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Abstract. We extend the classical theory of Dirichlet forms and associated
Markov semigroups to the case of a C*-algebra with a trace. Semigroups of
completely positive maps are characterized by completely positive Dirichlet
forms.

1. Introduction

A powerful method for the generation of Markov processes in the commutative
case is given by the classical theory of Dirichlet forms and spaces. This theory has its
roots in classical potential theory and has been developed particularly since the
fundamental work of Beurling and Deny [6]. The theory is closely related with
Dynkin's and Hunt's theory of stong Markov processes and has been greatly
developed recently in its symmetric L2-version particularly by Fukushima and
Silverstein, see [20, 21, 30, 31] and [2-4].

Since the theory of Dirichlet forms in the commutative case deals with forms
which are monotone with respect to a class of contractions applied to certain
subalgebras of continuous functions, it is natural to expect a non commutative
extension of the theory to the case of C*-algebras. It is the purpose of this paper to
show that, at least in the case of C*-algebras with a trace, this idea can actually be
carried through. The outcome are Markov semigroups, i.e. positivity preserving
semigroups of maps, and completely Markov semigroups, i.e. semigroup of
completely positive maps. Positive and completely positive maps of C*-algebras
have been the object of many investigations, standard references for foundational
work are e.g. [5, 8, 32, 33]. More recently a considerable renewed interest in
completely positive maps has arisen particularly in connection with certain
foundational problems of non equilibrium statistical mechanics. We allude here to
the large body of work on the so called quantum dynamical semigroups and
quantum stochastic process, see e.g. [1, 7, 9, 10, 12-19, 22-28]. Notably a
classification of norm continuous completely positive map on the C*-algebra J*(J^)
bounded operators on a Hubert space has been achieved, [28], see also [22]. For
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other work concerned with the construction and classification of completely
positive maps see e.g. [7, 9, 10, 12-17, 19, 26]. Markov structures associated with
free Fermi fields are studied in [29, 34]. In this paper we show in particular that the
method of Dirichlet forms permits to obtain a large class of generators of positive
and of completely positive maps, which goes beyond the classes obtained previously
by other means.

We now summarize shortly the content of the paper. In Section 2 we introduce
the Dirichlet forms on a C*-algebra A with a lower semicontinuous trace τ, as
positive quadratic forms E on the hermitian part of L2(A, τ) which have a certain
contraction property. We also introduce symmetric Markov semigroups as strong
contraction semigroups Φf( ) on L2(A,τ), symmetric with respect to the scalar
product given by τ and such that 0 ̂  x ̂  1 implies 0 ̂  Φt(x) ̂  1. We show that the
positive quadratic form given by the infinitesimal generator of a symmetric Markov
semigroup Φt on L2(A,τ) is a Dirichlet form E. Conversely we show that the
symmetric contraction semigroup generated on L2(A, τ) by a Dirichlet form is a
Markov semigroup.

In Section 3 we introduce the concept of a completely Markov semigroup, as a
Markov semigroup such that Φt is completely positive for all t ̂  0. We prove that Φt

is a completely Markov semigroup on L2(A, τ) if and only if there is a weight ρ on the
algebraic tensor product A® A, with the square integrable elements, such that
τ(Φt(x)y*) = Q(x®y)9 for all xeA9 ye A. We call a sesquilinear form E on L2(A,τ) a

completely Dirichlet form if £ E(xij9 xtj) is a Dirichlet form on the hermitian part of
ij

L2(A®Mn, τ®τn), where Mn are the n x n matrices and τn the corresponding trace,
for all n. We show that a semigroup Φt is completely Markov if and only if the
corresponding Dirichlet form E is completely Dirichlet. A criterium for this is that E
be the monotone upwards limit of a sequence of positive bounded forms of the form
w(x2) + ρ((x<g)l — l(χ)x)2), where w and ρ are weights.

