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Abstract. Homogeneous space-times (i.e. those admitting a three-parameter
group of isometries) are studied using the Newman Penrose formalism. It is
found that solutions containing horizons depend on two fewer parameters
than the most general solution, so that horizons and the associated whimper
singularities are not stable features of homogeneous space-times. In the
vacuum case, there are just three two-parameter families with horizons, two of
which are the NUT solutions and certain plane waves.

1. Introduction

Singularities in space-time are characterised by the existence of an incomplete
curve, y(υ\ with 0<ζv<v+ (see [1-3]). In particular, the more physical types of
singularity occur if components of the Riemann tensor fail to tend to finite limits
when measured in a frame which is parallelly propagated along γ(v)'9 these are
called curvature (or p.p.)1 singularities. In this case the space-time cannot be
extended through the singular point in any reasonable way. Curvature singula-
rities can be subclassified as either c° scalar (curvature)1 or c° non-scalar
(intermediate). If v+ is a c° non-scalar singularity, all polynomial invariants of the
Riemann tensor tend to finite limits as v—>υ+ or equivalently [4], there exists a
(non-parallelly propagated) frame in which components of the Riemann tensor do
tend to finite limits. If such a frame does not exist, or if some polynomial invariant
of Rabcd is badly behaved, the singularity is c° scalar.

Although it is known [5] that general, physically reasonable space-times must
become singular somewhere, very little is known about the type of singularity
which occurs. One approach to this problem is to investigate the behaviour of all
members of a restricted class of solutions: if then the less desirable types of
singularity turned out to arise only in a small subclass of these solutions, one could
more readily believe that they are not a general feature of realistic universe models.
1 The classification here is due to Ellis and Schmidt [1] and differs from that given by Ellis and King
in [2]. To avoid confusion, the terminology of [1] will usually be accompanied in parentheses by the
equivalent description from [2]
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Fig. 1. A typical whimper in a homogeneous model. The broken lines represent surfaces of
homogeneity, which are spacelike in region I, timelike in region II and null on the horizon S0

The homogeneous2 models lend themselves particularly to this treatment,
because the relevant equations can be studied using the techniques of ordinary
differential equations. These models contain a one-parameter family of homo-
geneous hypersurfaces, S(w), local properties of which have been investigated in
[6-8]. More recently, their global structure has come under scrutiny (see [2] for a
systematic treatment), revealing some interesting features. It sometimes happens
that the normals to the surfaces S(u) are timelike in certain regions, but spacelike in
others, adjacent regions being separated by a null surface of homogeneity, 50,
which is a local isometry horizon. This structure will generally be accompanied by
a c° non-scalar curvature singularity, as can be seen by the following argument.
Firstly, there exists a frame on 50 in which all components of the Riemann tensor
are finite, because these components must be constant on S0 in a group-invariant
tetrad. However, for non-degenerate horizons, such a tetrad is related to a tetrad
parallel along the null geodesic generators of 50 by a Lorentz transformation
which must diverge somewhere on S0 (see [2, 9]). Unless the Weyl tensor is
algebraically special, and the Ricci tensor is also of a specialised type, components
of Rabcd will diverge in the parallelly propagated frame. The generators of 50 will
therefore encounter a c° non-scalar (intermediate) singularity. The causal structure
of the singularity appears to be that of a null curve or surface (see Fig. 1). When the
Weyl and Ricci tensors do have the necessary specialised forms, or when the
horizon is degenerate, the null hypersurface may be complete; however, these
possibilities can be eliminated by imposing reasonable energy conditions (see § 4).

Non-scalar curvature singularities can also occur in spatially homogeneous
solutions in the absence of a null surface of homogeneity, as for example in the
Collinson-French solution [10]. In this case the space-time has the same
conformal structure as a k = — 1 Friedmann universe, but the initial singularity is
c° non-scalar. Thus, although the term "whimper" was used in [2] to refer to any
intermediate singularity, we shall apply it only to those which are accompanied by
a horizon, as described above.

2 By "homogeneous" we mean "admitting a three-parameter isometry group simply transitive on
hypersurfaces which are almost everywhere non-null"
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The purpose of this paper is to show that, contrary to the claim made in [2],
(but in agreement with [11]), whimpers are not a general feature of homogeneous
models. This supports the view that the singularities one is likely to encounter in
the real universe are of the intuitive type, involving infinite matter density or
pressure. The proof depends on determining the number of degrees of freedom in
the initial value problem for whimper models, and comparing this with the
corresponding number for the general homogeneous solution. It is found that
whimper models usually allow two fewer degrees of freedom.

In fact, this result is not unexpected. For, consider the case of an empty space-
time. (The addition of matter fields is actually a straightforward generalisation of
the vacuum case.) It is well-known [5] that the Cauchy development of a space-
like hypersurface, S(u0), is determined by four arbitrary functions on S(MO). In the
homogeneous case, these functions are constant, so that the general solution
depends on four parameters. In order to determine which of these solutions admits
a horizon, it is necessary to examine initial data on a null hypersurface. This
problem has been tackled by Penrose [12] and also by Sachs [13], who found that
it suffices to prescribe just two functions over a null cone, or on two intersecting
null hypersurfaces (plus data concerning the geometry of their intersection). When
one hypersurface is homogeneous, the two functions become parameters as before,
but these do not determine the development. However, it turns out that the
additional requirement that the entire space-time be homogeneous is enough to fix
conditions on the other hypersurface. (In other words, of all solutions which have
constant initial data on one characteristic hypersurface, only a two-parameter
family has a spatially homogeneous development.)

