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Abstract. Previous derivations of physical-region discontinuity formulas in
S-matrix theory make use of an ad hoc assumption according to which certain
sets of singularities associated with mixed-a Landau diagrams cancel among
themselves. The aim of the present work is to prove the simplest of these
discontinuity formulas, namely, the pole-factorization theorem for a 3-* 3
equal-mass process below the 4-particle threshold, without using this mixed-a
cancellation assumption. The result is derived from macro-causality, unitarity
and two weak regularity assumptions on scattering functions and bubble
diagram functions.
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1. Introduction

The basic quantities of interest in the study of systems of massive particles with
short-range interactions are the scattering functionals SJJ between sets / and J of
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initial and final particles. The collection of these functional is the S-matrix. From
general principles, the S matrix is known to be unitary (S~1 =S^), from which it
follows that each SJJ, and also its connected part SJJ, is a well-defined tempered
distribution on the space of all real on-mass-shell initial and final energy-mo-
mentum 4-vectors Pk(Pk=Pko~pl = m2iPko>®iVk)- This distribution can be
written (if we exclude the exceptional points Pexc where all the 4-vectors pk are
parallel) in the form:

iel jeJ

where fu is a well-defined distribution on the physical region Mu of the process
/ - • J , i.e. on the space of all vectors p={pk} subject, for each k, to the above-
mentioned mass-shell constraints and satisfying energy-momentum conservation

A\ i e l jeJ

The distribution fu is called the scattering function of the process I—>J.
Important advances were made at the end of the sixties in the derivation and
physical understanding of the physical-region analytic structure of the scattering
functions in the multiparticle case. On the one hand, a macroscopic causality
property was formulated and shown \o be equivalent to certain basic physical-
region analyticity properties [1]. These properties ensure, in particular, that for
each process /-+«/, there is a unique analytic function fUi defined in a domain
of the complexified mass-shell manifold Mu, such that fu is equal to fu at all
points of Jtu that do not lie on the +a-Landau surfaces of connected graphs.
Moreover, fu is a "plus is" boundary value of fu at almost all other points. A
general discontinuity formula around the +a-Landau surfaces was then derived
from these analyticity properties and unitarity, plus a certain mixed-a cancellation
assumption [2, 3,4, 5].

The aim of the present work is to examine this latter assumption, as it applies
to the simplest case, and replace it by more satisfactory ones.

Let us first briefly recall the general procedure of [2]. Consider for simplicity
a point FzJijj that lies on the +a-Landau surface L1(D+) associated with a given
connected graph D, but does not lie in L1(D

f
+) for any other graph D'=t=D. [The

surface LX(D + ) is the full Landau surface L(D + ) minus point that are solutions of
the corresponding equations with some of the Landau constants at equal to zero,
and minus also the points p where any two initial lines of D have parallel momenta,
or any two final lines of D have parallel momenta.] This surface LX{D+) is known
[6] to be a codimension 1 analytic submanifold of Jtu. It therefore divides Jiu

locally into two parts, called respectively the physical and nonphysical sides of
L1(D + ). (The physical side is always well-characterized by convexity properties
of the surface [7]). From macrocausality (see above), fu is known to be locally
the plus is boundary value of the analytic function fu. Moreover, fu is analytic
on both sides of L1(D + ).

Unitary is then used to write Sjj in the form:

(2)
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where DIj = dIJxd4{Ipi-Zpj) and Ru = rIJx84'(Zpi — Zpj)9 and du and ru have
the following properties:

(i) djj is explicitly known to vanish on the nonphysical side of L1(D + ).

(ii) ru is a certain sum of "bubble diagram functions" which is shown to be
locally the boundary value of an analytic function ru from "minus is" directions,
provided the assumption of mixed-a cancellation is used (see below).

Since du = 0 on the non-physical side of L^D+l one has fIJ = rIJ in that
region. Thus du = fu — ru is, in some neighborhood of P, the discontinuity of fu

(i.e. the difference between the boundary values of the plus is and minus is analytic
continuations of fu around L(D + ).

If P is a point of L1(D+) that lies on other + a-Landau surfaces Z (̂£>'+), then
one cannot expect in general to derive a discontinuity formula in the sense previous-
ly mentioned. However, the results of [2] and the assumption of mixed-a cancella-
tion can still lead to certain (essential support) properties of fu, as will be shown
in Section 3.

Recent mathematical developments in the study of the analytic structure of
distributions [8] have led to sharper formulations of these various results [5,9]
and to the possibility of the derivation of the discontinuity formulas from weaker
assumptions.

Let us briefly summarize the main facts. (For details, see [9].) The analytic
structure of a general distribution / defined on a real analytic manifold Jt can be
characterized at each real point p of Jt by a certain set of "singular directions"
(in the cotangent space T*Ji at p to Jt). These directions are those along which
the generalized Fourier transform of / at p does not decrease exponentially (in a
well-defined sense). The set of singular directions at a real point p is called the
essential support of / at p. The distribution / is analytic at p if and only if its
essential support at p is empty. And /, near p, is a boundary value of an analytic
function from the directions of an open cone F if and only if the essential support
of / at p is contained in the closed dual cone C of F. (For more general results,
see [8].)

If the manifold Jt is the physical region of a process I-+J (minus the exception
points Pexc), then a direction u in T* Jt is uniquely characterized by a configuration
(defined modulo global space-time translations and space-time dilations) of
initial and final trajectories that do not all pass through a common point. There
is one trajectory for each particle in / or J, and each trajectory is a full line in
space-time parallel to the 4-momentum pk of particle k.

The bubble diagram functions are functions FB that arise in equations derived
from unitarity and the decomposition of S into its "connected" components. The
function FB is associated with a connected bubble diagram B, which is a con-
nected graph consisting of -I- and — bubbles connected by directed lines. Each
line runs always from left to right and is associated with a certain physical particle.
The function FB is the integral, over all possible on-mass-shell internal 4-momenta,
of the product of the momentum-space kernels Sc

IbJb, resp. (Sc
IbJb)~, associated

with each 4- bubble, resp. - bubble, of B. ((SjbJb)~ is the connected kernel of
S~1 = Sf). Each FB, like each Su or Sjj9 is a well-defined distribution [9d], which
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can be written (if the external 4-momenta are not all parallel) in the same form
as(l):

FB = fBx5\ZPi-ZPj) (3)

where / and J denote the sets of external initial and final particles of B, and fB

is a distribution defined on the physical region Jiu.
The structure theorem [10] follows from macrocausality and unitarity. It says

that the only possible singular directions w of /B at any non u = 0 point p (see
definition below) are those corresponding to the configurations of external
trajectories of at least one connected multiple-scattering space-time diagram 2B.

A diagram 2B is a space-time network of vertices, directed external lines (which
begin or end at a vertex, but not both), and directed internal lines (which join two
vertices). It can be constructed by replacing each bubble b of B by a connected
subdiagram Q)h (which may have only a single vertex). Each line has a well-defined
on-mass-shell 4-momentum, and energy-momentum must be conserved at each
vertex of $)B. An internal line b of Q)B is called a positive line, a negative line, or
a zero line if it is oriented in space-time in the direction of its 4-momentum, in the
opposite direction, or has zero length. (For a line of zero length the vertex at
which it begins and the vertex upon which it ends lie at the same space-time point.
This is not allowed for positive or negative lines.) Any line / of <3B which is an
internal line of a subdiagram Q)h is required to be a positive line of b is a + bubble,
or a negative line if b is a — bubble. The line / associated with an original internal
line of B is allowed to be a positive, negative, or zero line.

A vertex v such that all of its incoming and outgoing lines have parallel q-
momenta is called a parallel vertex and is allowed to be at infinity in space-time.
In this case the trajectories incident upon v are not required to coincide, but they
are required to satisfy angular-momentum conservation [11]. The trajectory of a
line is the full line in space-time parallel to its 4-momentum and passing through
all the vertices upon which the line begins or ends.

Au = 0point of a bubble diagram function fB is by definition a point p such that
there exists a $)B whose external trajectories carry momenta p = (pl9 . . . ,pj and
pass through a common point, and whose internal trajectories do not all pass
through this point.

