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Abstract. A generalization of local commutativity to the fields with an
exponential momentum-space growth ~ ¢'ll?ll is considered. To study the local
properties of such fields we associate to each space-time region @) a topology 7(0)
on the test function space. It is shown that under any choice of the topology the
fields of exponential growth are localizable only in space-time regions large in
comparison with [. This happens because not any domain in the space of several
complex variables is a domain of holomorphy. However, by specifying the
topology through the use of holomorphically convex domains in C*, one can
attach certain meaning to local commutativity for arbitrarily close spacelike
separated regions of R*.

1. Introduction

A little more than 10 years ago Meyman [1] and Jaffe [2] showed that in the
momentum representation the exponential growth of vacuum expectation values is
physically marked, since beginning from this growth the fields change essentially
their local properties. More precisely, there exist two natural boundaries. The first
one characterizes the fields whose domain of definition contains test functions with
compact support. This boundary was found by Jaffe with the aid of the theory of
quasianalytic classes and looks like this

"lj? lng(t) 1)

Here g is a function characterizing the growth in p-representation. For example, the
growth as exp{|pll/(In|p|))* *} meets this requirement, whereas exp{| p|l/ln|p|}
does not. Since in the test function space different operations are determined, the
presence of only one function of compact support leads automatically to a rather
large store of such functions. In particular, in the Jaffe spaces the following
important property holds. For any pair of bounded space-time regions ¢, @, with
disjoint closures one can find a test function which is equal to zero in @, and to unity
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in 0,
0 for xe0,

(p(x)={1 for xe0,. @

This property makes it possible to construct a partition of unity and the local
properties of the corresponding fields turn out to be exactly the same as one of
Schwartz distributions. The local commutativity condition for such fields, which
are called strictly localizable, is formulated in a usual way

[A(p,), A(@,)]=0 if suppe, and suppe, 3)
are spacelike separated.

Meyman has considered [1] a wider class of functionals growing at infinity slower
than any linear exponential

g()<C.etl, 4

The test functions are analytic and the definition (3) loses its sense in this case.
However such fields may be considered as hyperfunctions and both the supports
of vacuum expectation values and local commutativity for them can be determined
also in the spirit of hyperfunction theory [3]. We shall call them hereafter
localizable. The relation between Meyman’s and Jaffe’s approaches is considered in
detail in [4-6]. It is shown there that localizability may be treated as a topological
generalization of strict localizability. Namely, to each region ¢ of space-time a
topology t(0) on the test functions space is associated and condition (3) is replaced
by the following requirement

[A(9)), A(@)] -0 if ¢, -0 in «(0,),

920 in 1(0,), ©)

where R*\0,, R*\0, are spacelike separated. The topologies 7(¢)) are defined in
accordance with the growth (4) and are the topologies of compact convergence on
arbitrarily close complex neighbourhoods of real sets @0. For any pair of regions
0,, 0, with disjoint closures one can find (see [4] and hereafter) a sequence of test
functions converging to zero in the topology ©(¢,) and to unity in 7(0,)

_){0 in 1(0,)
VoIl in 1(0,).

This condition will be called “localizability condition”.
The present paper is aimed at clarifying how the local properties change under
passing to the exponential growth

el (7)

withafinitetype [ >0. The configuration-space test functions are analytic in the tube
{x+1iy:|ly|| <I} in this case and the functionals may be given by complex measures
concentrated in this tube. We should emphasize that we are interested in space-time
description of these objects, therefore the basis for our approach is the mapping
0—-1(0), ©CIR*, which differs it essentially from the mathematical papers by
Martineau and Kiselman [8] who studied local properties of analytical functionals
in the complex space C".

