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The High Density Limit for Lattice Spin Models

Paul A. Pearce* and Colin J. Thompson
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Abstract. The n- vector, spherical and quantum spin models are considered on a
regular lattice with co-ordination number q. In the limit q-+co it is proved
algebraically that the free energies are given by the corresponding Curie-Weiss
or mean- field expressions.

1. Introduction

The classical Curie- Weiss theory of ferromagnetism has been established rigorously
by considering various limiting lattice spin systems. It is known, for example
(Thompson and Silver [1], Pearce and Thompson [2]), that if the spins interact with
a Kac-type pair potential

the Curie- Weiss theory results in the long-range limit y->0. In addition it has been
shown (Pearce and Thompson [3]) that the Curie- Weiss theory arises for a system
of n- vector spins, interacting with extreme anisotropy, in the spherical or infinite
spin-dimensionality limit (n->oo).

In this paper we will be concerned with spin systems on a regular lattice, with co-
ordination number q, in the limit g-» oo. This limit has been termed the high density
limit by Brout [4] who first developed expansions for spin systems on lattices in
inverse powers of the co-ordination number q, with the Curie-Weiss theory as
leading term. More recently, Thompson [5] has proved that the g-»oo limit indeed
results in the Curie- Weiss theory for Ising systems. However, the proof uses graph-
theoretical methods and cannot be readily extended to other spin systems. Here, an
algebraic method is developed that enables the treatment of both n- vector and
quantum spin systems.

Consider N spins occupying the sites of a d-dimensional lattice specified by the
rf-tuples

(1.2)
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with (not necessarily Cartesian) components

iμ = l ,2, . . . ,H μ ; μ=l,2,...,d (1.3)

so that

tf= Π v ί1-4)

Suppose further that the ^qN bonds <(ij) between interacting (typically nearest-
neighbour) pairs of spins forms a regular lattice graph (in the sense of Kasteleyn

[6]).
Let the n-vector Hamiltonian be

(1.5)

where Jg O is the coupling constant, H is the external magnetic field and the n-
dimensional spins have norm

\l/2

Si) =nίl2. (1.6)
μ = l /

Then the n- vector free energy ψn(β,Hιq) is defined by (β = l/kBT)

-βψn(β,H 9q)= lim N^logZ^H q) (1.7)
N-»oo

with

Z"N(β,H;q) = An-
N J...J ^Sexp(-^») (1.8)

| |s/| |=«1/2

and

^-2π"/2n("-1)/2/Πn/2). (1.9)

Similarly, let the quantum spin Hamiltonian be

tf=-q-is-2 X St J.Sj-s-Ή ΣSi (1.10)

where, in the notation of [2], 5. is now the spin-s angular momentum operator for
the spin at site i and J is a positive definite, symmetric anisotropy tensor. The
quantum free energy ψ(β, H;q)is then defined by

-βιp(β,H;q)= lim ΛΓMogZ^H g) (1.11)
N-> oo

with

Z^H ;ί) = Trexp(-/?jr). (1-12)

The precise statement of our results is now as follows:
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Theorem 1. For the n-vector spin system specified by (1.5)-(1.9), the limiting free
energy is given by

ψ"(β,H)=\imψ"(β,H q)

= min {^nJx^β-^og^βJx + βH)} (1.13)

where H = n-ll2\\H\\ and

Λ(x) = Γ(n/2)/n/2_1(nx)/(i«x)"/2-1 , (1.14)

with Iμ the modified Bessel function of order μ.

Theorem 2. For the quantum systems described by (1.10)-(1.12), the limiting free
energy is given by

(1.15)

where

(1.16)

The expressions (1.13) and (1.15) for the limiting free energies are precisely the
Curie-Weiss or mean-field expressions. Notice also that the lattice-dimensionality d
does not appear explicitly in the statement of the theorems. We stress that d need not
be fixed it is allowed to tend to infinity with q. Of particular interest here is the case
of nearest-neighbour interactions on a Cartesian (hypercubic) lattice for which
q = 2d. In this special case, of an infinite spatial-dimensionality limit, Gates and
Thompson [7] have investigated the behaviour of the correlation functions for the
scalar spin models and obtained the Ornstein Zernike formula.