The (usual) structure theorem gives no information at a u = 0 point p (i.e., every
direction could be a singular direction of fB at such a point).

Remark. Macrocausality is the particular case of the structure theorem obtained
when B is composed of a single + bubble.

A diagram @+ is a diagram every internal line of which is a positive line or a
zero line. Such a 3) is called a positive-a diagram. A diagram ^ _ is a diagram every
internal line of which is either a negative line or a zero line. Such a 3) is called a
negative-a diagram. A diagram ^+ is a diagram with at least one positive internal
line and at least one negative internal line. Such a 3) is called a mixed-a diagram.

The earlier proofs that ru is the minus is boundary value of an analytic function
make use, as we have mentioned, of the "mixed-a cancellation ansatz". In the
framework outlined above, this assumption asserts that the only possible singular
directions of ru are those associated with either positive-a diagrams or negative-a
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diagrams; i.e., that all singularities of the bubble diagram functions fB of ru

associated with mixed-a diagrams 2B must cancel among themselves in the
sumr / ;.

The consistency of this mixed-a cancellation assumption has been checked in
many cases. That is, the mixed-a cancellation (and moreover the cancellation of
the singularities of ru associated with each individual mixed-a D) has been
shown to the follow from the general discontinuity formula in the large number
of cases that have been examined. On the other hand, the individual bubble
diagram functions fB of ru do in general have mixed-a singularities that would
disrupt the proof were they not cancelled by the mixed-a singularities from other
terms: see Section 4.

The assumption that this cancellation must always occur, although apparently
consistent with the discontinuity formula, has no a priori basis, and hence should
be eliminated.

As a first step in this direction we shall prove here, without using this mixed-a
cancellation assumption, the simplest of all discontinuity formulas, namely the
pole-factorization theorem for a 3->3 equal-mass process below the 4-particle
threshold. The result will be derived from macrocausality, unitarity and two weak
regularity assumptions on scattering and bubble diagram functions.

These two new assumptions are described in Section 2. In Section 3 we recall
the earlier derivation of the pole-factorization theorem, and in Section 4 we
describe some properties of the mixed-a diagrams. These properties are used in
the new proof which is given in Section 5.

The techniques that are used to obtain the results described in Section 4 are
discussed in Appendix I. In Appendix II the approach to the pole-factorization
theorem used in [12] is described, and contrasted with that used here. We shall
see that it offers no advantages, and has certain disadvantages: to convert it to a
proof one would need the present work and more.

2. Two Assumptions on Scattering Functions and Bubble Diagram Functions

In this section we describe two new assumptions on scattering functions and
bubble diagram functions. The first assumption deals with u = 0 points. It is a
special case of a conjecture proposed in [13] on the basis of a general solution of
the u = 0 problem for phase-space integrals, and, for single bubbles, of both the
implications of macrocausality at u = 0 points and the holomic structure of
Feynman integrals [15]. It is also discussed in [9d]. The second assumption is a
slight strengthening of an analyticity property that can be derived from macro-
causality (and Assumption 1).

(a) Assumption onu = 0 Points

The first assumption concerns the u = 0 points p. As noted in Section 1 neither
macrocausality (in its original version) nor the corresponding structure theorem,
which is derived from macrocausality and unitarity, gives any information about
the singular directions at u = 0 points. Let us define second kind u = 0 points
P={Pk\ °f IB a s those such that there exists a @B the external trajectories of which
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pass through the origin and carry the 4-momenta pk, while at least one internal
line joins vertices that are not both parallel vertices and does not pass through
the origin.

These second kind u = 0 points are not encountered in the present work.
We now state:

Assumption 1. / / p is not a second kind u = 0 point of fB, then the only singular
directions of fB at p are those corresponding to configurations of external trajectories
of diagrams @B.

(In other words, the rules for M + 0 points hold also at u = 0 points, provided
they are not second kind u = 0 points.)

At second kind u = 0 points certain limiting procedures must be considered.
These are discussed in [9d] and [13].

(b) Analyticity Assumption (No Sprout Assumption)

The second assumption is a slight extension of an analyticity property that can be
derived from macrocausality and assumption 1. This property will be described
first. Let us fix the notation. The +a-Landau surface L(D+) is the set of points p
of the physical region such that there exists at least one diagram 3) with only
+ lines whose topological structure is D and whose set of external 4-momenta is p.
If p lies on the subset L1(D+) of L(D + ) then this diagram 3} is unique (up to space-
time translations and dilations). As mentioned before, the surface Ly_(D+) is a real
analytic submanifold of Jt of codimension 1 [6]. For any point peLx(D+) the
well-defined direction u in T*J( corresponding to the configuration of external
trajectories of Q) will be denoted by u+(p). This direction is also the direction that
is conormal to L^{D + ) at p and oriented toward the physical side of L1(D + ).

Let Q be a real domain of the physical region. Assume that Q contains no
point of L(D+) minus L1(D + ), and no point lying both in L1{D+) and in the closure
of a surface Lt(D'+) for a D'^D that is related to D. (Related graphs are graphs
that are contractions of a common parent.) Assume finally that Q contains no
u = 0 points p of the second kind, relative to the scattering function /.

The following result is a consequence of macrocausality and Assumption 1.
It is completely analogous to results discussed in [14].

Proposition 1. The scattering function f can be decomposed in Q into a sum of two
distributions fx, f2 such that:

(i) / i is analytic in Q outside LX(D + ) and the only possible singular direction
of f1 at any point p of L^D+) in Q is u + (p).

(ii) the only possible singular directions of f2 at any point p of QnL(D+)
correspond to connected diagrams D'+ such that D' and D are unrelated.

Property (i) is equivalent to the property that / \ is, in Q, the boundary value
of a function fx analytic in a domain of the complexification Jt of Jt that contains
all real points p of Q outside LX{D + ) and whose profile at each point p of L^D^)
in Q is the open half space dual to u + (p). This last statement means that, being
given a system of real analytic coordinates z = (z1,..., z3n_4) of M at p and any
open cone T in 1R3""4 with apex at the origin whose closure is contained apart
from the origin in the open half space dual to u + (p), there exists in (C3n~4 a complex
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neighborhood co of z(p) such that all points in co whose imaginary part Imz lies
in F belong to the analyticity domain of fv Since L i(D+) is a real analytic sub-
manifold of Jt of codimension 1, it can be represented in the neighborhood of
any point P of L1(D+) by an equation of the form ip = 0, where xp is a real analytic
function with nonzero gradient which can be chosen such that xp>0 on the
physical side of L1(D+) (this side, as mentioned, is always well determined). If xp
is taken as one of the real analytic coordinates oiJi&iP then the open half-space
dual to u+(p) corresponds to the set Imxp>0 (in the local coordinate system
considered) at all points in the neighborhood of P.

The set L(D + ) is defined to be the subset of points p of LX(D+) such that no
connected Q)\ has external trajectories corresponding to (p,u + (p)) unless the
corresponding graph D' contracts to D (i.e., unless D' is D or can be reduced to D by
contracting to points some of the internal lines of D'.) If we consider a point P of
Q in L(D+\ then fx and f2 are uniquely determined locally, modulo the addition
of a real analytic function. It is sufficient to restrict our attention to this case
and state:

Assumption 2. For any point P of L(D + ) there is
(i) a system of local real analytic coordinates z = zu . . . ,z3 n_4 at P,

(ii) a complex neighborhood co in <C3n~4 such that L(D+) is represented in co
by {z1 = 0,z real}, and

(iii) an open curve c in C1 that starts at the origin, such that the function /x

of Proposition 1 can be analytically continued (single valuedly) into the set cor\ {z1 e c}.

Assumption 2 could be replaced by the stronger Assumption 2', which is the
same as Assumption 2 except that the set {z1ec} is replaced by {Im^ >0}, where

This Assumption 2' is similar to what is implied by macrocausality, but
slightly stronger: it implies that for some sufficiently small complex neighborhood
co of z(p) the open cone F discussed above can be expanded to the full half-space
lmz1 >0, in some system of local real analytic coordinates that has z1=xp. Macro-
causality allows the cone F to be taken arbitrarily close to the half space, but the
neighborhood o may be forced to shrink as F expands. The Assumption 2'
asserts that for some sufficiently small co this neighborhood co can be held fixed
as F expands to the half space.