(6)
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The difficulty of the analysis of local properties intrinsic in the growth (7) is that
in the choice of topologies 7(0)) there appears a certain arbitrariness. We shall
investigate this arbitrariness and show that the fields with such a growth are not
localizable in arbitrarily small space-time regions. The deciding role here is played
by holomorphically convex hulls of the complex domains determining the
topologies t(0). In the one-dimensional case, when every domain is holomorphi-
cally convex, the topologies can be chosen so as to achieve a formal coincidence with
the local properties of Meyman localizable functionals. We shall describe this
choice of the topologies in Section 2 and illustrate by this example a difference
between multidimensional and one-dimensional cases. In Section 3 we show that
holomorphically convex hulls cannot contain points at distance more than [ from
the initial domain. Therefore to coarse scales of space-time the local properties of
the fields of exponential growth are clearly enough defined. Section 4 considers
topologies determined by holomorphically convex domains in €*. Such a choice of
topology is of interest due to the fact that condition (6) holds in this case and the
corresponding generalization (5) seems to be most near to microcausality. However,
under this choice of topology the functionals of growth (7) also are only
quasilocalizable since they cannot be decomposed into functionals localized in
arbitrarily small space-time regions.

In papers [6, 7] we apply the present results to Wightman field theory. In paper
[7] we consider in detail a mechanism of violation of microcausality due to the
uncertainty in local properties. In [6] it is shown that the condition (5) leads to the
symmetry of Wightman functions in their domain of analyticity independently of a
freedom of the choice of topology. The existence of a non-empty domain of
analyticity for the Wightman functions with the exponential growth (7) has been
established in [9]. In the same paper and in [10—12] it has been shown that the
symmetry guarantees for the theory of exponential growth certain properties
important for physical interpretation. These include the connection between spin
and statistics, PCT-theorem, the existence of unitary S matrix, the polynomial
boundedness of the elastic scattering amplitude.

2. The Role of Holomorphically Convex Hulls
Let A, be the space of functions analytic in the tube
{zeC":|Rez| < oo, |Imz| <},

where || - || is the Euclidean norm. Let us provide it with a topological structure in the
following way. To each open set O CIR" we associate the complex domain

0,={zeC":Reze0,||Imz| <I}

and define t(0) to be the topology of uniform convergence on compact subsets of
0,
©,—0 in 7(0) < sup|p,(z)] >0 on every compact KCO,. &)
K
! To simplify the exposition we do not impose any restrictions on the behaviour of test functions at

infinity. For the definition of topologies t(®) with the account taken of fall-off properties see [4, 6]. For
bounded 0 it is the same
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A functional fe 2 will be regarded as concentrated on the closed set M CR" if it is
continuous in each topology 7(¢) where @D M. In particular, according to this
definition a functional is concentrated in IR* on the projection of support of any
complex measure that represents this functional. Now fix two disjount regions 0,
0,CR" and consider the region Q=0,,U0,, The complement of this region is
connected in C". In one-dimensional case by virtue of Runge theorem [14] this
property makes it possible to approximate any function which is analytic in Q by
entire functions uniformly on compacts in Q. In particular, by approximating the
function which is equal to zero in ¢, and equal to unity in @,,, we make sure that for
n=1 the localizability condition (6) holds. Moreover one can show that among the
closed sets on which a fixed functional is concentrated there exists the smallest one,
ie. the topologies () allow us to define self-consistently the support of a
functional.

In the multidimensional case the situation changes radically. This may be easily
seen on the example of the functional f = §(x? + x2 — 1). An analogous example with
pseudo-Euclidean square x7—x3 is discussed in [7]. Changing to the angular
variable one can write the value of the functional f on a test function ¢(x,, x,)in the
form

(fo)=3% zfn ¢(cos0,sin0)dl. ©)
0

The integration contour in the plane { =60+ ix can be deformed in such a way that
the corresponding contour in the two-dimensional space (z,, z,) remains within the
domain of analyticity of ¢. In particular, distorting to the contour composed of the
pieces

C,=(:0=0,0=n<1,)
C,={(:0=0=2n,y=n, (shy,<])
Cy;={{:0=2n,0=n<n,}

and considering that the integrals over C, and C, compensate each other, we obtain
the representation