In Section 4 we give another characterization of Dirichlet forms as forms that
contract under so called normal contractions, which are the non commutative
version of the classical concept of normal contraction. This characterization is then
used to construct a class of completely Dirichlet forms and thus of completely
Markov (in particular : completely positive) semigroups, for the case of a C*-
algebra contained in the algebra @}(3P] of all bounded operators on some Hubert
space J f . The class is of the type

where M is an arbitrary positive self-adjoint operator (not necessarily bounded) on
J#* and mt are operators in ^(jtf ) such that

2. Dirichlet Forms and Markov Semigroups

Let A be a C*-algebra with a lower semicontinuous faithful trace τ (for the
definition see e.g. [11], Section 6.1). Let Aτ = {xeA, τ(x*x)< oo}, then Aτ is a two
sided ideal of A and we shall assume that Aτ is dense in A (which, together with the
lower semicontinuity implies semifiniteness [1 1], 6. 1.3). The trace τ, first defined for
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positive elements of A, is extended by linearity to the (non closed) linear span of
A^Aτ, where the value is finite (and complex). Aτ with the sesquilinear form τ(y*x) is
a pre-Hilbert space and its completion will be denoted by L2(A, τ). We then have
that Aτ = AπL2(A,τ) is dense in A as well as in L2(A,τ). Since τ(y*x) = τ(yx*)~
(where-means complex conjugation) we see that x-»x* extends by continuity to an
antiisometry of L2(A,τ). For any aeA we define x-*ax, xeAτ, and since τ(x*a*ax)
^ || a\\ 2τ(x*x) we see that the mapping x-»αx extends by continuity to an element in
B(L2) [the space of bounded linear operators on L2(A, τ)]. Hence π(α)x = ax gives us
a continuous mapping of A into B(L2) and since π(α)* = π(α*) we see that π is a
* -representation oΐA on I2. Since τ is faithful and Aτ is dense in A it follows that π is
faithful. Hence π is an injection of A in B(L2\ and we may identify A with its image
π(A). Now any xeA defines a densely defined map of L\A9τ\ namely a^>xa with
domain Aτ.

Since τ(α*x*xα)^τ(xαα*x*)^ ||α||2τ(xx*) = ||α||2τ(x*x), we see that, for any
aeA, x-*xa is strongly continuous in L2(A, τ), hence it extends by continuity to all
ofL2(A9 τ). We shall also denote this extended map by x-^xa. It is a bounded map
from L2 x A into L2. Hence for any fixed element xeL2 we have a densely defined
map a^xa with domain Aτ. We have that τ(b*xa) = τ((x*b)*ά) for any a and b in Aτ.
Hence a^xa has a densely defined adjoint 0-»x*α and it is therefore closable. We
denote its closure by π(x). π(x) is then an extension of the representation π on Aτ to
all of L2(A,τ) mapping the elements in L2(A,τ) into closed (possibly unbounded)
operators in L2(A, τ\ such that π(x)* = π(x*) (see e.g. [lib], Chapter 1, § 5, Exercise
6.e) and one may verify that π is linear in the sense that π(x) + π(y) £ π(x + 3;) and
π(λx) = λπ(x). From the fact that π on A is faithful it follows that π on L2(,4, τ) is one-
to-one and therefore allows us to identify L2(A, τ) with a subset of closed operators
on L2(A, τ). We have especially that if x is invariant under *, i.e. x* = x, then π(x)
= π(x)*, so that π(x) is self adjoint. Hence if xe L2(A, τ) we say that x is self adjoint if
x* = x and we also say that x ̂  0 iff π(x) ̂  0 and 0 rg x ̂  1 iff 0 ̂  π(x) ̂  1 and so on.

A strongly continuous contraction semigroup Φί? teR+, on the Hubert space
L2(A, τ) is said to be symmetric iff <Φί(x), y> = <x, Φt(y)y where < , > is the scalar
product in L2 and it is said to be Markov iff 0 g x ̂  1 implies that 0 ̂  Φt(x) ̂  1. It is
said to be conservative if for any a e A + we have τ(Φt(a)) = τ(α). In general if M e ̂ (L2)
such that Orgx^l implies that O^M(x)^l we say that M is Markov. If Φt is a
strongly continuous contraction semigroup on L2(A,τ) then the corresponding
resolvent is