Assumption 2 or 2' has the effect of excluding from f1 certain singularity
surfaces (called sprouts) that are not excluded by macrocausality alone. These
surfaces are certain special surfaces that touch the physical region only at points P
lying in the union L+ of the positive-a Landau surfaces, but are not confined to
the union of the local complexifications of these surfaces. Thus Assumption 2
(or 2') can be regarded as a precise formulation of some aspect of the idea that a
scattering function have, in some complex neighborhood of each physical point P,
no singularities that do not lie on the local complexifications of the positive-a
Landau surfaces that pass through P. In other applications one may wish to use
this stronger assumption (see [11]). But here we have tried to find the weakest
analyticity assumption that would allow us to prove the pole-factorization
theorem. Assumption 2' is guaranteed true also if the S-matrix is holonomic [15].
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3. Pole-Factorization Theorem (Proof Using the Mixed-a Cancellation Assumption)

In the remainder of this work, we consider a theory with only one type of particle,
a boson of mass m, a 3->3 process below the 4-particle threshold (s = (p1 + P2+P3)2

= (P4 + P5 +P6)2 < 16m2, where the indices 1,2, 3, resp. 4, 5,6, label the initial and
final particles respectively), and the graph D:

In this case L(D+) is defined by the equation k2 = m2, /co>0, where k — p1+p2—p4

{ = p5+p6 — p3). The corresponding space-time diagram with positive internal
line is denoted by 3).

The direction u + (p) corresponds to the configuration of external trajectories
such that 1,2,4 meet at a common space-time point A, and 3, 5,6 meet at a common
point B, with {AB)0 >0. The plus is directions at p of L(D+) are those of the open
half space dual to u + {p). If xp = k2 — m2 is chosen to be one coordinate in a system
of real analytic local coordinates of Ji at p, this open half space is represented
(as already mentioned in Section 2) by lrmp>0. The minus is directions are those
opposite to the plus is directions.

We first illustrate the general procedure outlined in Section 1, following the
presentation of [5], which is a simple adaptation to the particular case of interest
of the general algebraic methods of [2].

By using the (cluster) decompositions of the S-matrix and of 5 ~ 1 = S t into
connected parts, one can write the unitarity equation S5 t = 5 S ~ 1 = i (below the
4-particle threshold) in the form

(4)

where the bubbles + and — denote here the momentum-space connected kernels
of the S-matrix and of minus S'1 =S\ respectively. The sums £ refer to the various
ways of assigning external momenta to the various bubbles involved.

The decomposition of 3 + H that immediately arises from (4) by separating

in the right-hand side the term " = ^ \ ^ - from the others does not yet provide a

decomposition of the form (1). The term ""^Scr-' which contains a factor 8 (k2 — m2)

x 0(fco), k=p1-\-p2—p4., does vanish, as required, on the non physical side of L(D + ).

(Here k2<m2.) But among the remaining terms, one finds the term 5 J + J 3 2

which at any point P of L1(D+) does admit u + (P) as a possible singular direction
associated with a positive-a diagram 3)B. This Q)B is a spacetime representation

1 __

of the graph DB = 2 *\^£z^y§>^ 5 (where the subgraphs Db are shown inside
3 -*^ < r "~ 8 ^ 6

circles) in which the original internal lines 7, 8 of B have zero length. This represen-
tation coincides with 3 after the contraction of these two lines.
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By transferring the term E ^ E G C
 o n the left-hand side, multiplying (see

4 , 4

below) both sides on the right by ~znn + —(+)— and using two-particle
unitarity below the three-particle threshold, (4) is transformed (see [5] for details)
to the form:

4 m £ 4

=£+£ = H + H T
where

(6)

The sums ]£' in (6) denote the sums ]T of (3) from which the terms

and " " ^ v r r resPectively are removed.

The "multiplication" of bubble diagrams is here defined by the rule

For instance

represents a decomposition of the form (1) with
4

= H + H —r?i— . For any B occurring in Rn one

checks by direct inspection that there is no positive-a @J'B such that the correspond-
ing D' contracts to D. Thus if P lies on Lt(D+) but on no +a-Landau surface
L1(D+) with D'^fD then there can be no positive-a B'B with external momenta P.
Moreover, the directions defined by the configurations of external trajectories of
the possible negative-a <3)B consist solely of w_(p). Thus the assumption of mixed-a
cancellations allows one to conclude that w_(P) is the only possible singular
direction in the essential support of r at P, and that r at P is, correspondingly, the
boundary value of an analytic function from minus is directions.

In this particular case, this result implies, in turn, that / can be written locally
in the form:

where k = p1
Jrp2—p4, and a is a locally analytic function whose value at k2 = m2

is equal to:

a(Pi-.-P6)\k2=m2 = f2j(Pi>P2iP4,k)f2a(p3,k;p5,p6). (9)

i.e., the singularity of/3 3 is a pole and its residue is the product of the two scattering
functions associated with the two vertices of D.
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This set of results is called the pole-factorization theorem.
At a general point P of L(D + ) (which may lie on other surfaces L1(D

/+) there
is, by virtue of the same argument and the definition of L(D + ) (see Section 2) no
positive-a @}'B whose configuration of external trajectories correspond to (p, w+(/?)).
(B is here, as before, any one of the bubble diagrams involved in R.) If there is,
moreover, no negative-a $)B whose configuration of external trajectories is
specified by (p, u + ip))1 then the assumption of mixed-a cancellations allows one
to conclude that u + (P) does not belong to the essential support of f — d( = r).

Using Lemma 3 of Section 5, one can show that this requirement on the
negative-a diagrams <2)B actually holds at any point of L(D+). (This follows from
the same methods as those used in the proof of Proposition 4 in Section 5.)
Remarks. (1) This result that u + (p) does not belong to the essential support of
/ — d is sufficient to ensure the pole-factorization theorem [in the form (8), (9)],
provided P lies on no surface 1^(1) + ) with D' + D. This is because the essential
support of / is then known to contain at most the direction u + (p), and the essential
support of d contains only, as easily checked, the directions u + (p) and its opposite
direction w_(p). Hence for these P the essential support of r=f—d can contain
only the directions u + (p) and w_(p) and the result that it does not contain u+(p)
implies that it contains at most u_(p). Thus r is the minus is boundary value of an
analytic function.

(2) The methods of Appendix I allow one to obtain the following result on
L(D + ):

Lemma 1. All points of Ll(D+) that do not belong to L(D+) He in submanifolds of
LX(D+) of codimension 2 or more.

In particular, L^D^.) minus L(D + ) is contained in the set of points p={pk} of
L i(D+) such that two of the 4-momenta pk are equal or such that P1+P2—P4 lies

in the same plane as p3 and p4 or as p4 and p5 , or as p5 and p6, or as p1 and p3,
or as p2 and p3.

4. Analysis of Mixed-a Landau Diagrams

In view of the final remark (1) of Section 3, the mixed-a cancellation assumption
would be unnecessary in the proof of that section, i.e. macrocausality and unitarity
would directly provide the results at a point P of Ll(D + )— [j L^D'+X provided

D'±D
no mixed-a diagram 3)'B could have a configuration of external trajectories
corresponding to (p,u + {p)), where fB is, as before one of the bubble diagram
functions contributing to r, and provided P was not a u = 0 point of any fB that
contributes to r. [If P were such a u = 0 point then all directions, including u+(P\
should a priori have to be allowed for fB: see Section 1.] However, if Assumption 1
is accepted, then only u = 0 points of the second kind would have to be absent,
since this assumption asserts that the usual rules hold at the remaining u = 0
points.

1 The direction u + (p) would be obtained from a <3B with all lines negative if for instance P were a
point of L(D + ) such that Pi=P6,P2 = P4, and P3 = P5
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The term R is the sum of H anc f+tz • We first outline in Paragraphs (a),

(b), (c) typical examples of the problems that arise already for //, because of mixed-a
diagrams, if the mixed-a cancellation assumption is dropped, and we then give
in Paragraph (d) an example of a further difficulty arising from the multiplication

of/ /by = ^ F 4 .