2n
(,9)=% | p(chn,cosd—ishn,sinb,chn,sinf+ishn,cos6)do. (10
0

The corresponding contour in €? is contained in the compact
K={x+iy:|x|=ely| =4}, (11)

where the abbreviations ¢ =ch#n,, 1=shy, are used. Its projection onto the real
space is a circle of radius ¢ > 1. Denote the region x% +x2>0*—¢ by 0, and the
region x% +x3 <1+¢ by 0,. If ¢ is small enough these regions are separated by a
finite distance, while the sequence ¢, with the property (6) does not exist for them,
since according to the represenation (9) the value of the functional f on such a
sequence should tend to = and according to the representation (10) to zero. This
means that in the two-dimensional case the support cannot be defined with the aid
of topologies (8). Indeed, the functional f can be equally considered as concentrated
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on any circle of radius g lying in the interval

1<o<)/1+P. 12)

The essence of the matter is that the compact (11) is not holomorphically convex in
2. In other words there exist such points z¢ K, that for any entire function ¢

lp(z)| = sup ol (13)

Since entire functions are dense in ,, this inequality holds also for any test
function. Therefore uniform convergence ¢,—0 on K implies convergence to zero
in a greater region K which is the union of K and all the points for which (13) holds.
The set K is called the holomorphically convex hull of K. We shall now calculate the
hull for the compact (11) and show that in accordance with (12) it contains the real
set 02 — 22 < || x||? £o? Therefore convergence to zero in the topology (0, ) in the
above example implies convergence to zero on the initial circle x? + xZ =1 though it
does not belong to @,. The situation with the n-dimensional case is analogous, for
any non-convex region () CIR". This is easily seen from the known Levi and Bochner
theorems [13, 14]. The exact formulation of the Levi theorem is not needed, it is just
ofimportance that it allows us to express the holomorphic convexity of a region asa
local property of its boundary. The region @, has a part of the boundary common
with the tube 0, = {ze C":Reze 0}. Therefore these two regions are simultaneously
either holomorphically convex or not. According to the Bochner theorem the
holomorphic convexity of the tube @ is equivalent to the linear convexity of its
base which is the space-time region @. In particular, one can state that convergence
to zero in the topology associated according to (8) with the cone {xeR* : x2 > || x||*}
implies convergence to zero in a region containing spacelike points.

Theorem 1. The holomorphically convex hull of the compact K defined by (11) consists
of the points ze C? satisfying the inequalities
IxI>=lyl?ze*=22, x| =e. (14

Proof. If a point z° does not satisfy inequalities (14), it is easily to find an entire
function bounded on K by unity, which is greater than 1 in absolute value at z°. In
fact, if |x°|| > g, the corresponding function is

2 : x(l) x9
exp{a;z, +a,z,—¢*} with a1=”—xo—”g, a2=”x0”Q.

If [|x°]|2—[|y°]|*> <@*— A2, such a function can be taken to be
exp{o®?—A*—z2—z%}.

Thus, the hull K is contained in the set (14). Prove now the converse inclusion. The
arguments are in the main the same as ones used in [14] in proving Bochner

theorem.
Let us fix a number r=%0, 0> — 1?2 <r<? and consider the surface

S,={zeC*:z3+z3=r,|x| Zg}.
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Let us show that S,CK. In S, we have
Iyl1?=lx]? —r=4%.

