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Connection between the Spectrum Condition
and the Lorentz In\ ariance
of the Yukawa2 Quantum Field Theory
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Abstract. We prove, under assumptions, the Lorentz in variance of some
quantum field theories. In the separate paper we show that our assumptions are
fulfilled in the (renormalized) Yukawa2 quantum field theory with the periodic
boundary conditions.

In the present paper we prove, under several assumptions, the Lorentz invariance of
some quantum field theories. In a separate paper we show that our assumptions are
fulfilled for the CPT invariant states in the (renormalized) Yukawa2 quantum field
theory with the periodic boundary conditions (see also [1]). Keeping this
application in mind, we bound ourselves to the case of the Yukawa2 quantum field
theory.

For the sake of convenience, we introduce a space of four-component complex-
valued test functions and we set for each four-component function

Ψo(h)'= Σ ί dxψl(x)ha(x)+ X $ dxψ<o-
2(x)hjx)

α = l α=3

where ψa

0{x) is the free fermion field in the one-dimensional space and

ΨΌ(χ) = Ψo(χ)*yo- ̂  Wχ) is a four-component function, we set

suppft:=(JsuppΛα(x).
α

Let 9l/ be the field algebra for the Y2, as it is defined in [2], i.e., SΆf is the C*

algebra defined as the norm closure of [j ^Hf{B\ where $if{B) is the von Neumann

algebra generated by bounded functions of the time zero free scalar field φo(f) and
its time derivative πo(/), fe C (̂IR), suρρ/C#, and by the operators of the free
fermion field Ψ0(h), /ιeQ?(IR)(x)C4, supphcB.

Let 0>2 be the Poincare group (= the inhomogeneous Lorentz group) in two
space-time dimensions, i.e. the three-parameter group of transformations
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Assumption 1. (Existence of the dynamics.) We suppose that there exists a
representation σ({a0, aί9 λ}) of the group&2 by automorphisms of the algebra 21^ such
that the spatial translations coincide with the free ones exp(fPx) ( ) exp( — iPx). Let us
denote σt = σ({t, 0,0}). We suppose that for each positive b, there exists a self-adjoint
operator H(b) in the Fock space, where the algebra SIj is defined, such that for
Ae<Άf(B\ Bcl-b,b] and \t\<b

σt(A) = Qxp(itH(b))A exp(- itH{b)) .

Assumption 2. (Locality.) We suppose that the automorphisms σt are local, i.e., that one
of the following conditions is satisfied:

where Bt is the set of points within distance \t\ of B.
2) Let &(B)(C*Hf(B)) be the subalgebra of bounded boson observables localized

in the region B. If (t, B) and (tf, B') are spacelike separated and supp/i C B, supp/z' C B',
then

{σt(Ψo(h)),σt,(Ψo(h'))}=0

Remark. We note that 2.1) implies 2.2).

Assumption 3. (Covariance.) For /eC^(IR2)(χ)(C4 we set

Ψ(f):=Sdtσt(Ψ0(f(t, )))eWf.

We suppose that for each /eC^(IR2)(x)C4

σ({α0, al9 λ})Ψ(f) = Ψ(S(λ)f({a0, al9 λ} (ί, x)))

where S(λ) is the 4x4 matrix

W)=l 0

and

(I 0

Assumption 4. (Existence of the physical Hubert space.) We suppose that there exists
a translation invariant (under σ({a0, α1?O})J state ω on the algebra SΆf9 which is
locally Fock. (For a definition of the locally Fock property see [3].)

Let (Jfω, πω, Uω(a), Ωω) be the Gelfand-Naimark-Segal representation corre-
sponding to the state ω. As in [3], Assumptions 1 and 4 imply that Uω(a) are
strongly continuous in the Hubert space J^ω. Let Hω and Pω be the energy and
momentum operators in the GNS representation.

Assumption 5. (Spectral condition.) We suppose that

H > 0 , H 2 l
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Assumption 4 implies that the group of the unitary operators πω(exp(isφ0(f)))
for real fe C^(R) is weakly continuous in 3tfω in s. Let φo(f)ω be the corresponding
self-adjoint generator.