(a) Consider the graph

which comes from the term B = (The circles indicate the

subgraphs associated with the two bubbles.)
For any given values P=(P1...P6) of the external momenta, there always

exists a nontrivial corresponding diagram <2)B such that A lies on B, and C and D
are at infinity. (Here A, B, C, D are the space-time representative points of a, b, c, d)
One can, in fact, always find on-mass-shell 4 momenta /cl5 k2, fe3 such that k1 = k2,
and k1 + k2 + k3 = px + p2 + p3 ( = p4 + p5 + p6)- I

n ^ B the trajectories of the two par-
ticles going from a to c and of the two particles going from d to b are taken parallel
to kx = fc2 and passing through A = B. The trajectories of the two lines going from
C to D must also be parallel to kl = k2, but since the vertices C, D are at infinity,
these two internal trajectories can be made noncoincident with the previous ones,
even though angular-momentum conservation is assumed.

In this diagram 2}'B all external trajectories pass through a common point, but
some of the internal trajectories do not pass through this point. Hence P is a u = 0
point of B and all directions can a priori be singular at P, according to the results
described in Section 1.

The assumption 1 on w=0 points presented in Section 2 will remove this
difficulty.

(b) Other difficulties occur for the same term —( + ]

Consider the graphs:

or

where the circles again indicate the subgraphs associated with the two bubbles.
Let us consider the space-time representations <2)B in which the line bd has zero
length, as do the two lines going from c to c', in the second case.

In such a representation, if it exists, the lines be and cd have parallel (and equal)
4-momenta (since B = D). Therefore the lines ac and 4 also have parallel (and equal)
4-momenta, and the line ab has the 4-momentum px +p2— PA-

Let us define a subset Q+ of L1(D + ) as follows. Being given any point
p = (Pi, ...,P6) of L(D + ) we choose a space-time point A, through which we draw
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two lines parallel, respectively, to p4 and px + p2—p4, and choose a point B on
the second one such that (AB)0 > 0. Then, by definition, p belongs to Q+ if and only
if it is possible to find two on-mass-shell 4-momenta ku k2(kl = kl = m2,k10>0,
k20>0) such that kx + k2 = p1+p2—p4-\-p3( = p5+p6) and such that the line pass-
ing through B and parallel to kx meets the line parallel to p4 and passing through
A at some point, called C, that is later in time than A or B ((AC)0 > 0, (BC)0 > 0).

Fig. 1

See Figure 1, where the 4-momentum of each line is indicated. The point C can
lie at infinity and hence the points where p4 equals p5 or p6 lie in Q+. If and only if
peQ+ then one can construct a space-time representation $)B whose external
trajectories correspond to (p, u + (p)):

B = D

In fact, the trajectories 1, 2, 4 resp. 3, 5, 6 pass through A, resp. through B = D,
and AB is directed along p : + p2 — p4 .

An elemetary analysis shows that Q+ is not composed of isolated, accidental,
points, but is a full open subset (of strictly positive measure) of L1(D + ).

(c) Paragraphs (a) and (b) have exhibited cases in which u+(p) is a possible
singular direction of a bubble diagram function fB included in r, either at all points
p of £i(D+) or at all points p of a full open subset of L1(D + ).

In a number of other cases, u + (p) appears as a possible singular direction of
certain bubble diagram functions, associated with various other mixed-a diagrams,
provided p belongs to certain lower dimensional subsets of L1(D + ).

Consider the instance for term —-®—\~~y~ a n d the graph:

It is easily checked that there is a space-time representation <3i'B whose external
trajectories correspond to (p, u + (p)) if one of the following conditions is satisfied:

(i) P3=Ps-
If we again denote by A, B, C the space-time representations of a, b. c, the

required 2B is obtained by putting A = C and AB along the direction of px +p 2 ~PA.-
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(The trajectories of 1, 2, 4 pass through A, those of 3, 5, 6 pass through £, since
P6 = Pi+P2-P4> a n d AB is oriented along the direction of p1+p2-P4-)

I

(ii) P4.,p6,Pi+P2~P4 lie in a common plane.
The space-time diagram 3)B is constructed by attributing the 4-momenta

—Pir a n d P6 t o the lines ac, ab, and be respectively:

(d) Besides situations which are the direct analogs of those of Paragraphs (a)
and (b), some of the situations of Paragraph (c) may lead, after multiplications

4
of H by —f̂ —̂ to cases where u + (p) is now a possible singular direction of some

and the graph

bubble diagram functions at all points of Ll(D + ).

Consider for instance the term

By putting A = C, B = D, AB along the direction of Pi+p2—P^ Ps=P3>
Pi=Pi+P2~P4-> o n e obtains, for any point p = (Pi...p6) °f At^+X a space-time
representation whose external trajectories correspond to (p,u + (p)):

4

2 ^ ^ ^ ^ > - 6
/B= D

3

This situation arises here from the possibility of choosing p8 = p3 in the sub-
diagram associated with B = t •. This corresponds to the situation (i)

of Paragraph (c), but now after multiplication by the small bubble the low dimen-
sional singularity surface of the original B is converted to a singularity surface that
fills



14 D. Iagolnitzer and H. P. Stapp

We conclude this section by collecting some results that will be used in
Section 5:

First, the methods of Appendix I allow one to conclude that the features
described in the above Paragraphs (b) and (c) are general:

Proposition 2. / / P is a point of L1{D+) that does not lie in Q+, then (P,u+(P))
cannot correspond to the configuration of external trajectories of any diagram Q)B

associated with one of the bubble diagram functions of h [as defined by Eq. (6)],
except possibly when P lies in the union of a finite number of submanifolds Nt of
Ly{D + ) whose codimension in L1(2) + ) is larger than one.

Examples of submanifolds Nt have been given in Paragraph (c) above. All
others are of the same type.

The proof of this result follows from a complete analysis of all contributing
mixed-a diagrams. Since a very large number of cases have to be systematically
considered, we shall omit the details here for the sake of conciseness (some details
are given in Appendix I).

The next result refers to a set of manifolds N't, which (in contrast to the
manifolds Nt) depend only on the variables p1,p2,P3->P4'{Pi=P2}> {P2=P?>}>
{Pi=P3}> {PI=PA.}> {P2=P*}, {P3=P4.h {P5=Pe} [or equivalents (p1+p2+p2>

- p 4 ) 2 = 4m2], {p3, p4 , P1+P2-P4K {Pu P3> Pi+Pi-P±)> {Pn P3> P1+P2-P4},
{(Ps + Pe - PA)2 = rn2,(P5+P6- pJo > 0} [or equivalent^ (px + p2 + p3 - 2p4)

2 = m2,
(Pi+P2 + P3~2p4)0>0]. (The notation {q, r, s} means the set of p such that the
three 4-vectors q, r, s lie in a common plane.)

Different choices of possibly smaller manifolds might still allow one to prove
this result. This would not, however, improve the final results of Section 5 (Proposi-
tion 5) and would complicate the analysis of mixed-a diagram in Lemmas 2, 3
below.

Lemma 2. All points p ofL1(D + ) that lie outside both Q + and u JVJ belong to L(D + ).

Proof It is sufficient to consider each possible diagram &)' with only + lines and
check that the configuration of its external trajectories cannot correspond to
(p5w + (p)) unless D=D. The condition p$vjN't prevents any of the 4-momenta in
the set (Pi5p2>P3) o r m t r i e s e t (P4>P5>P6) from being parallel. Thus, Theorem 1 of
Appendix I then shows than the only diagrams to be considered are diagrams with
one internal line and triangle diagrams.

First consider the case of one internal line. The graphs £>' to be considered are

and graphs in which 1,2 in b, or 5,6 in c are exchanged. These are treated similarly.
In Case a, the meeting point of trajectories 1,2,4 in any 2' whose configuration

of external trajectories is u + (p) has to be the representative point A of a. Since
trajectory 4 passes through this point, the 4-momentum of line ab is equal to p4

and hence p3 = p6 and p5=Pi +P2 — P4- Since trajectories 3, 5, 6 must meet, one
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concludes that the three 4-momenta p3, p4, px +p2—p4 lie in a common plane,
i.e. peN't.

In Case b, p1 +p4 because p<£N't. Hence the meeting point of 1, 2, 4 in any 3'
whose configuration of external trajectories is u + (p) has to be the representative
point A of a. Since trajectory 2 passes through this point, trajectories 1, 2, 3 pass
through a common point. This is excluded (since p5 =\=p6).