Although a number of different formalisms for homogeneous solutions have
been developed in the literature ([7, 14], for example) none is suitable for dealing
with the problem described above. In most cases, this is because the tetrad is tied
too closely to the invariant hypersurfaces, and is not well defined on the horizon.
Indeed, the expansion of the normal congruence becomes infinite on this
hypersurface, as do the quantities aA and n^ according to usual definitions [6], so
it is clear that a simple application of the standard methods will produce
anomalous results (cf. [15] with regard to [16]). Nor is it convenient to use a fluid-
based tetrad as in [2], firstly because we shall want to consider vacuum solutions,
and secondly because the whimper structure does not depend essentially on the
fluid. (In the "exact" models of [2], any invariant vector field defined by the
Riemann tensor could be used to replace the fluid flow lines.)

To avoid these difficulties we use a null tetrad, the scaling of which does not
depend on the hypersurface normals. By choosing one vector to be tangent to a
null geodesic which crosses the horizon, we ensure that the tetrad and Riemann
tensor components are well-behaved on and near 50. This choice of tetrad is more
akin to that of Newman and Penrose [17] than to an orthonormal tetrad, so rather
than produce a new formalism along the lines of [7], we shall simply take over the
familiar equations of [17].

The outline of this paper is as follows. In § 2 the application of the NP
formalism to homogeneous solutions is described. Slightly more detail is given
than is needed here, because the same methods are used in a forthcoming paper
[10] to determine the global properties of certain algebraically special solutions.
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The characterisation of the different Bianchi groups by means of the NP spin
coefficients is given in § 3. The method and characterisation follows closely that of
Ellis and MacCallum [6], although some modification is required to deal with the
null hypersurface. §4 contains a generalisation of a theorem given in [2],
(Theorem 4.1), which states that whimpers cannot occur in universe models
invariant under a group of class A. One might think that this result is due to some
intrinsic property of the class A groups which prevents them acting on a manifold
with metric signature (o, —, —) however this is not the case. For, given any three-
parameter group, one could choose a metric of this signature at one point in the
group manifold and left translate it over the entire manifold yielding a G3-
invariant manifold with a degenerate metric, as required. In fact the exclusion of
class A whimpers depends on an energy condition (a strong version of which is
assumed in [2]) which we derive explicitly in Theorem 1 of §4. It is shown that
class A models can only have horizons with expansion-free null generators, and
that this situation cannot occur if certain conditions on the energy momentum
tensor are fulfilled. (It is well-known [5] that realistic forms of matter cause null
geodesies to focus.)

Finally, the results discussed above concerning initial null hypersurface data
are derived in § 5 for vacuum solutions and in § 6 for perfect fluid. The method
used is somewhat different from either [12] or [13], in that we calculate the
degrees of freedom in terms of spin coefficients, rather than Riemann tensor or
metric tensor components. The analogous results for initial spacelike hyper-
surfaces are easily obtainable, and are quoted in Appendix B, while Appendix A
contains the necessary NP equations, with appropriate simplifications.

Sign and other conventions are those of Newman and Penrose [17], except
that coordinate indices are lower case Latin, tetrad indices are Greek, and indices
referring to an invariant triad are upper case Latin.

2. Formalism

Let (Ji, g) be a space-time with the usual analyticity properties (see e.g. [2]) which
admits an isometry group G3 acting simply transitively on a family of space-like
hypersurfaces, S(u). We shall use a G3-invariant null tetrad chosen in the following
way. A single curve with null tangent vector la is selected and then "dragged" over
each S(u) by the action of the group to define an invariant null congruence on Jt\

£ξj
a = 0 4 = 1,2,3

where ξA are three linearly independent Killing vectors. A second null vector field,
na, is defined invariantly and uniquely by requiring the unit normal to the
hypersurfaces, ua, to be expressible in the form

ua = (eV + e~ ηla)/]/2 uaua -1 (2.1)

for some η = η(u). na and la satisfy the NP normalisation lana = 1. The two complex
vectors of the tetrad, ma and mfl, are chosen at one point in each hypersurface to
satisfy

mama = -1, mama = 0 = mala = mana . (2.2)
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They are also dragged over the hypersurfaces by the action of the group, and the
normalisations (2.2) are maintained because Lie propagation preserves the metric.
The tetrad is now uniquely defined, given the choice of /α, except for a spatial
rotation :

m«-»mV*; θ = θ(u). (2.3)

The invariant scalar e2η is a measure of the hyperbolic angle of tilt between the
hypersurface normals and the null congruences. Its precise value depends on the
normalisation of /fl, and therefore has no particular significance unless la is
determined by the Riemann tensor or its derivatives. However, under a change of
normalisation

la^Ala, na^A~lna (2.4)

the transformation e~ 2η '-> A~ 2 e~ 2η follows from the definition (2.1), so that the
sign of e~2η is independent of the normalisation. It will be seen that the field
equations can be written in a form which depends on e~2n (rather than e~η\ so
that in certain cases, the null congruences can be continued into regions where

e~2η is negative. In these regions, the real vector field ]/2e~ηua = e~2ηla + na is
spacelike and therefore defines a family of "timelike" hypersurfaces. Furthermore,
when e~ 2η = 0, the hypersurface is null. The sign oϊe~2η therefore indicates, for any
choice of /α, the nature of the invariant hypersurfaces.