The layout of rest of the paper is as follows. Theorem 1 is proved in Section 2.
Then in Section 3 we discuss the spherical model and sketch the proof of Theorem 2.

2. The n- Vector Model

To obtain the limiting free energy (1.13) we find upper and lower bounds that
coalesce in the limit g— >αo. The upper bound on the free energy is immediate since
the partition function (1.8) is always ([1,5]) bounded below by the Curie-Weiss
partition function, regardless of potential or dimension. In the present context
Jensen's inequality leads to

, (2.1)

provided x is the magnetization given by

x = ̂ n(βJx + βH) (2.2)

where

) = In/2(nx)/In/2 _ ,(nx] . (2.3)
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Clearly, it follows that

To obtain a lower bound on the free energy (1.13) we begin by writing the
Hamiltonian (1.5) as

where

1 ij interacting neighbours
i . (2.6)

0 otherwise,

is the adjacency matrix. If we impose periodic boundary conditions the matrix A
becomes cyclic, i.e.

A.. = A(i-j), A(k) = A(k + n) (2.7)

where [cf. (1.4)]

n = (w l fn 2,...,n d). (2.8)

The matrix q~lA can now be diagonalized explicitly [8]. Defining

d
c ΓT „- l/2~2πijuku/nu o Q\
*Jk~ 11 Hμ β ' (Z *)

μ = l

we have

S~1(q~ίA)S = diag(λi) (2.10)

where

3 _ 1 (2πίl 2πί2 2πl'd
Af — A , , . . . ,

V ΛI "2 nd

and

k

To proceed with the derivation of the lower bound we wish to replace the matrix
q~ 1A with a suitable positive definite matrix. To this end we define the cyclic matrix
Kby

(ε>0) (2.13)

where the non-negative definite matrix \A\ is given by

1. (2.14)

Since \A\ — A is non-negative definite (i.e. A ̂  \A\) it follows immediately that (v = β J,
B = βH)

Z»N(β,H;q)ίA;N J...J d^Sexp ^K^Sj (2.15)
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Furthermore, since K is positive definite, a standard identity [1] can be applied to
the right hand side of (2.15) to obtain

-N J...J ^SexpίΣK + BJ Sj (2.16)

det-
V ,

-1||*J||
2 + logyι,(n-1/2||vjr, + B||)], (2.17)

ί

where the function $n arising from the configurational integrals (see [1]) is given by
(1.14).

Maximising each term separately in the product occurring in (2.17), and
performing the remaining Gaussian integrals we obtain our final bound

-n/2

. (2.18)

Obviously, this manipulation is valid only if the matrix / — z~ 1K is positive definite.
To ensure this requirement we choose z to be greater than the maximum eigenvalue
of 1C, i.e. [see (2.13) and (2.11)], z> 1 + ε. This condition can be relaxed to z> 1 if we
let ε— >0 + . In this limit (2.18) still holds with the matrix K replaced with the matrix
<ΓΊ4.

Since the matrix \A\ is a Toeplitz matrix, Szego's theorem [9] gives
/ \A\

f ( z ; q ) = l imΛTMogdet /- —
N^CO \ qz

(2.19)
0 \

where λ(β) is given by (2.12). It follows then from (2.18) and (1.7) that

ψ»(β, H q) ̂  mm {\nz~ ί Jx2 - β ~ 1 \ogj?n(βjχ + βH)}

+ ̂ /?-1/(z;^) (2.20)

for all z > 1. In view of the upper bound (2.4) we will have proved Theorem 1, that is
(1.13), once we have established that

lim lim/(z;4) = 0. (2.21)
z-» 1 + g-) oo

This is proved in the Appendix.

