are uniform in I.

(7.32)

(7.33)

(7.34)

(7-35)

(7.36)



Debye Screening 347

By applying the first inequality to (7.36), estimating the integrals in the order
$dxN, \dxN_i, ...,Jdx1? and then using

(7.37)

(7.38)

which is a special case of (5.5), (7.36) is less than

n- Dsin2

which accounts for the first term in the bound in Lemma 7.4.
The estimation of (7.33): the t integral is estimated by taking the supremum

over ί. By (7.30)
/ N \

(7.39)exp(-ί/Ltns))^exp Σ /Lw(x., x )/2 U exp (dV)
\ j = ι /

where c is independent of /L, /, L in the region lL^cJ. The second inequality comes
from Lemma 7.6, Part (a).

Lemma 7.6.
(a) ίLw(x,
(b) K(x,

uniformly in xeί2, /L, /, in the region lL^cJ. c is also independent of L. (d is not).

By the Cauchy Schwarz inequality
N / N

dNx Π W;(s)IMs)l^f ί dNx Π Wj(
ΩN

J = 2

$ <Fχ\W(s)\2 2
(7.40)

(7.41)

(7.39), (7.40), Lemma 7.5 may be assembled to prove

\INΛ((e)N)\^cNL2NlL.

Proof of Lemma 7.4 completed.

Proof of Lemma 7.5. The first inequality is implied by the second by the Cauchy
Schwarz inequality. The eigenfunctions of AN restricted to /2(77znΩ) are

",],} {cosk2x2} {cos/c3x3}

where x = (x1?x2,x3), k = (k1,k2,k3)eTlnΠ2π/L Tl= \- - - . The reader is re-

is selected, otherwise s m f e f X f . Setferred to [14] for details. If ki is even
3 \ -1

Then

(7.43)

w(fe)/k(x)/fc(y)
/ c Φ O

= Σ
k Φ O

^ Σ w2(/c)(L/2)~ 3 ̂
fcΦO n

Proof of Lemma 7.5 concluded.

3 (7.44)
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Proof of Lemma 7.6. By the eigenfunction expansion

lLw(x, x) = /L Σ mfk

2(x) ^ k(L/2Γ 3 Σ ή(L~ ln) (7.45)
f c Φ O n Φ O

where n is summed over [ — Γ 1Lπ, Γ vLτϊ\c\LπTL. It is an easy calculation, left to the
reader to see that the right hand side is bounded uniformly in L, /, 1L for lL^cJ. This
completes Part (a). Part (b) may also be proved using the eigenfunction expansion
and is likewise left to the reader.

Proof of Lemma 7.3. Let

Zn = Σ exp \W2Φ Σ 4 ί dNxe-'-w (7.46)
(e)N ( 7=1 ) Ω*

JN = /Γ l Σ exp k/2<£ Σ el I((e)N) . (7.47)
(e)N I j = l J

First, it is claimed that it is sufficient to prove that

i-1)! (? 48)
P yeP

where P is summed over all partitions of {1,2, ...,ΛΓ} into subsets γ. lyHΛΓ0 of
elements in 7.

Verification of Claim. The number of partitions into subsets y l 5 . . .,7 r with
cardinalities nl9 ...,nr is N\/(nί \n2\ ... nr!) so that (7.48) can be rewritten

Zw = ΛΓ!Σ(r!Γ 1 Σ ΠV".- (7 49)
r M I , ... ,nr:Σnί = N i= 1

The (r!)"1 compensates for the elements of a partition being unordered whereas

5 ..., are ordered.

Σ z^/Niz^Σί' O-
N = Q r = 0 \n=l

(7.50)

Comparison of (7.50) with Lemma 7.3 shows that the claim has been vindicated.
Equation (7.48) is implied by iterating

(7.51)
ScX
SBX

where Xc{1,2, ...,ΛΓ}. x is the first element in X. (7.51) is equivalent to

ί j |AΓ~S| v p γ n/ / TTA ("I ^O\
(Λ ΛCΛLM IT r f I . \/.JZ*ι

' Ω\x~s\
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This is the same as the cluster expansion of Section 3.3 except that the interaction
between particles is interpolated rather than regions of IR3. Instead of repeating
Section 3.3 with the appropriate substitutions, the following informal discussion is
given: consider the case X = {1,2, ...,n}. Let W(sί) = s1W(xί9eί9 ...9xN9eN)
+ (l-s1)W(x29e29...9xN9eN). Then

. (7.53)
o " ι

The first term corresponds to S= {1} in (7.52). Perform the derivative. The result is

IL Σ Ids^d^-esj^xfle-w™. (7.54)
j> i o

For each J>19 set W(sl9s2) equal to

+ W(x29 e29 x3, e39 . . ., xj9 ep ...9xN9 eN)} .

The "means omit the indicated variable. Express the jth term in (7.54) as the sum of
a term labelled by S = {1J} in (7.53) and an error by using the fundamental
theorem of calculus on exp( — lLW(sl9s2)) as in (7.53). Continue until the error
vanishes. End of proof of Lemma 7.3.
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Note Added in Proof. The author should have included Reference [19] in the preprint version of this
paper. At the time he was unaware of this work by Lenard and Edwards in which the sine gordon
transformation is applied to a one dimensional coulomb system to obtain exact results including
screening.

Equation (6.5), page 333 and Equation (6.22) on page 337 are incorrect because they rely on Leibniz
rule, which for a finite difference gradient reads V(fg} = (Vf)g+f(Vg} + l(Vf}(Vg). The final term has
been overlooked. However it may easily be checked that including it does no harm.