Finally in Case c, the meeting point of 1, 2, 4 in any 3' giving u + (p) has to be
the representative point B of b (since p2+p4). An argument analogous to that
given in Case a then shows that pi9p3, Pi ^p2—p4 would have to lie in a common
plane, i.e., peuN't.

Next consider the triangle diagram. The graphs D' to be considered are:

I 4
\ a c/

-5

and graphs in which 5, 6 or 1, 2 are exchanged, which are treated similarly.
Arguments similar to those given above show that in any representative 3'

giving u + (p\ p3, p4, P1+P2—P4 would have to lie in the same plane in Case a, p
would have to be in Q + in Case b, p l 5 p3, p1 +p2~P4 would lie in the same plane in
Case c. Finally in view of Lemma 3 of Appendix I, the meeting points A\ resp. B\
of 1, 2, 4, resp. 3, 5, 6 in any 3B giving u+(p) in Case d would have to lie at one of
the representative points A, B, C of a, fc, c. A' cannot be at A since 1, 2, 3 would
meet. It cannot be at C since (CB)0 <0, (CA)0 <0. If it were at J5, then arguments
similar to those given above show that p1 and p2 would be equal to p4 (B

f would
have to be at C, hence, p x + p2 — p4 = p4).

Lemma 3. Let FB be a bubble diagram function of the form £ iiJ'Cpczp^ 5 or

.5 , where the small bubbles may be + or —, and let 3B be any

corresponding diagram.
If P is a point of LX(D+) that does not lie in Q+ or in uiVJ and if the topological

4

structure of the subdiagram 3b associated with 3 i E is different from -

then the configuration of external trajectories of 3B cannot correspond to (P, u + (P)).

Proof Since p5=¥p6 and (p5+p6)
2<9m2 the subdiagrams associated with the

bubbles m C C have necessarily a single vertex. It is therefore sufficient to prove
Lemma 3 in the case of a single bubble Z O = . In fact any diagram 3B associated

with the term —(+)—•ry-ry- is a space-time representation of the graph:

where —( )— 7 stands for a subgraph Db associated with 3 3 E .
^ — '* 8
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Since p5=¥p6, the lines 9, 10 are necessarily zero lines in this representation,
and hence do not change the arguments.

If we consider the term — ( 4 j Q - then any corresponding graph DB has
5 • For the same reason as above, we need not consider thethe form

case when 7,8 originate on the same vertex of the subgraph Db associated with
(This case is covered by Lemma 2). Finally, graphs DB in which 1, 2, 3 end at a
common vertex do not have to be considered (Lemma 1 of Appendix I). In view
of Theorem 1 of Appendix I the only subgraphs Db to be considered are graphs
with one internal line or triangle graphs. (The condition p$vN't prevents two of
the 4-momenta p l 5 p2, p3 resp. p4, p5, p6 from being equal.)

Hence, the only graphs D'B that need to be considered are of the form:

or

where the circles indicate the subgraphs Db associated with HjyE , a n d where all
ways of attributing 1,2,3 to the initial external lines are a priori possible. Moreover,
we have to consider here only cases in which line 7 in any representation 2iB is
a negative line. If line 7 were a positive line, line 8 would also have to be a positive
line. For all internal lines positive the fact that the configuration of external
trajectories cannot correspond to u + (p) was shown in the proof of Lemma 2, for
the case of the triangle. And this result follows from Theorem 1 of Appendix I
in the case of the double triangle. On the other hand, if line 7 were a zero line, it
would follow that two of the 4-momenta p1,p2, P3 would be equal.

In the triangle case, we are therefore left with the following cases:
3 4 2 . 4

I -5

-6

(and the graph obtained from b by exchanging 1, 2).
In case a, the meeting points A', B\ of 1, 2, 4 and 3, 5, 6 in any Q)B giving u + (p)

must be the representative points A, B of a, b. Hence by arguments similar to those
used in the proof of Lemma 2, p3 , p4 , px +P2—P4 would have to lie in a common
plane. In Case b, one cannot get u + (p) since the meeting points C, B of 2, 4 and
5, 6 are in the wrong time order ((CB)o<0).

In the double triangle case, the possible graphs are:

(and the graph obtained from b by exchanging 1, 2).
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In any corresponding Q)B, the line cb has to be a negative or zero line, in view
of Lemma 4 of Appendix I. In Case a, the line ad would have to be parallel to p4

in any Sf'B giving u+(p) since 1, 2, 4 meet. Hence peQ+. In Case b, it follows from
Lemma 3 of Appendix I that the meeting point A' of 1, 2,4 in any &)B giving u+(p)
should be one of the representative points A, C, D of a, c, d, the meeting point of
3, 5, 6 being necessarily the representative point B of b.

But A' cannot be at D or at C since (DB)o<0. It cannot be at A since then
1, 2, 3 could pass through a common point (Lemma 1 of Appendix I). The proof
is therefore completed.

5. New Proof of the Pole-Factorization Theorem

We prove in this section the following result:

Theorem. Being given any point P of L(D+\ macrocausality, unitarity and Assump-
tions 1 and 2 of Section 2 imply that the essential support of f—d at P does not
contain u + (P).

The main steps of the proof are outlined in Subsection (a). Two preliminary
mathematical results are then described in Subsection (b) and details on the proofs
are given in Subsection (c).

(a) Main Steps of the Proof

The result is obtained by the following steps:
(i) Assumption 1 eliminates the u = 0 problems.

(ii) Proposition 2 of Section 4 then asserts that if P is a point of LX(D+) that
does not lie in O+ or in u JVr (where the manifolds Nt are those involved in the
statement of Proposition 2), then u + (P) is not a singular direction of h at P.

(iii) The above result and the fact that H is equal also to

—4

3

[see Eqs. (4) and (5)] allows one to prove, by using Assumption 2 of Section 2:

Proposition 3. / / P is a point o/L1(Z)+) that does not lie in Q+ or in the union of the
manifolds N't introduced in Section 4 (see Lemma 2 and 3), then u + (P) is not a
singular direction of h at P.

(iv) The fact that the manifolds N't, and also Q+ are defined only in terms of
Pi? P2> P3> P4> allows one to avoid the problems of Paragraph (d) of Section 4,
and to prove, with the aid of Lemma 3 of Section 4, that the "multiplication" of

H by — 0 — does not modify this result; i.e., to prove:

Proposition 4. / / P is a point of L1(D+) that lies outside Q+ and uiV|, then u+(P)
is not a singular direction of r at P.

(v) The above result and the fact that R is equal also to

3__EH:

allows one to prove, by using again Assumption 2 of Section 2:
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Proposition 5. u+(p) is not a singular direction of r at any point P of L(D +). Q.E.D.
An alternative proof of this last step not depending on Assumption 2 will

also be given.

Remark. For reasons which will become clear in the proof, this result is certainly
not expected to hold for h itself: u + (p) is expected to be a singular directions of h
at least at the points of Q +.

(b) Preliminary Mathematical Results

The following two mathematical results will be used.

Theorem 1. Let Qbea real domain of a real analytic manifold and let Lbea connected
real analytic submanifold of Q of codimension 1. Let fl be a function that has, in the
complexification JM of \M,a schlicht domain of holomorphy that contains all points
of Q outside L, and that contains one point p0 ofQ in L. Suppose for any point p of
L in Q there is (i) a system of local real analytic coordinates (z = zl9..., z3n_4) at p,
(ii) a convex complex neighborhood o in C3""4 such that L is represented in o by
{z1 = 0, z real}, and (iii) an open curve c in (C1 that starts at the origin such that f1

can be analytically continued (single valuedly) into the set onlz^^ec}. Then fx

is analytic at all points of Q.

