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to a Class of Euclidean Scalar Field Equations
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Abstract. We show that for a wide class of Euclidean scalar field equations,
there exist non-trivial solutions, and the non-trivial solution of lowest action
is spherically symmetric. This fills a gap in a recent analysis of vacuum decay
by one of us.

1. Introduction

In the course of a study of vacuum instability [1], one of us encountered the
differential equation in four-dimensional Euclidean space,

AΦ=U'(Φ). (1.1)

Here A is the usual Euclidean Laplace operator, U is a quartic polynomial in the
single real field Φ, and the prime denotes differentiation with respect to Φ. This
equation admitted a trivial solution, Φ a constant. In Ref. [1], a spherically
symmetric non-trivial solution was constructed, and it was conjectured that this
solution had the lowest action of any non-trivial solution. The purpose of this
note is to supply the proof of this conjecture.

More precisely, we prove that, for a wide class of functions [7, the non-trivial
solution to Equation (1.1) of smallest action is necessarily spherically symmetric.
Our proof is valid for any number of Euclidean dimensions greater than two,
although the class of admissible [/'s does depend upon the dimension1.

The remainder of this section is a statement of our main result with some com-
ments on its meaning. Sections 2 and 3 consist of the proof.

1.1. Statement of the Theorem

Definition. We will say a real function of a single real variable U(Φ) is admissible
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1 In particular, our theorem applies to the non-polynomial U considered by Frampton [2]
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in N dimensions if:
1) U is continuously differentiable for all Φ;
2) £7(0)=t//(0) = 0;
3) U is somewhere negative;
4) There exist positive numbers a, b, α, and β such that

a<β<2N/(N-2), (1.2)

and

[7-α|φ|α + b|Φ|^0, (1.3)

for all Φ.

The Main Theorem. In N-dimensional Euclidean space, N > 2, for any admissible
U, Equation (1.1) possesses at least one monotone spherically symmetric solution
vanishing at infinity2, other than the trivial solution Φ = 0. Furthermore, this solution
has Euclidean action,

S = fdAΓx[i(VΦ)2 + t/(Φ)], (1.4)

less than or equal to that of any other solution vanishing at infinity. If the other
solution is not both spherically symmetric and monotone, the action is strictly less
than that of the other solution.

1.2. Comments

i) It is difficult to imagine weakening the first three of the four conditions for
admissibility. Condition (1) ensures that Equation (1.1) makes sense, condition
(2) is necessary if we are to have any hope of finding finite-action solutions that
vanish at infinity, and condition (3) is necessary if there are to be any non-trivial
solutions at all [3].

ii) Condition (4) is another story. It certainly cannot be dropped altogether3,
but it is possible that it could be weakened by better analysts than we. At any
rate, we have stated it in the weakest form that we can, perhaps at the cost of
making the statement somewhat clumsy. There are certainly conditions that are
simpler to phrase and that imply our condition, though they are not implied by it.
For example, it is easy to see that condition (4) is implied by the following: a)
U is twice continuously differentiable, b) l/"(0) > 0, and c) U is positive outside
of some finite interval.

iii) Because U can assume both positive and negative values, one might worry
that S might be ill-defined, and our main theorem thus meaningless. This is not a
problem for continuous functions [and therefore for solutions of Equation (1.1)]
that vanish at infinity. This is because condition (4) implies that U is non-negative

2 "Spherically symmetric" means that Φ is a function only of Euclidean distance from some point.
"Vanishing at infinity" means that for any positive e the set of all points for which | Φ \ ̂  ε has finite
Lebesgue measure

3 Consider U = - Φ2
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in some neighbourhood of Φ = 0; hence U is a continuous function of x which is
negative only on a set of finite measure, and the integral of U over all space is
therefore unambiguous. (Of course, it might be unambiguously plus infinity, but
this is no problem, since in this case we unambiguously do not have a minimum
of S).

iv) For certain IPs, there exist a set of numbers ci9 such that U(Φ — cί) is
admissible in our sense for each /. In this case, we can apply our main theorem
to solutions such that Φ — c. vanishes at infinity. We stress that although our
main theorem tells us that in each of these classes the solution of minimum action
is monotone and spherically symmetric, it gives us no way of comparing the actions
of solutions in different classes. In particular, it does not exclude the possibility
that an asymmetric solution in one class might have lower action than the
symmetric solution of minimum action in another class.

v) The omission of two dimensions is caused by technical details of our proof,
not by any deep insight on our part. Our main theorem (with appropriate admissi-
bility conditions) might well be true in two dimensions we know of no counter-
examples.

vi) We should emphasize that the problem handled here is not a conventional
minimization problem. We are not searching for a function which minimizes S;
we are searching for a function which minimizes S restricted to its stationary
points. If S were bounded below, these two problems would be equivalent, but it
is not4, and therefore they are not.

vii) It is for this reason that our first step is to reduce our problem to a genuine
minimization problem. This is done in Section 2 below. We then handle the reduced
problem with the standard methods of functional analysis in Section 3.