(2.1)
o

We have that GM satisfies the resolvent equation

Gu-Gυ=-(u-v)GuGv (2.2)

for u and v positive. Moreover we see that GM is symmetric iff Φt is symmetric and Gu

is Markov iff Φt is Markov. The latter follows from

Φ((x)= l i m G j " ( x ) (2.3)
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where the limit is taken in the strong ZΛsense. Let now x = x* in L2 such that π(x) is
bounded. Thus - ||π(x)|| gπ(x)^||π(x)|| so that if Φt is Markov we have that
-||π(x)||^Φt(x)g||π(x)||. Hence ||π(Φf(x))|| ̂  ||π(x)||. Since π is one-to-one on
L2(A,τ) we have that ||x||00 = ||π(x)|| [operator norm of π(x)] is α, possibly
unbounded, norm on L2. We have proved that || Φt(x)\\ <*> ̂  || x || m and in the same way
we get that HwG^xJH^ ̂  IMIoo From this it follows that Φt is a strong contraction
semigroup on L°°(^4, τ) i.e. on the completion of the domain of || || ̂  in L2(A, τ) with
respect to the || || ̂ -norm. Hence by the theory of strong contraction semigroups we
have that (2.3) also holds in the strong L°°-sense. Since on the other hand the L°°-
norm restricted to Aτ = Ar\L2 coincides with the ^4-norm we have that A is the L°°-
closure of Aτ. This together with (2.1) and (2.3) gives us that Φt leaves A invariant if
and only if Gu leaves A invariant. We thus have the following lemma

Lemma 2.1. Any Markov semigroup Φt on L2(A, τ) extends to a strongly continuous
semigroup on L°°(A,τ). Moreover this extension leaves AcLco(A,τ) invariant if and
only if the corresponding Markov resolvent leaves A invariant. D

Let now x and y be self-adjoint elements in Aτ. Then τ(x2)= \\x\\\ and τ(y2)
= \\y\\ 2 are finite, where || || 2 is the L2(A, τ)-norm. Let/and g be positive continuous
functions on R. For x and y such that/(x)^(j;)e^l*^4τ we have that τ(f(x)g(yj) is non
negative and finite and otherwise it is + oo. Moreover τ(f(x)g(y)) is linear in /and g
and we have

τ(f(x)g(y))^\\f(x)\\2\\g(y)\\2.

Since τ is a trace we have that if/(α)^c|α|, for all real α and some constant c, then

For / and g of this form there exists then a positive measure μx j3, on
(R— {0}) x (R — {0}) with support contained in Spec(x) x Spec(y) such that

) = ίί f(*)g(β)dμx. y(α, β) (2-4)

Moreover since τ(x2 +y2)< oo we have

tt(κ2 + β2)dμX}y(x,β)<π.

So that any continuous function h(α,β) with |/ι(α?jβ)|^c(α2+j?2) on
(R — {0}) x (R — {0}) is in Lί(dμXίy). In particular if /and g are Lipschitz continuous
functions on R with /(0) = 0(0) = 0, then f(oί)g(β) and (f(oc)-g(β))2 are both in
Lί(dμx>y) and by (2.4) we have

) = ίί (/(α) -f(β))2dμXf y(α, β) . (2.5)

Let now Lip(R, 0) be the Banach space of Lipschitz continuous functions of J^ into
R which leave zero invariant. Lip(#,0) is a Banach space in the natural norm

l l / l l L i p = inf{m;|/(α)-/(^)|^m|α-^V(α,/J)6^2}. (2.6)

Let ||x|| 2 be the L2(A, τ) norm then we get from (2.5) that, for x and y self adjoint in A
and/eLip(β,0),



Dirichlet Forms 177

But this tells us that the mapping x->/(x) is uniformly continuous in the ZΛnorm
and therefore extends to a mapping from L\(A, τ) into L%(A9 τ) such that (2.7) still
holds, where L^(A9 τ) is the real Hubert space of Hermitian elements in L2(A, τ) i.e.
xeL2(A,τ) iff x=x*, xεL2(A,τ).