3. The Spherical and Quantum Spin Models

The limiting free energy of the Berlin and Kac spherical model [10] can be obtained
[11] from the result of the previous section. By considering n~ίψn(β,H;q) and
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taking the spherical limit π— »oo before (or after) the limits g— »oo, z->l + one
obtains (see [3, 12])

= - max {^Jx2 + Bx+^β-1log(ί-x)}> (3.1)

where

B= l imn- 1/2\\H\\. (3.2)
n~* oo

The expression (3.1) is precisely the free energy of the Curie- Weiss (or mean-field)
spherical model.

Alternatively, the spherical free energy can be obtained directly by solving the
spherical model on a regular lattice with co-ordination number q. In particular for
zero field we have [13]

(3.3)

with λ(θ) defined by (2.12) and z determined by the saddle point condition

2π Λf\ <3 4)

As g-»oo the right-hand side of (3.4) tends to z"1 (see Lemma 2 in the Appendix),
provided z>l. This is certainly the case when v<l . For v > l the saddle point
"sticks" at z = 1 in three and higher dimensions (d ̂  3). In one and two dimensions,
on the other hand, the spherical model does not have a phase transition for finite q
and the saddle point is given for large q by

z = 1 + ̂ (1) (3.5)

when v>l. In both cases, from (3.3) we obtain in the limit q-*ao,

„_! _logv),
in agreement with (3.1).

Theorem 2 for the quantum systems can be proved in essentially the same way as
Theorem 1. The extra complications due to the non-commutation of the spin
operators can be dealt with by the methods of [2]. The upper bound on the free
energy, for example, is obtained by using Bogoliubov's variational principle. The
derivation of the lower bound, however, is more involved. First PeierΓs theorem is
used to replace the matrix q~lA (2.6) with the matrix K (2.13). Then Trotter's
formula is used to obtain a functional integral representation. Following the
method of [2] then gives a lower bound on the free energy of the required form [cf.
(2.20)] with f β~ l f ( z q) [see (2.19)] as remainder. The most important thing to note
is that, as in the n-vector case (see the Appendix), this remainder term vanishes in the
limit g->oo.
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Appendix

Our aim here is to prove the result (2.21). This will be done in a series of Lemmas.
Before proceeding it is convenient to introduce the lattice average

θ2...dθd (A.I)
o

and the inner product

(f(θlg(θ)) = <f(θ)*g(θ)ye. (A.2)

It should be remarked here that the set

{eίk'θ : k a lattice vector} (A.3)

is a complete orthonormal set of functions with respect to the inner product (A.2).

Lemma 1. I f A i j = A(i—j) is the adjacency matrix (2.6) for the regular d-dimensional
lattice graph with co-ordination number q, and

λ(Θ) = q-^A(k)eik θ (A.4)
k

then

<μ(0)l>0-*0 as q^oo. (A.5)

Proof. By applying the Schwarz inequality and the Parseval identity we obtain :

= g~1 / z-»0 as q-

Lemma 2. In the previous notation,

1
as q^co, (A.6)

for all z>l.

Proof. Suppose z > 1. Then by an elementary identity [6] and an integration by parts
[observe that \λ(θ)\ ^ 1] we obtain :

β o

= z- 1 | l+ le-
0

-^z~ as q^ co.

In this last step we have used Lemma 1.
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Lemma 3. In the previous notation,

<log(z-μ(0)l)>^logz as q-^ao, (A.I)

for all z>l.

Proof. Suppose z>l. Then by Jensen's inequality and Lemma 1 we obtain:

->logz as q->co.

But by Jensen's inequality and Lemma 2,

^-^(τ^m)θ
—> logz as g—»oo.

The result (A.7) follows. In particular, we have

->0 as q-+oo, (A.8)

for all z> 1. The result (2.21) is now obtained by taking the limit z-»l + .
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