2. The Reduced Problem

Our first step is to divide S into two parts,

S=T+V, (2.1)

where

T = ̂ dNx(VΦ)\ (2.2)

and

V = S<FxU(Φ). (2.3)

If we define a scale transformation by

Φff(x) = Φ(x/σ), (2.4)

where σ is a positive number, then these objects have simple scaling properties:

It is easy to see that, since U is somewhere negative, the infimum of S is minus infinity



214 S. Coleman et al.

and

Γ[Φj=σ"-2Γ[Φ]. (2.6)

As a first application, we observe that any solution of Equation (1.1) makes S
stationary. Thus, in particular, S must be stationary under scale transformations
whence,

(JV-2)Γ + ΛΓK = 0, (2.7)

or, equivalently,

S = 2T/N, (2.8)

for any solution of Equation (1.1).

Definition. "The reduced problem" is the problem of finding a function vanishing
at infinity which minimizes T for some fixed negative K5

From Equations (2.5) and (2.6), it is obvious that if we can find a solution to
the reduced problem for some negative V we can find a solution for any negative V\
the solutions are just scale transforms of each other. Indeed, all the solutions
have the same value of the scale-invariant ratio,

/ V , (2.9)

and the reduced problem can equivalently be stated as the problem of finding a
function with negative V that minimizes R.

Theorem A. // a solution of the reduced problem exists, then, for appropriately
chosen V, it is a solution of Equation (1.1) that has action less than or equal to that
of any non-trivial solution of Equation (1.1).

Proof. First we shall show that a solution of the reduced problem can always
by scale-transformed into a solution of Equation (1.1). A solution of the reduced
problem Φ is a function which stationarizes

S'=T + λ2V, (2.10)

where λ2 is a Lagrange multiplier. By the same arguments as those which led to
Equation (2.7),

5 We emphasize that in defining the reduced problem we do not necessarily restrict ourselves to
continuous functions. The minimizing function is indeed continuous (because it is a solution to an
elliptic partial differential equation), but this is something we prove, not something we assume. However,
one might worry that, in the absence of a continuity assumption, V, and therefore the reduced problem,
might be ill-defined. In fact, this is not a problem; the argument is as follows: (1) if Φ vanishes at infinity
and T is finite, then a standard Sobolev inequality implies Φ is in L2N/(N~2\ (2) It is trivial that there
exists a positive constant d such that

(3) Adding this to condition (4), we find

Thus the integral of the negative part of U is finite
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0. (2.11)

Because T is positive and V is negative, λ2 must be positive and our notation is
not deceptive. Then the scale transformed function Φλ is a solution of Equation
(1.1).

We shall now show that the solution we have constructed has S less than or
equal to that of any solution of Equation (1.1). Let Φ be some non-trivial solution
of Equation (1.1). Since Φ is non-trivial, T[Φ] is not zero, and, by Equation (2.7),
V[Φ] is negative. Now, let Φ be the solution to the reduced problem with

F[Φ] = F[Φ]. (2.12)

By the definition of the reduced problem

Γ[Φ]<Γ[Φ]. (2.13)

Comparing Equations (2.7) and (2.11), we see that

λ^l. (2.14)

As before, Φλ satisfies Equation (1.1). But

T[ΦJ = A(N~2/2)T[Φ] ̂  T[Φ]. (2.15)

Thus, by Equation (2.8),

(2.16)

This completes the proof of Theorem A.
It is clear from this proof that Theorem A is valid for a system of many coupled

scalar fields. Unfortunately, the same is not true for the rest of our argument,
which is very much restricted to the case of a single field.

3. Analysis of the Reduced Problem

Theorem B. There exists at least one solution to the reduced problem. All solutions
to the reduced problem are spherically symmetric and monotone.

Theorems A and B imply our main theorem. The argument for Theorem B is
somewhat lengthy, and thus we have organized it as a long sequence of statements
with short proofs.