The tangent spaces to S(ύ) at each point are spanned by the vectors Ea

A :

E\ = (e~ Ψ - eηna)/ ] 2 , Ea

2 = (ma + ma)

E*=(ma-ma)/\/2i. (2.5)

(In fact many expressions involving EA could be simplified by choosing E2 and £3

to be complex conjugates. Despite this, we shall use the triad (2.5) in order to
maintain a resemblance with previous approaches.) Using the usual notation for
derivatives along the tetrad directions [17], we have for any G3-invariant
function φ(u):

EA(φ) = Q=>δφ = δφ = (e-ηD-eηA)φ = 0 . (2.6)

The rotation coefficients of the null tetrad are defined by the commutators of the
tetrad vectors :

and these quantities are easily shown to be constant on the surfaces of homo-
geneity (cf. [6]). By applying the commutators (2.7) in turn to an arbitrary
invariant scalar, and using the relations (2.6) one obtains the following useful
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identities :

2η , (2.8)

, (2.9)

2\ (2.10)

2*. (2.11)

The equations governing the propagation of the rotation coefficients are the 18
complex NP equations ((a)-(r) in [17]) which are listed with appropriate
specialisation in Appendix A. They comprise 16 (real) Jacobi identities for the null
tetrad (cL [6]) and the defining equations for the 20 independent components of
the Riemann tensor. They imply the Bianchi identities, which will be designated
(Bl)-(Bll), with reference to the order given in [18], and also the identities (2.8)-
(2.11). We shall avoid using the Bianchi identities, except when the equivalent
derivation via the NP equations is excessively cumbersome. For this reason only
(B2) is given in Appendix A.

The shear and expansion of the hypersurface normals are easily obtainable
from the decomposition of /α;b, etc. given in [10] :

SαbEEt,α;b=]/2Re{(y^-β^^

+ (σe~η- λeη)mamb - (μeη -ρe~ η)mamb } (2. 1 2)

which is symmetric by virtue of Equation (2.11);

i;)e1'} . (2.13)

3. Classification of Bianchi Groups

Three parameter Lie groups can be classified into 10 types, according to a scheme
described in [6]. Generally, these types are determined from the commutator
functions y^c of an invariant basis such as (2.5)

\βA,EB-\=Ecy
c

AB.

The commutator functions transform as mixed tensors under automorphisms of
the vector space tangent to each invariant hypersurface. The group action is
characterised by the invariants of yBC under these transformations, namely the
rank and signature of the pseudotensor nAB = l>εCD(Ayζ)

D, and the vanishing or
non-vanishing of the co vector aB = jyBA. These quantities must satisfy

nABaB = 0 (3.1)

which are equivalent to the Jacobi identities &ABC[EA, [£β,Ec]] =0. One solution,
aB = Q, characterises groups in class A; all other solutions describe class B groups.
Details of the classification are given in Appendix B. The components of nAB and
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aB in the basis (2.5) are expressible in terms of the spin coefficients as follows:

0)}, (3.2)

j/2n11=£Γ"Re{2z(ρ-ρ)}

(3.3)

These are obtained by means of the commutators (2.7), using also the relations
(2.8)-(2.11). The criteria for the group to be in class A are therefore

ί /}=0 or μ + ρe~2η = 0 (3.4)

and

-β-0 or τ-2β-κe~2η = 0 (3.5)

the alternative forms following from (2.9) and (2.11).
The expressions (3.2) and (3.3) may be considerably simplified by judicious use

of the remaining freedom in the null tetrad, i.e. choice of la at one point on each
hypersurface, and also the rotation (2.3). They could of course be reduced to their
canonical forms as described in [6], but this does not prove very useful in the
present context. In this paper, we shall usually require la to be tangent to a family
of null geodesies (% = 0), and use the scaling (2.4) and (2.3) to set ε = 0. This still
leaves the freedom to choose la and make an invariant rotation (2.3) on one
hypersurface, but the most convenient choice depends on the group type.

It is worth examining a few such choices to illustrate the role of the different
spin coefficients, and also to establish a connection with the more familiar
approaches to homogeneous cosmological models. When % = 0, Equation (3.5)
becomes τ = 2β, which can always be satisfied at u = uϋ by choice of la. The NP
equations (c), (e) and (k) then show that this condition holds for all u :

(If the group is in class A, (3.5) is of course automatically satisfied.) Except in Types
VIII and IX, we may use the freedom to set n11 =n12 = n13=Q at u = u0, i.e. ρ — ρ
= β — oc = 0. Then NP equations (a) and (d), (e) and (k) again show that these
conditions hold everywhere despite the tetrad restriction κ = 0:
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(If the group is in class B and τ = 2β, these conditions hold by virtue of the Jacobi
identities (3.1).) We then have v = μ-μ = Q, from (2.10) and (2.11). These remarks
have the following significance. Each quantity bA defines a space-time vector bAEa

A

and also a unique null vector, the hypersurface projection of which is bAEa

A. In each
of the cases considered above nAB has an eigenvector with vanishing eigenvalue
(this is just aB for class B groups); furthermore, the tetrad is chosen so that the
associated null vector is a multiple of la. We may conclude that such eigenvectors
determine two geodesic (κ = v = 0), hypersurface orthogonal (ρ — ρ = μ — μ = Q)
invariant null congruences in all group types except VIII and IX.

It is easily shown, using NP equations (d, e, o, r), that when the matter is such
that

Φι0e-η + Φ21e» = Q (3.6)

(e.g. for vacuum and non-tilted perfect fluid) and the tetrad is chosen as above
(τ = 2a= 2β = π,ρ = ρ, in Types I-VII) the spin coefficient α must vanish (except for
group Type VI_ 1 / 9, which allows an extra family of solutions with αΦO—see
Appendix B). This means that the entire tetrad is parallelly propagated along the la

congruence (ε = π = 0). The solutions then possess symmetries analogous to the
well-known axisymmetric stationary solutions [19], (i.e. the group contains an
invertible abelian subgroup [20]), and the line element can be written in the simple
form

ds2 = e-2\dτ2-dz2)-a(τ)gΛβ(τ)tfwP α,)S=l,2 (3.7)

where w1, w2, dz are invariant /-forms and det(0α/?) = l. In vacuum or non-tilted
perfect fluid with a stiff equation of state, a(τ) may be found explicitly, and its form
for each group type is listed in Appendix B.