Proof Let p be an arbitrary point of L in Q. Then p is connected to p0 by a compact
curve in LnQ. This curve is covered by a finite subset of the neighborhoods w
of the theorem. One of these neighborhoods, a)0, contains zo = z(po). Let z be any
other fixed real point in co0 with z x =0. By a nonsingular linear change of co-
ordinates one may obtain a new real local coordinate system, with components
indicated by primes, such that z'1=z1, z'(P0) lies at the origin (0, ...,0), and
zi=(0,05 . . . , 1). The original neighborhoods o are required to be convex. Thus
the straight line between z'(p0) and z' lies in the image CD'O of a)0. Hence for some
neighborhood /? (in C1) of the line from 0 to 1 the discd(A) = {z';z'1 = A,z'2 = 0,...,
z3n_5 = O,z3n_4e/?} lies in m'o for /l = 0. Thus for some sufficiently small initial
segment d of the curve c of the theorem the discd'fzi) must lie in a>'0 for zxec'. By
the assumption of the theorem these discs d'(zi)> ^ e c ' lie in the domain of holo-
morphy. Thus the limiting disc <f (0) must also lie in the domain of holomorphy,
by virtue of Bremermann's continuity theorem [16]. Therefore, the point z, which
was an arbitrary point of Lncoo, lies in the domain of holomorphy. Using the
same argument for the rest of the finite number of neighborhoods that connect
p to p0 one concludes that any p in L n Q lies in the domain of holomorphy. Thus,
by virtue of the assumption of the theorem that the domain of holomorphy
contains Q — L, we conclude that any p in Q lies in the domain of holomorphy
off,. Q.E.D.

Theorems 2 and 2' below are slight adaptations of the structure theorem. They
cover bubble diagram functions GB that are more general than those introduced
in Section 1. In these functions GB the bubbles b represent no longer simply the
momentum-space kernels Sc

IbJb or (Sc
IbJb)~ but rather kernels Gb of bounded

operators, defined again on the space of all real on-mass-shell initial and final
4-momenta associated with the sets Ib, Jb of incoming and outgoing particles of b,
and satisfying energy-momentum conservation (Gb = gbxd4( ]T pt— £ \

\
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A diagram SB is now in general a set in space-time of oriented external and
internal lines associated with the original external and internal lines of B. Each
line has, as before, a given on-mass-shell 4-momentum to which it must be parallel.
Finally the configuration of all lines associated with a given bubble b must cor-
respond to a point of the closed cone with apex at the origin in T*bJib containing
the directions of the essential support of gb at pb (pb is the set of external 4-momenta
of b).

Au = 0 point of B is such that there exists an SB all of whose external lines pass
through a common point, while at least one internal line does not pass through
this point.

We then state:

Theorem 2. The only possible directions in the essential support of gB at a non u = 0
point P are those corresponding to the configurations of external trajectories of
some SB. (P is here a set of external 4-momenta.)

The proof is given in [9] and is in fact the first step of the proof of the structure
theorem for the usual bubble diagram functions. The latter theorem arises from
the supplementary information, coming from macrocausality, on the essential
support of each fb when b is a usual bubble.

Theorem 2'. If all the directions in the essential support of each gb are those cor-
responding to a certain class of diagrams $)b then the singular directions of GB are
constructed in the same way as in the structure theorem of Section 1 except that the
subdiagrams @b occurring in the diagrams Q)B are now allowed to be only those of
the admitted class at b.

(c) Proof of Propositions 3, 4, 5

Proof of Proposition 3. Let Q be a real open set of Ji that contains all points of
L1(D+) except those of Q+ and of u N't. For simplicity, Q will be chosen such that
if it contains p = (pi, p2 , p3 ; />4, p5,p6), then it contains all pf = (pi9 p2, p3;p4, PsiPe)
(where p'5 +p'6=p5 +Pe)- [This property is obviously satisfied for the set of p that
lie inside L1(D + ) but outside Q+ and uiVJ.]

The set Q contains no point of L(D+) minus LX(D+) and no point lying on
both LiOD-f) and on the closure of an L^D^) where D'+ and is related to D+ but
unequal to D +. (These D+ can only be pole diagrams D+ with self-energy additions,
but the latter are excluded by the conditions on Q that px +p 2 and p5 4=p6.) Thus
the conditions of Proposition 1 are met, and / has a decomposition fx +f2 of the
kind specified in that proposition.

Using the fact that H =

Section 3), we now show that h can be written in Q as a sum of two distributions
/z1? h2, with the following properties:

(i) h1 is the boundary value in Q of an analytic function h1 that is analytic
at all points of Q outside L^D^ and satisfies the same property as / 2 in Proposition
1: The only possible direction in the essential support of h1 at a point p of L1{D +)
in Q is u + (p).
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(ii) Being given any point p of L1(D+) in Q, the essential support of h2 at p
does not contain u+(p).

The fact that the first term of h, namely f has a decomposition as a sum of two
terms fx, f2 which satisfy respectively properties (i) and (ii) follows from Proposi-
tion 1 of Section 2 and Lemma 2 of Section 4. This latter lemma implies that all
points of L^D^ in Q belong to L(D+). This result and (ii) of Proposition 1 yield
(ii) above. It also means that the hypotheses of Assumption 2 (no sprouts) is
satisfied. This Assumption 2 will be used presently.

Next, let g denote the term E J + J 3 1 > after factorization of S4(YJPt — Y,Pj)-
The first factor is the scattering function. Thus the above mentioned decomposition
of / induces a corresponding decomposition of g as a sum of two terms gl9 g2-
The term g2 satisfies property (ii) in view of Lemma 3 of Section 4, and of Theorem 2'
of subsection (b).

The term g1 is equal to:

> P 3 ; P4, P?> Ps)/2,2(P7> P8 i

All points (Pi5P2?P3;P49P7?Ps) in the integration domain belong to (2 if
(PIJ •••?P6) does. Since the analyticity properties of/ i are expressed only in terms
of the variables (Pi,p2,P3,P4.), and since the integration domain is compact, g1

still satisfies property (i).

Finally, let d! denote the term ^ N 0 — after factorization of54(YJpi — YJPj)-

By decomposing 5 {k2 —m2), it can obviously be decomposed as a sum of terms
d[, d'2 which respectively satisfy properties (i) and (ii).

Hence, the announced decomposition of h follows, with h1 = f1+g1+d'u

Now consider a point P of LX(D+) that lies outside Q+ and outside the union
uNt of the submanifolds Nt of Proposition 2. Proposition 2 ensures that h1 is
analytic at P. Then Assumption 2 of Section 2 and Theorem 1 of Subsection (b)
above, ensure that h± (and h^ is analytic at all points p of £i(D+) outside Q+

and yjN't.

This fact, combined with property (ii) of h2, completes the proof of Proposi-
tion 3.

Proof of Proposition 4. It is convenient to use again the fact that
4 4

^ ^ . From this expression, it is

known (structure theorem) that the only possible directions in the essential
support of h are those corresponding to configurations of external trajectories

_„-, , 4 ' V
of diagrams Q)B whose topological structure is ̂ J 3 , ~Z\J>< or 2

where ^ ^ ; denotes a subgraph Db associated w i t h 3 j £ • On the other hand,
Proposition 3, just proved, ensures that u + (p) is excluded from the essential
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support of ft at all points p of L(D + ) that lie outside Q+ and u N't. Hence, in view of
Lemmas 2 and 3 of Section 4, and Theorem 2' of Subsection (b) the part of the

essential support of h that corresponds to the diagram

absent at these points p.
44

Consider now the term R = H —(+V- = r ' x<^4QLPi~I]P/) w h e r e by
definition r' is given by the formula:

r'(pu...9p6)=$h(pup2,p3;p4.,p1,ps)f2t2(pl9p8;p59p6)

As already noticed, all points (pl5 . . .;p4,p7?p8) that satisfy
must lie in Li(D+) but outside Q+ and u JVJ, if (p1?..., p6) has this property. Thus
the required property of r is a direct consequence of Lemma 3 and Theorem 2',
plus the fact that u + (p) cannot be obtained from a diagram whose topological

structure is

Proof of Proposition 5. Now let Q be a real domain of J( containing L(D + \ but
no other point of L(D+). This domain Q includes no points of L(D+) where px=p2

or p5=p6. Consequently it satisfies the conditions of Proposition 1.
-4

Using the fact that R= — ( + ) — — " " " ^ ^ 3 — and Proposition 1,

one sees that r can be decomposed in Q as a sum of two terms ri5 r2, that satisfy
respectively the same properties as those mentioned for hx and h2 in the proof of
Proposition 3, but in a domain Q which is now much larger: it contains all points
of Q+ and u N't which lie in L(D + ). (This is not expected for h because of the term

In view of Proposition 4, rx is moreover analytic at all points of L(D+) apart
from those of Q+ and u N't. Thus Assumption 2 of Section 2 and Theorem 1 of
Subsection (b) (together with Lemma 1 stated at the end of Section 3) ensures that
r1 is analytic at all points of L(D + ).