From this it follows that the boundary ofthe surface S, belongs to K. Let ¢(z) be any
entire function and C the maximum of |¢| in compact S,. We must make sure that
maximum is attained on the boundary of S,. Designate the interior of this set by S

If the maximum is attained in an interior point, the set {ze S I(p(z)| =C} is not
empty. This set is apparently closed in S On the other hand, it is open in S In fact,

let z° belong to this set. At the point z° either ai [z2+22—7r]1%0, or % [z} +23
Zy 2

—r] #0, since these derivatives can vanish simultaneously only at the origin which
does not belong to S, due to the condition r=0. We assume for definiteness that a

nonzero derivative is W Then by virtue of the implicit function theorem the point
1

z° has such a neighbourhood V in Sr, that the conditions zeV, zZ+z5=r are
equivalent to the conditions z, € W, z, = f(z,), where W is a neighbourhood of z{ in
Cland fis analytic in W. By the maximum principle the function w(zl) o(zy, f1 (zl))
is constant in W and therefore, the initial ¢ is constant in V] ie. 2% is contained in
{zeS :|p(2)| = C} with this neighbourhood. Thus, the function ¢ is constant in the
corresponding component of S, and therefore assumes the same value on its
boundary. If » >0 there exists only one such component and if » <0 there are two,
but their amount is not essential for us. It is important only that their boundary are
contained in K and thus the inclusion S,CK is proven.
By the same arguments the set

S, ={zeC?:zi+zi=r+it,||x| <o}

belongs to the hull K for any real . The union of these two-dimensional surfaces
over all ¢ is the three-dimensional surface

{ze@ :||x||> = |yl|* = Ix] Se} -

In turn, the union of these hypersurfaces over r lying in the interval 9> — 22 Sr < o2 is
just the set (14). For A=¢ an exceptional case r=0 is possible to which our
arguments are inapplicable. However, the set K is closed by the very definition.
Therefore, the inclusion S,C K for r close to zero implies the inclusion S, C K. This
completes the proof of Theorem 1.

The same inequalities (14) define the hull of the compact {x+iy: || x| =0, ||V|
< A} also in the n-dimensional case. To prove this it is sufficient to note that this
compact is invariant under rotations of x and y and by a simultaneous rotation any
point ze€" can be carried into the subspace (z,, z,).

Corollary. Let O be the complement of a ball of radius r in R" and let to this region is
associated the topology ©(0) on the space U, according to the formula (8). If I>r, the
convergence ¢,—0 in ©(0) implies convergence to zero of the numerical sequence ¢ (x)
everywhere inside the ball.

If we consider a field defined on the test function space ,, this means that it
cannot be localized with the aid of topologies (8) in space-time regions small in
comparison with .
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3. Local Properties on Large Space-Time Scales

Theorem 2. Let O be a region in R* and O,={zeC":Rezel, |Imz| <l}. The
holomorphically convex hull of the set O, in C" is contained in the closed complex I-
neighbourhood of the set (.

Proof. Fix a point £€IR" at distance more than ! from @ and consider the domain
Q,={zeC":|{—Rez| > |Imz|, [[Imz| <I}. (15)

Evidently, this domain contains ¢, and by virtue of what has been said above it is
holomorphically convex. The intersection of all such domains is also holomorphi-
cally convex and hence it contains the hull @,. On the other hand, it is contained in
the closed complex I-neighbourhood of the set O.

Corollary. Let 0, O, be two arbitrary space-time regions separated by a distance
more than 21. One can always find for them in W, a sequence ¢, with the property (6).

Proof. The interiors of holomorphically convex hulls @, and @,, are disjoint Runge
domains and one can apply to them the approximation theorem.

The proven theorem implies that a field defined on the test function space ¥, is
localizable on space-time scales large compared to I. This gives us some grounds to
think that for sufficiently small I the condition (5) ensures macrocausality. In the
limiting case [—0 the hull shrinks to the very set. Thanks to this the fields with
exponential growth of zero type (4) are localizable in arbitrarily small space-time
regions. In the other limiting case, /— oo, the hull turns into the convex hull and, in
particular, if the region 0 is the complement of a bounded set, it covers the whole of
the complex space.

4. Another Choice of Topology

The question arises whether it is possible to localize the functionals defined on ¥, to
a high accuracy by replacing in the definition of topology (8) the domains @, by
holomorphically convex domains ¢;.