Lemma 2.2. Letfe Lip(R, 0) then the mapping x-»/(x) defined on the Hermitian part
Ah

τ of Aτ is uniformly continuous in the strong L2-norm topology and thus extends to
L^(A, τ) where it satisfies

ιι/(χ)-/ωιι 2^n/ιιL i pιiχ-yii2. D
Let now M be a bounded operator on L2(A9 τ) which is symmetric and Markov.
We shall proceed similarly as we did for the derivation of (2.5). Let x and y be in

A*9 then we have that, for / and g positive and continuous functions on R,
τ(/(x)M(#(x))) is positive and linear in / and g. Moreover for / and g such that
/(α) ̂  φ| and g(a) ̂  c'|α|, where c9 d are constants, we see as before that there exists a
positive measure μx on (R — {0}) x (R — {0}) with support contained in
Spec(x) x Spec(x) such that μx(<x,9β) = μx(β9a) and

τ(f(x}M(g(x))) = JJ f(a)g(β)dμx& β) . (2.8)

Since also 1 — M(l) is positive, we have also that there is a positive measure vx on
R — {0} with support contained in Spec(x) such that

) = J f(*)dvx(*) . (2.9)

Consider now the quadratic form τ(x(l — M)x). We then have

τ(/(x)(l - M)/(x)) = τ(/(x)2(l - M(l))) + τ(/(x)2M(l) -/(x)M/(x)) . (2. 10)

From (2.8) and (2.9) we therefore have

τ(/(x)(l -M)f(x))=Sf(«)2dv,(*) + i j J (f(a)-f(β))2dμx(a,β). (2.11)

But this immediately gives us that τ(x(l — M )x) is a positive form on ^4j x ^4j, hence
on Ll x L%9 and that for any /eLip(R, 0) and xeAh

τ we have

^ l l / l l u p τ(x(l -M)x) , (2.12)

and by continuity (2.12) also holds for xeL%(A, τ).

Lemma 2.3. Let M be a bounded operator on L^(A9 τ) such that M is symmetric and
Markov. Then the form <(x, (1 — M)x> on L^ is symmetric and positive. Moreover for
any feLip(R, 0) we have that

> ̂  ||/||έip <x, (1 -M)x>

where <x, x) is ί/ie square norm in Lfi. Π

Let £(x, x) be a positive closed quadratic form on Ll(A, τ) (not necessarily
bounded) with dense domain D(E). We say that £ is a Dirichlet form if in addition to
being densely defined, positive and closed it satisfied the condition that D(E) is
invariant under the mapping x-»/(x) for any feLip(R, 0) and

E ( f ( x ) J ( x ) ) ^ \ \ f \ \ 2 E ( x , x ) . (2.13)
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Corollary 2.4. // M is a bounded operator on Ll(A, τ) which is symmetric and Markov
then <x,(l — M)x> is a regular Dirichlet form.

[We say that E is a regular Dirichlet form if in addition Ah

τr\D(E) is norm dense in
Ah and is also dense in D(E) where D(E) is equipped with its natural norm
||x||i = E(x,x) + τ(x2)]. D

Let ε(x, x) be a positive quadratic form defined on a domain D(ε) which is a
linear subspace of Ah (the real Banach space of Hermitian elements in A). We say
that ε(x, x) is a Markov form on A if, for any δ > 0, there exists a non-decreasing real
function φδ(t)9 teR, satisfying the following conditions

= t for 0^ί<a
(2.14)

\φδ(t)\^\t\ and -δ^φδ(t)^l +δ for all t

such that if xeD(ε) then φδ(x)eD(ε) and

e(φδ(x), φδ(x)) ^ ε(x, x) . (2. 1 5)

(The definition of a Markov form for a commutative C*-algebra was given by
Fukushima [20].) We say that a positive quadratic form ε(x, x) on Ah is compatible
with the trace τ if D(ε)nAh

τ is dense in L2(,4, τ) and the restriction of ε to D(s)r\Ah

τ is a
closable form in L^(A, τ). If ε is compatible with τ then its closure E defines a unique
non negative self adjoint operator H on L%(A,τ) such that D(E) is the same as
D(Hί/2\ the domain of H1/2, and £(x,x) = <;x,#:x>. H is then of course the
infinitesimal generator of a strongly continuous symmetric semigroup on L%(A9 τ).
We shall return to this point later. We have now the following theorem connecting
Markov and Dirichlet forms. The proof of this theorem is the same as in the
commutative case where it was given by Fukushima [20].