This fact, combined with the essential support property of r2, completes the
proof of Proposition 5.

Alternative Proof To conclude the section we present also an alternative proof of
Proposition 5 that does not rely on Assumption 2, and that allows one to prove
the result at all points of L(D+) apart possibly from the points of u N[ and of u N",
where the submanifolds iV" are defined in a way similar to the manifolds N't, by
exchanging p3 and p4, pl and p5 and p2 and p6.

The starting point of the analysis that has been carried out above is the equa-
tion SS~1 = 1, which leads to (3) and to (5). If one starts instead from the equation
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S~1S= 1, the analogous analysis allows one to write

where R_ = ^— "*" ^ " - and H _ is an appropriate sum of bubble diagram
functions (which is different from H). The same methods and assumptions now
lead to:

Proposition 4'. u + (p) is not a singular direction of r_ at p if p lies in L(D+) but does
not lie in Q_ or in u JV".

The set Q_ is defined in a way similar to Q+, but with an exchange of the roles
of particles 1, 2 and 5, 6, and of particles 4 and 3. In particular, being given
p = (Pi, ...,p6) in

 A ( ^ + ) J
 w e choose a point D in space-time through which we

draw two lines respectively parallel to p3 and to p5+p6—P3( = Pi+P2~P4.X a n d
choose a point C on the second one, such that (CD)0 > 0.

Then peQ_ if one can find two on-mass-shell 4-momenta k'l9 k'2 such that
k/

1 + k/2=p5+p6 — p3-\-p4. = p1+p2 and such that the line passing through C and
parallel to k\ meets the line passing through D and parallel to p3 at a point B
earlier in time than C and D.

We then notice that

since they are both equal to {^y— ~~ o _ _ S E Z • Therefore u+(P) is

not a singular direction of r = r_ at any point P of L(D + ) except possibly if P lies
in u N't or in u N" or in the intersection of Q+ and Q_.

The following lemma provides the announced result.

Lemma. Q+ n Q_ is empty apart possibly from points p that lie in uJVJoru JV".
This lemma is a consequence of the definitions of Q + , Q_ and of Theorem 1

of Appendix I.

Remark. It is important to note that Proposition 5 does not hold for h itself. The
failure of this property for h arises in the first proof from the fact that H, in
its expression used in the proof of Proposition 3, contains the term z£+)zizE. > a n ^
in the second proof from the fact that H^H_ (whereas R = R_).

As a matter of fact, u+(P) is certainly expected to be a singular direction of h
at points P of Q+, even if the discontinuity formulae are assumed. These singula-
rities will cancel in the unitarity equation H^?}^ = H +

with those of the term 3 + J 3 1 > a s easily checked, if the discontinuity formulae
are assumed to hold (for graphs with one internal line and for triangle graphs).
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Appendix I: Treatment of Mixed-a Diagrams

We outline below the main tools used in the analysis described in Section 4 and 5
of mixed-a Landau diagrams.

Theorem 1. The only +a-Landau surfaces occurring in the region 9m2<s<16m2

(s = (p1+p2+p3)
2) and away from points p such that two initial or two final 4-

momenta are equal, are those associated with graphs with only one internal line, or
with triangle graphs.

This theorem is proved in Appendix III.

Lemma 1. Let p = {pu -..,p6) be a point of L1(D + ). Consider a space-time diagram
Q)B whose external lines carry momenta p. Thus, Pi +p 2 and p5+p6. If the trajec-
tories of the initial particles 1, 2, 3, or of the final particles 4, 5, 6 pass through a
common point, then the configuration of external trajectories cannot correspond
to u+(p).
Proof We prove this result in the case where 1, 2, 3 meet at a common point A.
In any Q)B giving u+(p), the trajectory of 3 would have to pass through the meeting
point B of 5, 6 and hence be directed along the direction of p1+p2 — p4_, i.e., in
the equal-mass case Pi+p2—p4 = P3, or 2p3=p5H-p6. This is not possible since
Ps+Pe-

Lemma 2. Let p'^{p'i,p'2\p'3,p'^) be a point of Ji2t2 such that p'i^p'2. In any

space-time diagram ^ ^ > < C ^ tne projection of any one of the trajectories

onto the plane determined by any two other nonparallel trajectories must lie in the
doublecone VA limited by these other two and composed of the points that are time-
like with respect to A. If the projection lies on the boundary of VA, then the trajectory
coincides with this projection. If all trajectories lie in a common plane then each
final trajectory has to coincide with one of the initial trajectories.

An example is given in Figure 2, in which the heavy dotted lines represent the
projections of the trajectories 3', 4' in the (V, 2') plane

Space

Time

Fig. 2

This result follows from simple kinematical arguments.

Lemma 3. Let DB be a graph containing a part of the form

• /
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where each index i', i", i'" represents one of the particles 1, 2, 4. Let p be such that
Pi^Pi-

Then in any space-time representation $)B whose representative points A, B, C
of a, b, c are different from each other and are not at infinity, and are such that the
trajectories i!, i", i'" meet at common point A', this point A' has to coincide with A, or
B, or C". The analogous result holds with (1, 2; 4) replaced by (5, 6; 3).
Proof We consider the case where each index i', i", i'" represents one of the particles
1, 2, 4, and assume initially that A, B, C are not lined up.

Lemma 2, applied respectively to trajectories 1, 2, 4 at A, B, C ensures that the
projection of A! in the plane ABC lies in VAnVBnVc where VA, VB, Vc are the
respective doublecones limited by the lines AB, AC or AB, BC, or AC, BC. An
example is shown in Figure 3 in the particular case {AB)0 >0, (AC)0 >0, (BC)0 >0.

Fig. 3

The intersection is always limited to a certain part of the boundary of these
cones (see Fig. 3), and a more extensive use of the last part of Lemma 2 provides
the announced result.

The proof when A, B, C are lined up (but all different from each other) follows
easily from the fact that p13=p2>

Lemma 4. Let DB be a graph containing a part of the form:

/

where each index i\ i", i'" represents one of the initial particles /, 2,3. Then there is no
representation Q)B of this graph (in which the lines ab, be, bd are positive lines) in
the region 9m2 < s < 16m2, if p[ =j= p" and p'j 4= p'j'.

The same result holds for a graph containing a part of the form

i' f
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where each index f, / " , f" represents one of the final particles 3, 5, 6, if p'}=¥p'f
d '

Proof We prove here the first part.

In any Q)B of the required form the line ac has to be a positive line [since
(AB)o>09(BC)o>0~] and thus the line cd must be a negative line or a zero line,
in view of Theorem 1. (The needed slight refinement of Theorem 1 also is proved
in Appendix III.)

Let A, B, C, D, be the representative points of a, b, c, d. We know that AC is
not parallel to AB (since p[^p"\ On the other hand, Lemma 2 ensures that the
projection of D in the plane ABC must lie in VB n Vc where VB and Vc are the
double-cones limited respectively by the lines BC, AB and AC, BC. This fact,
together with the above-mentioned sign conditions, implies that D must lie in the
interior of the segment BC, or possibly at C. Hence BC and BD have to be parallel,
and parallel also to AB, which is contrary to the fact that AB and AC are not
parallel.

Examples of Applications. We now show how these results can be applied to the
study of the bubble diagram functions involved in H. We exclude points p such
that two initial, or two final, 4-momenta are equal.

First, it is not difficult to check that if any corresponding graph DB contains
two internal lines that start from the same vertex vin and end at the same vertex vf

then the space-time representatives Vin and Vf of vin and vf must coincide: other-
wise the 4-momenta of these lines would have to be equal and one checks that this
would imply in turn the equality of some of the initial, or of some of the final
4-momenta. On the other hand, if Vin= Vf, these two internal lines are not seen
in the space-time representation and it is sufficient to consider the diagram
obtained after contraction of these lines (i.e. by identifying vin and vf and then
removing these lines).