Assumption 6. (φ, π-bounds.) Let /eC^(IR), we suppose that

a) \φ0(f)jmf\\AH<o + l)'>

b) ± φ o ( / L ^ | | / | | 1 ( H ω + l ) ;

c) ±ilφo(f)a»Hω}£c\\f\\2(Hω+ϊ),

as bilinear forms on ^^(HJ x ^°°(iίω). Here || \\y is a norm on the Schwartz space
SfQR) and \\>\\p is the Lp(R) norm.

Assumption 7. (CPT invariance.) We suppose that there exists an antiautomorphism S
of the algebra 9I/5 such that

θσ({α0, al9 λ}) = σ({ - a 0 , - al9λ})& .

We suppose that the state ω (Assumption 4) is & invariant, that is, ω{Q(A)) = ω(A)*
= ω{A*) for all AeSΆf.

Theorem. Under Assumptions 1-7 the state ω is Poincare invariant. The correspond-
ing Wightman functions exist as distributions and are Poincare covariant.

Proof of the Theorem. Assumption 6a and Proposition 1 by Nelson [4] imply that
the vacuum expectation values of any number of smeared field operators [with test
functions from C^(1R2) or C^(R2)(x)(C4] are well-defined. life C^(R2), then on the
domain @°°(Hω)

φ(f):=S dtexp(itHω)φ0(f(t, ))ωexp(-iίiίω)

^ ί dt\\f{t,

The arguments of Glimm and Jaffe [5] (or the repeated application of Nelson's
lemma [4]) show that the vacuum expectation values are continuous on the
Schwartz space. Since they are linear functionals (this easily follows from the locally
Fock property of the state ω), so the Schwartz nuclear theorem proves that the
vacuum expectation values are tempered distributions.

As in Proposition 1.1 by Glimm and Jaffe [5] one can show that the Hubert
spaces j^w and Jίfω, constructed by the Wightman reconstruction theorem and by
GNS construction coincide. This implies that to prove the Poincare invariance of
the state it is sufficient to prove the Poincare covariance of the Wightman functions.

Now we proceed to the proof of the Poincare covariance of the Wightman
functions.

Assumptions 4 and 5 imply that the Wightman functions are translation
invariant and satisfy the spectrum condition. Assumption 2 implies that the
Wightman functions satisfy the local (anti)commutativity. Since the Wightman
functions are translation invariant, they define the sequence of the distributions,
depending on the differences of coordinates. Each such distribution satisfies the
conditions of the last theorem, Chapter IV, §7 of Jost's book [6] and so is the
boundary value of a function holomorphic in the extended tube, having a one-
valued continuation into the union of the permuted extended tubes [6].
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Let W(zl9...9zn)(z: = (t9x)) be a Wightman function of n fields (scalar or
fermion) and we do not write down fermion indices. Let W(λ9zl9...9zn) be the
distribution defined by

<W(λ,zl9...9zn\/,.../„> = <W(zl9...,zn\ f±(λ).../„(

< > denotes the integrating over the space and time variables and the summation
over the fermion variables and f(λ) = /({0,0, λ}z). The distributions W(λ9 zl9..., zn)
have a one-valued continuation into the union of permuted extended tubes and so
satisfy the hypotheses of the theorem on finite covariance of Bros et al. [7,8] (which
is valid in the two-dimensional case also), and so W(λ9zί9...9zn) has the unique
expansion

W(λ9zl9...9zJ = Σ λkWk(zv...,zn) (1)

where Wk(zί,..., zn) is a tempered distribution of tensor rank fc, and is the boundary
value of a function holomorphic in the extended tube, having a one-valued
continuation into the union of the permuted extended tubes [6]. We note that the
sum in (1) is taken only over even k.

Now let Ws(λ,zί9...9zn) be the distributions defined by

< Ws(λ, z,,..., zn), Λ.. ./„> = < W(zlt..., zn\ ff{λ).. .fn

s(λ)}

where

s f/({O,O,λ}z) for the scalar field

^ U ~ \S(λ)f{{090,λ}z) for the fermion field .