For the remainder of this paper we shall want to consider the possibility of the
surfaces of homogeneity becoming null. With the choice of tetrad described in § 2,
this can only happen if e~η = 03, in which case na is parallel to the hypersurface
normal. When this occurs the criteria for the different group types have to be
modified slightly because the vectors (2.5) are not defined in the limit e~η = Q. Note
also that the shear (2.12), expansion (2.13) and some components of y^c diverge in
this limit, so that results for the null hypersurface obtained from equations
containing these quantities must be interpreted with caution. One way to avoid
this difficulty is to consider the space-time tensor field C"b defined uniquely by

p _ / ^ d r o_ n_ α
β[a;b] ~ ̂ ab ̂ βd P ~u 3

for the four vector fields {Eβ} = {E0, EA} :

pa _ia p —.p-ητ? £ _ 17 17 _ 17
J^Q — i , J^!—e L^^ , &2—£L'2'> ^3—^3 '

The vector and pseudo-tensor fields ab and nab are defined by a decomposition
analogous to that for yAB:

** = K2α nab = ±(e-2nd + nd)ηά^C»f. (3.8)

The other possibility, e+η = 0, becomes e η = ΰ when na and /α are interchanged
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Since all the vector fields involved are smooth even when e~2η = Q, these quantities
are well-defined everywhere. The Jacobi identity (3.1) is equivalent to

abn
ab = Q. (3.9)

To retrieve expressions such as (3.2) and (3.3), one simply projects Cd

ab into the
spacelike hypersurface using EA :

π — pbn ffAB _ pA pB abaA — uAab, n — ι^a^bn .

Alternatively, one can use the invariant triad EA to obtain the quantities aA, n
AB

which remain finite when e~2η = Q, and can be used equivalently to characterise the
different group types. The components of nAB are just those given in (3.3), with the
factor preceding the curly bracket omitted. In terms of the null tetrad, ab is given
by

so that on S0, the criteria for class A groups, which is the vanishing of Eb

Aab

becomes

= Q and τ-π + £-j8 = 0. (3.10)

Note that for a null hypersurface the significant part of ab (i.e. excluding the
component in the normal direction, which depends on the scaling of the tetrad Ea)
does not lie in the hypersurface tangent space. In choosing the null tetrad on S0 for
class B solutions, we shall use ab to determine the lb direction, since the normal
now lies in the hypersurface, and can be used to define one of the invariant triad
vectors.

4. Horizons in Homogeneous Models

With the choice of tetrad described in § 2, a null surface of homogeneity occurs
only when e±2η = 0. We shall assume that e~2η = 0 on S0, so that na lies in, and
is normal to S0, and

Aφ = 0 = δφ on 50 (4.1)

for any G3-invariant scalar φ(u). We shall also choose la to be tangent to a family of
null geodesies which crosses S0. The null hypersurface is supposed to consist of
regular points of the space-time, so in this tetrad all the spin coefficients and
Riemann tensor components are well-behaved. Since na is null and invariant, there
exists for each null generator, λ, of S0 a Killing vector field ξa(λ) which on λ is
parallel with, and commutes with, na. It follows that ξa(λ) may be chosen such that
ξa = n

a on λ, defining a local isometry horizon. When the Killing vector field is the
same for each λ, i.e. na = ξa everywhere pn 50, the hypersurface is called a Killing
horizon. A necessary condition for this is λ = μ + μ = v = Q on 50, so that according
to (3.10), Killing horizons can occur in either class A or class B solutions.

On 50, γ + γ (related to the "surface gravity") cannot be made to vanish by
means of an invariant scale change, since under the transformation (2.4) we have
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Local isometry horizons therefore fall into two classes they are either degenerate
or non-degenerate, depending on the vanishing or non-vanishing of (γ + γ). When
(γ + y) = 0 the null generators of 50 are complete, as is the geodesic congruence
normal to the non-null surfaces of homogeneity. However, the horizon can be
reached from any space-time point by travelling a finite affine distance along a null
geodesic congruence, so that extensions similar to those given in [20] for the
Robinson-Bertotti solution can be made. When (y + y)=)=0, the null Killing vector
has a fixed point on λ [9], which will not usually be a regular space-time point.
For, suppose ka is tangent to λ and satisfies ka.bk

b = Q. Then na = e~(y + y}vka and
e~(y + y)v = (y + y)s, where s is affine along λ and v is the ignorable coordinate
corresponding to ξa. Each point in the spacelike 2-surface in 50 for which 5 = 0 is
invariant under the action of ξa, and hence fixed. As s->0, tetrads based on ka (and
in particular, tetrads parallel along λ) diverge from the invariant null tetrad based
on na, so that some components of the Riemann tensor, which are constant in the
latter tetrad, will generally diverge in the former. When this happens, the null
hypersurface generators run into a c° non-scalar singularity. Otherwise, the
Riemann tensor on S0 may be invariant under boosts in the na direction (i.e. when
it is D-specialised [27] 4), in which case the fixed points are c° regular. An analysis
similar to that given by Boyer [9] for Killing horizons then shows that the horizon
is bifurcate, as in the NUT solutions.