We begin by reminding the reader of our fourth condition on the function U :
that there exist positive number α, b, α, and β with

2N/(N-2)>β>a, (3.1)

such that

U-a\Φ\* + b \ Φ \ β ^ Q . (3.2)

Statement 1. For any function Φ such that F[Φ] is negative,

JΛc Φ j Λ c | Φ | α . (3.3)
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Proof. Integrating Equation (3.2), we find

b$<ffx\Φ\β^a$<Pfx\Φ\*-V[Φ']. (3.4)

But V is negative.

Statement 2. For any function Φ such that F[Φ] is negative, and for any y > β,

JΛ|Φ|α. (3.5)

Proof. By Holder's inequality,

|Φ|y](^α)/(y-α). (3.6)

Combined with Statement 1, this yields the desired result.
Having established these preliminary inequalities, we can now begin our

attack on the reduced problem. Since T is a positive functional, it is bounded
below on the set of all functions with fixed negative F, and thus has a greatest
lower bound, inf T. Thus we can construct a minimizing sequence, an infinite
sequence of functions Φn, such that F[ΦJ is a fixed negative number and such
that

HmT[Φj = InfΓ. (3.7)
n->oo

Our task is to show that we can choose the elements of the minimizing sequence
such that they converge to an actual minimum of T.

It will be convenient to choose the elements of our minimizing sequence to
be differentiable functions of compact support. (It is easy to see that this is always
possible.) Of course, this does not imply that their limit (if it exists) is such a
function.

Statement 3. Either there exists a minimizing sequence such that Φn(x) is greater
than or equal to zero for all n and all x9 or there exists a minimizing sequence such
that Φn(x) is less than or equal to zero for all n and all x.

Proof. Any function can be written as the sum of its positive and negative parts :

Φ(x) = Φ+(x) + Φ_(x), (3.8)

where

Φ+(x) = max (Φ(x), 0} , (3.9a)

and

Φ_(x) = min{Φ(;c),0}, (3.9b)

Clearly,

Γ[Φ] = Γ[Φ+] + T[Φ_]. (3.10)

Also, because (7(0) = 0,

F[Φ] = 7[Φ+] + 7[Φ_]. (3.11)
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Now let us construct the scale-invariant ratio of Equation (2.9),

/'*-2'
' ( }

From this, it is easy to see that either

if F[Φ_]^0, (3.13a)

if K[Φ+]^0, (3.13b)
or

R[Φ]^min{#[Φ+],R[Φ_]} if F[Φ±]<0. (3.13c)

These inequalities must be obeyed by each function in a minimizing sequence;
thus, either the minimizing sequence has an infinite subsequence for which

R[Φj^[Φn+], (3.14a)

or it has an infinite subsequence for which

R[Φπ]>K[Φn_]. (3.14b)

For the moment, let us assume it is the first alternative that prevails. The subse-
quence is then a minimizing sequence for which Equation (3.14a) holds throughout.
We now define a new sequence of functions Φ^, where each Φ'n is a scale transform
of Φn+ , with the scale transformation chosen such that

(3.15)

But, by Equation (3.14a),

Thus we have constructed a minimizing sequence composed exclusively of non-
negative functions. Identical reasoning applies if (3.14b) holds for an infinite
subsequence.

To keep our arguments as simple as possible, we will assume from now on that
we are dealing with a minimizing sequence composed of non-negative functions.
The arguments for the alternative case can be constructed trivially by replacing
Φ by — Φ everywhere.

Statement 4. There exists a minimizing sequence such that Φn(x) is spherically
symmetric and monotone for all n.

Proof. We remind the reader of the definition of the spherical rearrangement
ΦR of a non-negative function Φ. ΦR is a spherically symmetric function, monotone
decreasing as one moves away from the origin, such that, for any positive number
M,

μ{x\ΦR(x) ^M} = μ{x\Φ(x) ^ M}, (3.17)

where μ denotes the Lebesgue measure. It is trivial that

(3.18)
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It is not trivial, but it is known [4], that

Γ[ΦjJ<nΦ] (3.19)

Thus, the spherical rearrangement of our minimizing sequence is a minimizing
sequence.

For spherically symmetric functions, it is a wise policy to rewrite things in
terms of spherical coordinates. We define y by

r = exp[>],

where r is the usual distance from the origin. We also define fn(y) by

It is easy to see that

fn2 \,

(JV-2)>

where CN is a positive constant, the result of integrating over angles.