For example, to each region (¢ CIR" we can associate the following set

O=() 2

434

where Q, is defined by (15). As an intersection of holomorphically convex domains
0, is also holomorphically convex. The corresponding topologies will be designated
by %(0). Condition (6) is likely to hold now for any regions with disjoint closures
since the holomorphically convex hull of the set ¢, in C" coincides with the closure
of this set. It is not hard to construct a sequence (6) explicitly

¢V(x) B (_Y_) j e~ "Zux-éllzd”i .
]/7? 0,
Nevertheless the local properties still differ significantly from the localizable case.
To make sure of this we shall use the criterion found in [5] which characterizes the
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local properties more completely than conditions (2), (6). In the strictly localizable
case it looks as follows

L(0,00,)=2(0,)+20,). (16)

Here 0, 0, are any two open sets in IR" and .#(0) designates the subspace of the test
functions localized in @. This condition is the simplest form of the partition of unity
and extends condition (2) to the case of regions with non-empty intersection. In
conjunction with the dual formula

L(0,n0,)=2(0)nZ(0,) (17)

which holds automatically, it implies that the mapping 0 — £(0) is a morphism in
the category of lattices. Formulae (16); (17) lead to analogous formulae for the
functionals. Indeed, let us designate by #’'(M) the set of functionals concentrated on
the closed set M CIR". It is composed by the functionals vanishing on test functions
localized outside M. Therefore from (16) it follows

L' (M, nM,)=L"(M)n¥'(M,), (18)

where M, is the complement of @;. Using the Hahn-Banach theorem it is easy to
shown that these formulae are actually equivalent to the accuracy of the closures of
the subspaces involved. Similarly, to formula (17) corresponds the equality

LM UM,)=L'(M,)+ L (M,). (19)

In the localizable case (4) conditions (16), (17) are no longer meaningful, since all
the subspaces Z(0) are trivial. One can, however, find their topological general-
izations. The set of locally convex topologies on a test-function space also forms a
lattice i.e. a partially ordered set any two of whose elements have a greatest lower
bound and a least upper bound. These bounds being desginated by A and v, the
formulae corresponding to conditions (16), (17) in the localizable case take the form

O O,)=10O) AT(0,), (20)
(0,00,)=1(0,) v 1(0,). (21)

These formulae lead again to relations (18), (19) where the role of .#'(M) will be
played by the set of functionals continuous in the topology 7(M) (see [5, 6]).

Let us turn back to the functionals defined on the space U,. Under the first
choice of topology discussed in Section 2 condition (21) holds but (20) is violated.
Using holomorphically convex domains we ensure (20) but it is easily seen that
condition (21) and therefore (19) are inevitally violated. We show this on the
example of the functional f=4(z— z,), where Rez,=0, [Imz,||*>=1*>—¢>. Choose
for @, the half-space {xeR":x, <I—2¢}, and for @, the half-space {xeR":x, >
—(I—2¢)}. The union of ¢, and @, covers the whole of R" but it is impossible to
represent f as f; + f,, where f; is continuous in #(0,) and f, in (0,), since the
sequence of test functions

o (z)=exp {v(as2 12— i ziz)} (22)

i=1
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on which the functional f is equal to unity converges to zero both in #(¢,) and in

i=1
the region || y||> =12 — &2, | x|| Ze. In particular, since ¢ </, they satisfy the inequality
[y Z lIx]l +(—2e). Therefore, none of these points is contained in the region Q,,
where &, = +(I—2¢), {,=...={,=0.On the other hand, 0},CQ, , 05,CQ,_, which
proves our assertion.

We see that under this choice of topology functionals defined on U, cannot be
decomposed into the sum of functionals localized in small space-time regions. It
should be emphasized that the region ¢); is smaller than ¢, and the requirement of
continuity in the topology %(0) is stronger than that in the topology 7(0).