It will be apparent from the examination in § 5 of initial data on 50 that these
types of horizon can all occur in homogeneous models. However, if one insists on
realistic energy conditions, solutions with μ(y + y) = Q on the horizon can be
eliminated :

Theorem 1. Killing horizons, degenerate isometry horizons and class A whimpers
are incompatible with the null convergence condition

2Φ22=Rabn
anb>0. (4.2)

Proof. We use an invariant null tetrad with na parallel to the hypersurface normal
on S0 and la tangent to a family of null geodesies. We have κ = 0 and also

v=μ-μ=ΰ+β-π=Q (4.3)

from (2.9)-(2.11). Then NP equation (n) becomes

Q. (4.4)

Clearly the condition (4.2) cannot be satisfied if either (y + y) = 0, as on degenerate
horizons or if μ = 0, as in class A solutions, and on Killing horizons.

5. Initial Value Problem for Vacuum Whimpers

By solving the characteristic initial value problem on S0 we shall establish

4 When the Riemann tensor is rather less specialised ("[211]-specialised") the "surface" s = 0 may be
c°-regular for the generators of 50, but c°-singular for the congruence normal to S(u). Since one is
interested in the behaviour of the normal congruence, we shall not distinguish between this complicated
situation and the straightforward singular case



Occurrence of Whimper Singularities 265

Theorem 2. The only vacuum homogeneous5 space-times with horizons are
(i) A two-parameter family of homogeneous plane waves given by

ds2 = 2dudv - 2dzdz + Hdu2

with H = Re{cz2u2i(i~κ}} andQ<κ<2c. These admit group Types VII h, VIh and IV
when c^κ<2c,Q<κ<c and κ = c respectively (see [10]);

(ii) a two-parameter family of Type VI_1/9 solutions;
(iii) the two-parameter family of NUT solutions, of Type IX, VIII or II (see

[6,22],).

Proof. This is not a genuine initial value problem, because data on one null
hypersurface is not sufficient to determine a unique solution of the vacuum field
equations. We shall therefore need a criterion which picks out, from amongst all
solutions with homogeneous initial data, those which are also homogeneous away
from the initial hypersurface. Accordingly, we start with a vacuum solution (Jί, g)
of the Einstein equations, a NP tetrad defined everywhere in Jt, and a null
hypersurface S0 in Jt> with tangent space spanned by πα, ma + raα, (ma — ma)/i. We
then assume that the tetrad can be chosen such that.

(a) On S0 the tetrad spin coefficients are constant [i.e. they satisfy (4.1)]
and Equations (2.10) and (2.11) hold with e~2η = Q.

(b) The tetrad is such that ε = 0, and Equation (2.9) with κ = Q is satisfied
everywhere in Jt. Condition (a) is clearly a necessary condition for S0 to be
homogeneous, while Condition (b) can always be satisfied in a homogeneous
space-time by using the tetrad gauge freedom. The set of solutions satisfying these
conditions will therefore include all whimper models. To prove the theorem we
shall show that any member of this set is uniquely determined by the values of two
(real) spin coefficients on S0 and furthermore, that the solution thus defined is
homogeneous. The identification of the solutions then follows from a close
examination of the constraint equations.

It is convenient to use the following notation: Γ- represents the spin coefficients
of the null tetrad Ψi and Φtj are the Weyl and Ricci tensor tetrad components (the
latter are zero in this section) and Dn is the nth P-directional derivative operator
which acts on these quantities. All are evaluated on the null hypersurface 50. The
problem reduces firstly to determining DnΓi from Γt, since then the spin coefficients
can be computed close to S0 by means of a Taylor expansion along the la geodesic
congruence, and secondly to finding the constraints on Γf.

In vacuum, the NP equations divide into three groups on 50: equations (a)-(i)
are propagation equations, defining 18 of the 24 DFt in terms of Γt and Ψ^
equations (j)-(m) involve no (non-zero) derivatives, and so define 8 of the 10 Ψ t ;
and equations (n)-(r) are constraint equations for Γt. In order to find the missing
Ψi9 namely Ψ0, we resort to the Bianchi identity B 2, which in vacuum, becomes

(5.1)

5 See Footnote 2. Solutions with the Kantowski-Sachs symmetry [28] are not included in this
definition. However, the only vacuum solutions of this type are "Schwarzschildian" [21], and are
derivable from the NUT solutions
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This fails to express Ψ0 in terms of Γ only when 4y — μ = 0, which cannot
happen according to (4.4) unless λ = μ = y = Q. Fortunately it emerges, when the
constraint equations are solved at the end of this section, that this possibility does
not exist in non-flat vacuum solutions. Of the DΓt, all but Dκ, Dε and Dπ are
determined by the propagation equations. However, since κ and ε are identically
zero throughout M by choice of tetrad, while Dπ = D(a + β) from (2.9), all the DΓt

can be written in terms of Γt and Ψt and hence in terms of just Γf.
Furthermore, by operating on each equation with D""1, and applying the

commutator relation (2.8), one obtains DnΓi in terms of Γf as required. (The nth

derivative of (5.1) determines DnΨ0 unless (4 + 2n)y = μ, and equality here need not
be considered for the same reasons as before.)

To demonstrate that the values of DnΓi thus obtained represent a consistent
vacuum solution, we shall show that the only constraints on Γt are imposed by NP
equations (n)-(r). The derivatives of equations (a)-(m) and also of (2.9) cannot give
rise to constraints since they are automatically satisfied by definition of DnΓί9 while
Equation (2.8) serves to define a function e~2η, chosen to vanish on 50. Nor do the
derivatives of equations (n)-(r) provide additional constraints, because identities
of the form DCt = £ AijCj are readily established for each constraint equation

j
Cf = 0. Similarly, derivatives of the right hand side of Equation (2.10) and (2.11)
vanish when the original equations are satisfied. Finally, we observe that the
Bianchi and Jacobi identities (3.9) need not be considered: the former are derived
from derivatives of the NP equations, while the latter are equivalent to
((r) + (ό) — (m)\ and Im((g) — (/)). The values of Γi9 subject to the constraint
equations (n)-(r) are therefore sufficient to determine a unique development. It is
apparent that the development consists of a family of homogeneous hypersurfaces,
and that the vector field e~2ηlα + nα is normal to these surfaces.