(3.20)

(3.21)

(3.22)

Statement 5. There exists a minimizing sequence of non-negative spherically
symmetric monotone functions such that all of the following are uniformly bounded
from above:

Sdy(dfjdy)2

9 (A)

(B)

(C)

(D)

l\ (E)

JΛ|Φjα. (F)

(This motley collection of bounds is arranged in this order because each is
a consequence of the preceding ones, as we shall see.)

Proof. It is trivial that one can choose a minimizing sequence such that Γ is
bounded; bounds (A) and (B) then follow from Equation (3.22). Bound (C) then
follows from bound (A) and the Schwarz inequality:

\dy(άijdy)

ίdy(dfjdy?

\dy(dfn/dyγ

1/2

1/2

\dy
1/2

(3.23)

1/2
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Because fn(y) vanishes at infinity,

U(>Ί)I2 = 2$dyfn(dfn/dy) WJdy)2], (3.24)

from which bound (D) follows. Bound (E) is now immediate6:

2. (3.25)

Bound (F) is a consequence of bound (E) and Statement 2.

Statement 6. There exists a minimizing sequence of spherically symmetric functions
and a bounded continuous function f such that

lim/B0>)=/0;), (3.26)
n-*oo

pointwisefor all y and uniformly on any finite interval

Proof. By bounds (C) and (D), the minimizing sequence is a family of uniformly
bounded equicontinuous functions Ascoli's theorem then asserts the existence of
a subsequence with the stated property.

If we define Φ by

Φ=/exp[-i(7V-2)j;], (3.27)

then Statement 6 tells us that Φn converges to Φ pointwise almost everywhere
(that is to say, except possibly at the origin). Because / is bounded, Φ vanishes
at infinity. Note that we have not yet shown that Φ is not zero.

Statement 7. For the minimizing sequence of the preceding statement,

l imJΛc Φn\
β = f d N x Φ β. (3.28)

«->oo

Proof.

fΛ|Φj" = CMWπpKN-tflN - 2])),] Ξ CN\dyhn(y). (3.29)

We break this integral into three parts:

ίdyha(y) = J dyhn(y) + ]dyhn(y) + ]dyhn(y), (3.30)
- oo yi y2

where yί and y2 are numbers we shall fix shortly. Now,

ί dyha(y)
( '

Thus the first term in Equation (3.30) may be made as small as we please, uniformly

6 We are aware that bounds (C), (D), and (E) are standard Sobolev imbedding theorems [5], but,
since they are easy to prove, we chose to include explicit proofs here
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in ft, by choosing yί sufficiently large and negative. Also,

-<*/,- 2(N-2)(β-a)y2Ϊ JN^. \ fa l α /o 7^\
C J α Λ I Ψn I . \3.JΔ)

y2

Thus the last term in Equation (3.30) may also be made as small as we please,
uniformly in n, by choosing y2 sufficiently large and positive. Finally,

lim dyhJ(y) = f dy|/fexp[(JV - £/?[# - 2])>;], (3.33)
n-+coyι yi

by Statement 6.

Statement 8. For ίfte minimizing sequence of the preceding statement,

. (3.34)

(Remember: F[ΦJ is independent of n.)

Proof. From Equation (3.2),

Thus, by Fatou's Lemma,

\y[Φ^ + b$dNx\ΦH\β]
-> oo

|Φ|". (3.35)

We now know that Φ is not zero.

Statement 9. For t/ie minimizing sequence of the preceding statement,

T[Φ]^limΓ[Φj. (3.36)
n->oo

Proof. T can be thought of as defining a Hubert space norm. In terms of this
norm, our minimizing sequence is a sequence of bounded vectors; such a sequence
always has a weakly convergent subsequence. Statement 9 is then just the well-
known proposition that the norm in Hubert space is weakly lower semicontinuous.

Statement 10. The function Φ defined above is a solution of the reduced problem.

Proof. By Statements 8 and 9,

(3.37)

But the limit on the right is the infimum of the scale-invariant ratio jR. Thus,
"less than" is not a possibility, and Φ must attain the infimum, that is to say,
be a minimum of R.

Thus we have almost proved Theorem B; we have constructed a monotone
spherically-symmetric solution of the reduced problem. However, the remainder
of Theorem B, the non-existence of non-spherically-symmetric (or non-monotone)
solutions, is trivial, since it is known [4] that T for any function is equal to Γ for
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the spherical rearrangement of the function only if the original function is spheri-
cally symmetric and monotone. This completes the proof.
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