The only graphs we need to consider then, in view of Theorem 1, Lemma I,
and the form of H [see Eq. (6) of Section 3] are of the form:

with moreover certain specifications of signs for certain lines and different possible
specifications of the external lines.

In Cases a, b, d, the detailed analysis shows that certain of the corresponding
diagram Q)B can give rise to u + (p), but only when p belongs to lower dimensional
subsets of Li(D + ). These subsets correspond to cases when three or more 4-
momenta, obtained by linear combinations of pl9..., p6, lie in a common plane, or
when some initial 4-momenta are parallel to some final 4-momenta.
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Similar conclusions are obtained in Case c, apart from the graph

'
>

already mentioned, which gives rise to u + (p) on Q +

(when the representatives B, D of b, d coincide in space-time).
An example of an application of Lemma 3 concerns the graph:

which occurs for instance in — { + ) {~)— . Let us consider, for example,

space-time representations S)B in which the representatives A, B, C of a, b, c are
all different. Then Lemma 3 ensures that if <3)B gives u+(p\ then the point A' where
the trajectories 1, 2, 4 meet is A, B, or C. On the other hand, the trajectories 3, 5, 6
must meet at the representative D of d(p5 +p6). A' cannot be at C since (CD)0 <0.
It cannot be at A, by virtue of Lemma 1, since 1, 2, 3 would meet there.

Finally if A' = J3, the trajectory of particle 4 must be parallel to BC and therefore
CD is parallel to AC. The representation, in view of the sign conditions has there-
fore the form:

Space

•Time

This is not possible (Lemma 2) unless B lies on AC, and hence p1=p3.
Examples of applications of Lemma 4 are the diagrams of the form d, above,

that occur in — C j y ~ ~ v Z ^ — ' * *n s u c ^ diagrams the right-hand or left-hand
triangle has to be a subdiagram associated with the bubble + or —, and therefore
either all lines ab, be, ac are positive lines, or all lines ce, ed, cd are negative lines.
Both cases are treated similarly and we consider here the case:

/b

Lemma 4 ensures that the line bd cannot be a positive line in any space-time
representation, if the initial 4-momenta are not parallel. If it is a negative or zero
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line then the line cd has to be a negative line [since (£C)0>0, (CD)O^O]. The
second part of Lemma 4 allows one to exclude the case when bd is a negative line
(if the final 4-momenta are not parallel), and the problem is then reduced to a
study of the situation in which bd is a zero line. (We shall not reproduce here this
study, which obliges one to consider a number of different cases depending on the
specification of the external lines.)

Apart from the type of arguments already described, it is in some cases useful
to use an obvious extension of Lemma 2 that specifies, being given the projection
plane defined two initial trajectories, the possible relative sides, of this plane on
which the two final trajectories can be found.

Consider for instance the graph:
5

which occurs for instance in 3 \ 3 / ~ > an(^ a sPace-time representation $)B

corresponding to u + (p). In the BCD plane, we know from Lemma 2 itself that the
projection of the point A' where 2, 4 meet (with 1) must be in the triangle BCD
(Vc n VD) [region (A1) of Fig. 3], that the projection of the point B' where 5,6 (with 3)
meet must lie in the shaded region (Br) of Figure 3'

Fig. 3;

i.e., in the part of VB n VD that does not lie earlier in time than the triangle BCD,
over which A' lies, and finally that the projection of the representative A of a must
lie in the shaded region (A), i.e., in the part of VB n Vc which is earlier in time than
jBorC.

Suppose that A is not in the plane BCD but is on one side of the plane, which
we call "up", by convention. At B, energy-momentum conservation implies that
trajectory 5 must point down and hence that B' is down. At C, on the other hand,
the same argument shows that trajectory 2 comes from down and hence A1 is
down. At D, trajectory 4 must point down (in order to meet A') and trajectory
6 must therefore point up. But then it cannot pass through B' which is down
(see above). Thus we may conclude that A must be in the plane BCD, and hence
trajectories 2 and 5 must also lie in this plane. Thus A1 and B' must also lie in the
plane. But then trajectories 1 and 3 must also lie in this same plane, since A'=t=JET.
And trajectories 4 and 6 must lie in this same plane, for the same reason. Thus p
lies inuiV|.
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Appendix II: Comparison to Treatment of [12]

The proof of the pole factorization theorem, as given in [12], consists first of a
check of internal consistency, and then a claim of an actual derivation of the result
from "fe" assumptions. Our purpose here is to see to what extent the method used
in [12] could provide a simplification of, or improvement upon, the work presented
in Sections 2 to 5.

[12] starts from Equation (3) written in the form:

It is then assumed that the scattering function / does have a minus is analytic
continuation around L(D + \ and the minus is boundary value is denoted f{i\
We shall put

It is, moreover, claimed (without proof) that h is the minus is boundary value of an
analytic function in the neighborhood of any point p of L(D+).

Equation (1) is first considered on the nonphysical side of L(D + )(k2<m2)
where the last term vanishes. Then by taking the minus is continuations of all
terms around L(D+) and (minus is) boundary values, one obtains, according
to [12]:

where H is unchanged in view of the claim on h.
A comparison of (1) and (2) gives:

- 4
and one obtains, after "multiplication" on the right by zmz + m©n the
usual discontinuity formula, namely:

As it stands, this proof is certainly not correct. In order to get a proof, one
should first check the above mentioned property of h, i.e., that w_(p) is the only
singular direction of h at any point p of L(D+). We know from our present work
that this is not expected to be always true: in fact u+(p) is definitely expected to
be a singular direction of h at every point p of the set Q+ (See the remark at the
end of Section 5.).

A correct analysis of this problem would require work similar to that presented
here, and even more. [We only had to prove that u+(p) was not a singular direction,
under appropriate conditions on p.~]

One would for instance have to prove that the result holds at appropriate
points p such that p^=p5, since such points always occur in the integration
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. [This step is needed to derive (4) from (3):domain after multiplication by

see above.]
To summarize, this type of approach requires additional assumptions, such

as the assumption on the existence of a minus is analytic continuation of f, which
is, in the present work, a corollary of the discontinuity formula. And in order to
get an actual proof, it leads both to the same problems as those treated in the
present work, and moreover to some apparently more difficult ones.

Appendix III: Three Equal-Mass Particles Can Collide Only Thrice

It has been proved before in the literature that equal-mass particles below the
four-particle threshold can collide at most three times. That is, there is no space-
time diagram Q) of the form

c

unless AB lies on AC and DC lies on BD.
This result plays an important role in our arguments. Since we have been

unable to locate in the literature the original proof of this result, we give one
here.

Note first that if AB lies on AC then DC lies on BD, by equal-mass kinematics.
So we can assume that AB does not lie on AC, and that the triangle ABC is not
degenerate. The question is whether line CD can emerge from C and meet BD
emerging from B. To see that this is impossible we go to the brick-wall frame of
reaction B. Taking A, J5, and C to lie in the x, t plane one has, in the brick-wall
f r ame p°AB = po

BC, a n d P A B = - P B C = PBD<Q- S ince {p°BD}2-(px
BD)2-(py

BD)2-(pz
BD)2

= m2, and p = mv, one condition on the point £> = (x, y, z, t\ is, with B = (0,0,0,0),

t2 = ax2 + r2, x<0, £<0
where r2 = y2 + z2 and a=l+m2/(pAB)2. For any fixed t this curve is represented
by the outer left-half ellipse in Figure 3a. The projection of D onto the plane of
ABC must lie in the shaded region of Figure 3b.

The condition on D coming from line CD is represented by the inner ellipse
in Figure 3a, where intersections of these two ellipses with the x axis have the
arrangement indicated there.

Fig. 3

• • X
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As t grows from t0 = BC° the inner ellipse grows from a point on the x axis
at x = t/]/oc. It can never intersect the two points on the outer ellipse at x = 0,
since these points represent particles traveling at the velocity of light away from
point B, and the particles from C start later. Therefore, by the properties of ellipses
the inner ellipse can never intersect the outer left-half ellipse. Thus there can be
no meeting point D. Q.E.D.
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