There are 14 algebraically independent constraints on JΓj, i.e. Equations (2.9)-
(2.11), (o)-(r) and Re(»), so this leaves 10 of the 24 spin coefficients undetermined.
Of these 4 (κ and ε) are known by virtue of the choice of tetrad, while 4 more
combinations can be reduced to zero, using the remaining tetrad freedom on S0.
This comprises a constant null rotation about nα :

nα-+nα, mα-+mα + Bnα, lα-+lα + Bmα + Bmα + BBnα , (5.2)

the rotation (2.3) and the boost (2.4), all at one point of S0. We therefore expect to
find two-parameter families of solutions.

To complete the proof of Theorem 2, we now need only to examine the
constraint equations to see what possibilities can arise. After substitution for ψ.
and π, these equations become

(5.3)

(5.4)

(5.5)

ί + ββ-2αβ-τ(β-α-τ) , (5.6)

-yoι , (5.7)

= μ-jδ = v. (5.8)
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We first dismiss the cases mentioned above, when μ = γ = λ = Q. For then
τ = ά — β = Q, from (5.5) and (5.6) and hence [using NP equations (j), (1) and (m)]
Ψ4 = Ψ^ = Ψ2 = Q> If we now choose la [by means of (5.2)] to be a principal null
direction of the Weyl tensor, so that Ψ0 = Q, Equation (5.1) gives Ψ1=Q, either
directly, or if β = 0 via equation (k).6 The spacetime is then flat. (It is easy to
convince oneself, using the Bianchi identities for an invariant tetrad with Ψ0=Q
everywhere, that the only vacuum homogeneous spacetime with Ψt = 0 on S0 is
Minkowski space.)

The class A solutions are characterised by τ = 2β and μ = 0. Under the null
rotation (5.2), σ transforms according to

and may always be made to vanish on 50 (since y = Q gives flat space-time, as
above). It is then found that the only possible solution has yρ + yρ = 0, with all
other spin coefficients zero. Substitution into the modified form of nAB described at
the end of § 3 reveals that the solutions are invariant under groups of Types II,
VIII or IX. Using the remaining freedom (2.4) to set yy — 1 leaves a two-parameter
family of solutions which is readily identified as the NUT family [22, 10].

Class B solutions divide into two sets, depending on whether ab is essentially
spacelike or null on S0. This is determined by the vanishing or non-vanishing of μ.
(μ is invariant under the transformation (5.2), since v = 0.)

When μ = 0, but τ-2βΦθ, Equations (5.3), (5.4) and (5.7) imply λ = y-y
= τ-α-β = 0. By setting Ψ0 =0 as before,6 one obtains a solution of Type III (i.e.

VI _1), with a + β = σ = Q. This is not unexpected, since it is known [6] that the
Type VIII NUT solutions also admit a group of Type III. By comparing the actual
values of the spin coefficients of the exact solution [10] with those of the initial
value solution, one can check that the only class B solutions with μ = 0 on 50 are
just these NUT solutions.

When μ=)=0, the transformation (5.2) may be used essentially to line up lb and
ab, by setting τ-2β = 0. Equations (5.4) and (5.7) yield

βλ + β(3μ + γ-γ) = 0 (5.9)

which leads to two families of solutions. One possibility has λ=l and y, μ as the
only non-zero spin coefficients, which are related by (5.3). These are the plane wave
solutions of Theorem 2 [10]. Alternatively, Equation (5.9) can be satisfied if
9μ2 — (y — y)2 = λλ, and this also leads to a two-parameter family. They are of Type
Bbii (i.e. VIΛ with h= — 1/9) [6] but the corresponding exact solutions are not
known explicitly.

6. Perfect Fluid Whimpers

The characteristic initial value problem for matter filled homogeneous solutions is
not fundamentally different from the vacuum problem described in § 5. The tetrad
freedom is the same and the same NP equations become propagation equations
for Γi on 50, but the number of constraint equations is reduced as equations
(n)-(r) are required to evaluate Φtj from Γf. Generally, there will be only six
constraints on Γi9 arising from the three Jacobi identities and (2.10) and (2.11), but
others may arise when relations between the Φtj are given by a specific choice of

6 See Note Added in Proof
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matter type and equation of state. Various Φ 7 components, as well as Ψ0, may not
be immediately obtainable from the NP equations, but this depends on the precise
form of the matter fields. In very exceptional cases the problem is not soluble.

To be specific, we shall consider an isentropic perfect fluid, for which

R

ab = - (μ + P)vavb + i(μ - p)gab vav
a = I .

The tetrad components of the Ricci tensor are

where

va = v2l
a + vίn

a-v3m
a-v3m

a; 2vίv2-2v3v3 = l . (6.2)

It is convenient to start with Γt as initial data and determine DnΓi as in § 5, rather
than consider initial data for the matter fields, although the two methods are
clearly equivalent.