From the expansion (1) and the explicit form of S(λ) it follows that Ws(λ, ) also has
the unique expansion of the type (1)

Ws(λ, •)= Σ λkW\.). (2)

Here the sum is taken over integer k (even and odd).
To prove the Poincare covariance it is sufficient to prove that in the expansion

(2) AΓ±-0 for each distribution Ws(λ, ).
Let ^(m, n, I) be the maximal degree of λ±γ, which enters the expansion (2), for a

Wightman function with m scalar fields, with n fields which are the time derivative
of the scalar field and with / fermion fields. Because of local (anti) commutativity,
A7'±(m, n, I) are independent of the order among fields.

The following lemma reduces the proof of the Poincare covariance of the whole
theory to the proof of the Poincare in variance of its scalar part.

Lemma. N^m, 0, /) ̂  ΛΓ±(2m, 0,0).

Proof of the Lemma. Let W*% ,( ) be the part of Wξ 0 t(λ, ) of highest rank
JV^O,/). Let

/ , , ± E C - ( I R 2 ) , j= l ,2 , . . . ,m,

/Λ ±eC^(R 2)(x)C 4, j = m+l9...9rn + l

be chosen with mutually space-like supports and
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Since W^oι are holomorphic in the union of the permuted extended tubes,
including Jost points, the analyticity and Bogoliubov's edge of the wedge theorem
[9] imply that such fj ± exist (otherwise W^oι = ϋ).

Then Schwarz's inequality gives

ϊ \\φ(fm<±(λ)r...φ(fl±(λ))*ΩJ • II n/ m

S

+ 1 ; ± W)- ΨUZ+l.±(λ))Ω,
I \\ l/2

j,±r Π nfm+j,±)\

We use the following simple estimate

|| ψ(f)\\ S J dt\\σt(Ψ(f(t, )))ll ̂  ί dt\\ Ψ(f{t, - ))||

^ ί dt\\f(t, ) | | 2 = J At (Σ(J dx\fa(t,x)\ψ2

Since the left-hand side has leading term 2 ± i V ± ( m ' 0 ' / ) with non-zero coefficient, so the
lemma is proved.

So to prove the Poincare covariance it is sufficient to prove the Poincare
invariance for the Wightman functions of the scalar field. But for the Wightman
functions of the scalar field the Poincare invariance may be proved in the same way
as it has been done by Streater for the P(φ)2 model [10].

In fact, the bounds 6b), c) coincide with the bounds (2), (1) of Streater [10] and
Assumption 6 implies the bounds of the type (11), (21) of Streater [10]. Further,
Streater has used PT invariance of the P(φ)2 theory to prove that his JV* (0, ή) is even
(for even ή). In fact, this assertion follows from the CPT invariance. Really, the
hermiticity of the scalar field implies that WOtn 0(λ,z)=W0 n 0(λ,z)* in Jost points.
In addition, WOtntO(λ,z) is a function of λ2 [the expansion (1) contains only
the even degrees of λ]. The CPT invariance (Assumption 7) gives Wo n>0(A, z)
= (— l)n Wo,n,o(^ — z ) * This equality and the above arguments show that for even n
Wo n ?0(A,z) is an even function of A2, i.e., that our N±(0,n90) is a multiple of four.

Using this remark and Streater's arguments we obtain AΓ±(m,0,0) = 0 and so
0^AΓ±(m,0,/)^iV±(2m,0,0) = 0. The theorem is proved.

Now we prove the natural consequence.

Corollary. The Wightman functions involving an odd number of the fermion fields are
zero.

Proof of the Corollary. Let W(z) be the Wightman function with an odd number of
the fermion fields. The expansion (1) implies that W(λ, z) is an even function of λ, but
the Poincare covariance implies that W(λ, z) = (Y\S(λ)"x) W(z), i.e., that W(λ, z) is an
odd function of λ. Thus, W(λ,z) = 0 and W(z) = 0. The corollary is proved.
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Remark. We note that our proof uses the existence of the automorphism σ({0,0, λ})
for the fermion field only. The Lorentz invariance of the scalar part is contained, in
fact, in the estimates of Assumptions 6b), c). Also, the CPT invariance of Wightman
functions is needed only for even number of scalar fields.
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