#(0,). In fact, the points of the tube ||y| <! for which Re (sz -P-3 zf) =0liein

5. Conclusion

Thus, the fields of exponential growth (7) are localizable only in space-time regions
large in comparison with [ and the mechanism of localizability violation is
connected with envelopes of holomorphy. This mechanism must be taken into
account in investigating the relation between the topological generalization of local
commutativity (5) and physical causality. Our results show that the problem of
causal influence of space-time regions can be correctly set for the fields of
exponential growth if the regions are large and separated by a distance greater than
I. The corresponding generalization of local commutativity (5) provides for the
validity of causality, generally speaking, only on space-time scales large compared
to I. Violations of causality at small distances can come from the fact that the
envelope of holomorphy of the complex domain associated with the light cone
contains spacelike points. To eliminate such violations one has to use a holomorphi-
cally convex domain whose trace in the real space coincides with the light cone. It
seems to be the only possible way to ensure causality in the essentially nonlocaliz-
able case |- co. However, one should investigate whether this choice of topology is
compatible with other axioms of quantum field theory.

The causality problem in nonlocal field theories was also considered in [15-18].
Efimov and Alebastrov [15, 16] studied a theory with an exponentially increasing
form-factor in the propagator and drew a conclusion that the theory is microcausal
for a specific choice of form-factors, viz., for those form-factors which increase
when p?— + oo and fall-off when p*— — o0 (p? =pj — p?). Microcausality has been
defined by them in the same spirit as our condition (5), but the convergence of test
functions in space-time regions is understood in a different sense. Namely, to each
space-time region @ they associate a sequence (called by them the “projecting” one)
with the following properties: it converges on the real space to the characteristic
function of the region @ and to zero everywhere in the tube {ze C*: Rez¢ 0} [cf.

- with (6), (20)]. Unfortunately such a generalization of the partition of unity method
turns out to be unsuccessful because these two requirements are compatible only if
the convergence is non-uniform. This immediately follows from Theorem 1 of our
paper. By examining the examples given in [15,16] one can verify that in the
projecting sequences infinitely growing peaks appear which narrow and move so as
to provide convergence to zero at each point z with Rez¢@. This important fact has
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not been taken into account in [15, 16], quite the reverse—the property of uniform
convergence is assumed and essentially exploited in the proof of microcausality
proposed there, which makes it erroneous. In [7] we have studied the form-factors
[15,16] by the method presented here and have shown that they cannot be
microcausal. We think however that the field theory [15, 16] is macrocausal for
small [ and physically relevant.

In [17,18], topological generalizations of local commutativity have been
suggested for those fields that grow in momentum space like exp {||p||*} with o> 1.
The corresponding configuration-space test functions are entire of order o/(oc — 1)
and cannot decrease at ||x||— oo more rapidly than exp{—||x[|®~V}. In [6] the
topological structure used in [17, 18] is considered from the viewpoint of criterion
(6), (20) and it is shown that all the topologies corresponding to different bounded
regions are equivalent. Only the topologies corresponding to different cones differ
from one another. In other words that topological structure distinguishes only
between directions but not between points in space-time. The causality problem in
such a theory requires a more detailed consideration. We would like to emphasize
again that that choice of topology is not the only possible one.

It is of interest that the Haag-Ruelle scattering theory can be completely
extended to nonlocalizable fields with arbitrarily fast growth [11, 19, 20] and turns
out to be nonsensitive to the manner of spacelike falling the field commutator.
However the exponential growth (7) plays a particular role here too. Namely, only
for finite I the Wightman functions have a non-empty domain of analyticity. This
domain contains real points (Jost points) [9]. By using delta-like sequences of test
functions instead of functions of compact support and applying the Cauchy-
Poincare theorem, we have proved [6] that generalized local commutativity (5)
implies the symmetry of the Wightman functions under permutations of the
arguments independently of an arbitrariness of the choice of topology. The
localizable case (I—-0) was also treated by Liicke [21] in a similar way. The
symmetry leads in the usual fashion to the correct connection between spin and
statistics and PCT-invariance. When /- oo, the domain of analyticity vanishes and
these important properties of asymptotic fields cannot be derived without
additional assumptions.
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