We again assume that the conditions (a) and (b) of § 5 hold on S0, and show
that the space-time is determined by certain of the Γt. As before these conditions
must necessarily be satisfied if the solution is to be homogeneous. Of the 20
Riemann tensor components, only 14 can be evaluated from the NP equations,
since 4 of the 18 non-propagation equations do not involve ψ. or Φtj. We must
therefore determine ΨQ9 Φ00 and, say, Φ01 and (Φ l j L — 3 A) by other means. This is
no problem for the perfect fluid (6.1), since (Φ11 — 3 A) can be found in terms of
(Φ11 + 3 A) from the equation of state, while all Φtj are expressible as functions of
Φ1 1 ? Φ12 and Φ22 using (6.1) and (6.2). As before, Ψ0 is obtained from (B2),
although the method is not quite so straightforward owing to the presence of the
DΦ02 term. This must be evaluated using DΦ115 DΦί2 and DΦ22, since these
derivatives can be expressed in terms of Φ 7 and Γi9 and hence in terms of just Γi9 by
means of the differentiated NP equations [or equivalently, the Bianchi identities
(B9), (BIO) and (Bll)]. This is possible because the relevant equations do not
contain Dσ, the only DΓt which depends on Ψ0. Having found Ψ0 from (B2),
equation (b) gives Dσ, so that all DΓt and hence by differentiation, all DnΓi may be
found from Γi9 as required.

To show that the values of DnΓi thus obtained describe a well-defined solution,
one can simply apply the arguments used in the vacuum case. The only constraints
on Γt arise from equations (2.10) and (2.11); from the Jacobi identities
((r) + (o) — (m)) and Im ((/) — (#)); and also from equating the values of Φ02 derived
firstly from equation (p) and secondly from the relations (6.1). [No analogous
constraints are obtained from the two possible methods of evaluating DnΦ02,
because these are consistent when the relevant (differentiated) Bianchi identity is
satisfied; in this case it is (B2) which is satisfied by definition of Dn~1ΨQ]. This
makes a total of eight constraints, which together with the four remaining degrees
of tetrad freedom and the fact that ε, κ and π are known, leaves six Γ
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undetermined. We should therefore expect perfect fluid whimper solutions to
depend in general on six parameters.

A closer examination of the constraint equations indeed reveals that for each
of the most general group Types (IX, VIII, VII, VI) there is a six-parameter
families of solutions, which broadly speaking generalise the vacuum solutions (i)
and (ii) of Theorem 2 by the addition of matter fields. The other family of vacuum
solutions (iii) does not generalise in this way, since it occurs only for special matter
types (see Appendix B). Whimper solutions exist for all other group types except I,
which does not allow tilted fluids [7]. The important point is that such solutions
depend on two fewer parameters than the general tilted fluid model of the same
group type, so Whimper models, as defined in § 2 are unstable in the set of all
homogeneous solutions.

Appendix A

The NP equations (a)-(r) in [17] and the Bianchi identity B 2 of [18] are given
below, as appropriate for the invariant tetrad described in §2. They have

(a) Dρ

(b) Dσ

(c) Dτ-zJκ

(d) Da

(e) Dβ

(f) Dy

(g) Dλ = (ρλ + σμ) + π2 + (α - β)π + Φ20

(h) Dμ = (ρμ + σλ) + ππ-π(ά-β)+Ψ2

(i) Dv-Δπ = (π + τ)μ + (π + τ)λ + (

(j) Δλ = ~(μ + μ)λ-(3y-y)λ

(k) 0

(1) 0

(m) 0

(n) -Δμ

(o) — A β

(p) -Δσ

(q) Δp

(r) Δa

B2 A

+ 2(π-β)Φ01+2σΦ11+ρΦ02
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Appendix B

Details of the classification of three-parameter Lie algebras are summarised
in the table below. The characterisation in terms of j\f = άQt(nAE\
N = ̂ (nABnAB — n2),n = nAandaA (see §3) is taken from [7]. Type VIΛ and VΠh

groups are parametrised by an invariant number ft, defined by h = — aAaA/N.
At any fixed value of w, an invariant triad can be chosen which gives nAB the

canonical form appropriate for its signature and rank, as listed in Columns 3 and 4
of the table (cf. [6]).

The integer r in Column 5 represents the number of arbitrary parameters in the
general vacuum solution of each group type. This is calculated by considering an
initial data set for a spatially homogeneous solution, consisting of (hAB, χAB, nAB,
aB) given on a Cauchy surface. (hAB χAB are triad components of the first and
second fundamental forms of the hypersurface, as in [14].) These 21 parameters
completely determine the solution. However, this number is reduced by the 3
Jacobi identities, 4 constraint equations, the 9 dimensional field of automorphisms
of the tangent space to the Cauchy surface, and finally the coordinate freedom
U-^ U + UQ, leaving just 4 essential parameters in the most general group Types (VIfc,
VΠfc, VIII and IX). In Types VI and VII, h counts as one of the parameters, so that
r = 3 for each h. This includes the limiting values of h = 0, as in VI0 and VΠ0, and
h = ± oo as in Type IV. These remarks also apply to Type III which is an
alternative name for VIft with ft = — 1. (It is sometimes treated as a separate group
type because its derived algebra is one dimensional, while other VIh groups have
two dimensional derived algebras. This does not effect our calculations.) The one
exceptional case occurs in VIA when A = —1/9. For this group type, two of the
constraint equations are degenerate in vacuum, as is most easily seen by
comparing equations (analagous to) (4.2b) and (4.2c) of [14]. There is therefore an
extra parameter in the solution, and r = 4. For Types I and II, the requirements in
Column 5 restrict the number of essential parameters in a straightforward way,
giving respectively r = 1 and r = 2, while for Type V, r = 1 follows from a more
careful study of the initial data set [23].

The number r also describes the comparative degree of generality of non-
vacuum solutions. For example, the numbers in the 7th column of the table are the
numbers of arbitrary parameters in perfect fluid homogeneous models with given
equation of state. Usually, s = r + 4, but in Types I and II the constraint equations
restrict the form of the fluid (cf. [7]). Type VI_ 1 / 9 is not exceptional in general
perfect fluid solutions, because the constraint equations become degenerate only
for energy momentum tensors satisfying Equation (3.6).

The function in the final column relates to the line element (3.7), which
describes a homogeneous solution with energy momentum tensor satisfying
T02 = T0 3=0 (these components refer to the pseudonormal invariant tetrad (2.5)
which puts C^c in canonical form, as in [14]). When in addition τ°° = T1\ a(τ)
satisfies equations of the form (e.g. for Type VΠΛ)

(log α)" + ((log α)')2-4 = 0; ' = A ,

giving rise to the functions in Column 8.
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Table 1. The classification and characterisation of three-parameter Lie groups. The quantities r and 5
describe the number of parameters in the general solution of each group type, for vacuum and for
perfect fluid. The function a(τ) refers to the line element (3.7)

Group
type

I
II

VIo
VΠo

VIII
IX
IV
V

VIΛ

VII,
vι_1 / 9

Group Sig(n)
class

0
1

A 0
(aA = Q) 2

1
3
1
0

B 0
(α^φO) 2

0

Rank(rc)

0
1
2
2
3
3
1
0
2
2

2

Characterisation

Λ/ ̂ ^^O
Λ^ = jV = 0
Λ =Q jv>o
Λ/*=O N<O
J^<0
jf>§
Λ^ = N = 0
jy = N = n = Q
Λ° = Q AΓ>0
^Γ = 0 N<0
J/ =0 N = 9aAaA

r

1
2
3
3
4
4
3
1
4
4
4

5 α(τ)

2
5
7 Λτ + £
7
8
8
7
5 4e2τ

8 +Be~2τ

8
7

The general vacuum solutions for group Types I (Kasner [24]), II (Taub [25])
and V (Joseph [26]) are known, and illustrate some of the above results :

Kasner: ds2=τ2?(-dτ2 + dz2) + τ(τ2βdx2 + τ-2βdy2) 4j82 = 4y + l.
Taub : ds2 = #(τ)τb2/8( - dτ2 + dz2) + τ(g(τ)dx2 + ί/g(τ)(dy - xdz)2) with

Joseph :

References

1. Ellis,G.F.R., Schmidt,B.G.: Singular space-times, submitted to G.R.G.
2. Ellis,G.F.R., King,A.R.: Commun. math. Phys. 38, 119 (1974)
3. Clarke,C.J.S., Schmidt,B.G.: G.R.G. 8, 129 (1977)
4. Siklos,S.T.C: to be published
5. Hawking,S.W., Ellis,G.F.R.: The large scale structure of space-time. Cambridge: Cambridge

University Press 1973
6. Ellis,G.F.R., MacCallum,M.A.H.: Commun. math. Phys. 12, 108 (1969)
7. King,A.R., Ellis,G.F.R.: Commun. math. Phys. 31, 209 (1973)
8. Collins,C.B., Ellis,G.F.R.: Singularities in Bianchi cosmologies. Preprint (1977)
9. Boyer,R.G.: Proc. Roy. Soc. Lond. 311, 245 (1969)

10. Siklos,S.T.C: Preprint, Oxford University (1977)
11. Evans,A.B.: Phys. Lett. 55A, 271 (1975)
12. Penrose,R.: Null hypersurface initial data for classical fields of arbitrary spin and for general

relativity. Unpublished dissertation
13. Sachs,R.K.: J. Math. Phys. 3, 908 (1962)
14. Collins,C.B., Hawking,S.W.: Ap. J. 180, 317 (1973)
15. King,A.R: Phys. Lett. 54A, 115 (1975)
16. Collins,C.B.: Commun. math. Phys. 39, 131 (1974)
17. Newman,E., Penrose,R.: J. Math. Phys. 3, 566 (1962)
18. Pirani,F.A.E.: Lectures on general relativity, (eds. H. Bondi, F. A. E. Pirani, A. Trautman). Engle-

wood Cliffs. New Jersey: Prentice Hall 1964
19. Reina,C, Treves,A.: G.R.G. 7, 817 (1976)
20. Carter,B.: Black hole equilibrium states. In: Black holes (eds. C. DeWitt, B. S. DeWitt). New

York: Gordon and Breach 1973



272 S. T. C. Siklos

21. Ehlers,J., Kundt,W.: Gravitation: An introduction to current research (ed. L. Witten). New York:
Wiley 1962

22. Siklos, S. T. C.: Phys. Lett. 59 A, 173 (1977)
23. Siklos, S.T.C.: Unpublished Ph.D. Thesis, Cambridge University (1976)
24. Kasner,E.: Trans. Am. Math. Soc. 27, 155 (1925)
25. Taub,A.H.: Ann. Math. 53, 472 (1951)
26. Joseph, V.: Proc. Cambridge Phil. Soc. 62, 87 (1966)
27. Clarke,C.J.S.: Commun. math. Phys. 41, 65 (1975)
28. Kantowski,R., Sachs,R.K.: J. Math. Phys. 7, 443 (1966)

Communicated by R. Geroch

Received October 18, 1977

Note Added in Proof. The assumption made in two different situations on p. 267, that la can be chosen
so that Ψ0 vanishes, needs some elaboration. Ψ0 can be made to vanish using (5.2) unless all the other
Weyl tensor components are zero. In the first situation (μ = γ = λ = Q) this'can only happen if ρ and σ
are the only non-zero spin coefficients. (Note that the /"-directional derivative of (B2) provides an
additional constraint when y = 0.) One can easily verify that then D"e~2η = Q, so that the surfaces of
homogeneity remain null and S0 is not a horizon. In the second situation on p. 267 (with τ — ΰ — β = ty
Ψ2 = Q implies oc = β (from NP equation (/)), contradicting the assumption that τ — 2βφO.