Theorem 2.5. Let εbea Markov form on a C*-algebra A. It τ is a semifinite and lower
semίcontinuous faithful trace such that Aτ is norm dense in A and ε is compatible with τ,
then the closure E of ε on L%(A9 τ) is a Dirichlet form. E is a regular Dirichlet form if
Z)(ε)n^4j is norm dense in Ah. D

Let now Φt be a symmetric Markov semigroup and let Gu be the corresponding
resolvent. Let H be the infinitesimal generator of Φt. We know that H is a positive
self adjoint operator on L2(A9 τ) such that Φt = e~tH and

ίίx = lim-(l-Φ t)x (2.16)

or

Hx= lim u(l~uGu)x (2.17)
M-*00

in the sense that xeD(H) iff any one of the strong limits above exists and in which
case Hx is given by the right hand side of (2.16) or (2.17).

The following lemma is an immediate consequence of the spectral decom-
position of strongly continuous symmetric contraction semigroups on Hubert
spaces.
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Lemma 2.6. For any xeL%(A, τ) we have that

-<x,(l-Φ f)x> and w<x,(l-wG t t)x>

increase as ί|0 and w f oo. Eac/z o/ f/zese expressions remains bounded if and only if
xeD(H1/2\ where H is the infinitesimal generator of Φt and in this case we have, with
E(x,x)=\\Hίl2x\\2

2, that

E(x9 x) = lim - <χ, (1 - Φr)x> = lim w<x, (1 - wGJx) . Π
ί|0 ί tt| °°

Now by Corollary 2.4 - <χ, (1 - Φf)x> is a regular Dirichlet form so that for any

feLip(R, 0) we have

-t </(*), (1 - Φ,)/(x)> rg ||/||*ip 1 <x, (1 - Φt)xy . (2.18)

Since by Lemma 2.6 £>(£) consists exactly of those elements x for which -<x,(l

— Φf)x> remains finite as ί JO we get by (2.18) that D(E) is invariant under x->/(x).
Moreover by taking the limit 1 JO in (2.18) we get that E(/(x),/(x)) ̂  ||/|| *ip E(x, x).
Hence we have proved that E(x, x)= ||jfιΓ1 / 2x||2 is a Dirichlet form. We summarize
these results in the following theorem.

Theorem 2.7. Let E(x, x)= \\H1/2x\\2 be the positive quadratic form given by a
symmetric Markov semigroup Φt on L2(A, τ), then E(x, x) is a Dirichlet form. D

Consider now an arbitrary Dirichlet form £(x, x) and let H be the corresponding
positive self-adjoint operator on Ll(A,τ) so that E(x,x)= \\Hll2x\\2. Let
Gu = (u + H)~1, w>0 be the corresponding resolvent. Set

Eu(x, x) = E(x, x) + w<x, x> . (2.19)

Then we have for any x and y in D(E) that

£ l l(G l lΛx) = <y,x> (2.20)

and

Eu(x - uGuy, x - uGuy) = E(x, x) + w[<x, x> + w<.y, GMj;> - 2<x, j;>]

- £(x, x) + u(x-y,x-yy- u(y, (1 - wG» . (2.21)

Thus £(x, x) + u|| x — y\\ \ has a unique minimum for x = uGuy. Let now y be such that
y=f(y) where / is a contraction of the real line leaving zero fixed, i.e. /eLip(.R, 0)
with ||/||Lip^l. Then by the assumption that E(x, x) is a Dirichlet form together
with Lemma 2.2 we get, since y =f(y\ that

E(f(x),f(x)) + M|| f(x) -y\\2 = E(f(x\f(x)) + u\\f(x) -f(y)\\ \

^E(x,x) + u\\x-y\\2. (2.22)

If we take now for x the minimal point x = uGuy then we have by (2.22) that f(x) also
gives a minimal point and by uniqueness of this minimal point we get /(x) = x.
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Hence we have proved that if y=f(y) then uGuy=f(uGuy). Take now /(α)
= (0 v α) Λ 1 which is obviously a contraction of the real line leaving zero fixed, then
we get that uGu is Markov for all u. Since this implies that Φt is Markov we have the
following

Theorem 2.8. Let E(x, x) be a Dirichlet form on L\(A, τ), and let H be the positive self
adjoint operator given by E. Then the symmetric contraction semigroup generated by
H is a Markov semigroup on L2(A, τ).

3. Completely Markov Semigroups

Let now Φt be a strongly continuous contraction semigroup on the Hubert space
L2(A, τ). We said that Φt is Markov if xeL2(A, τ) such that O^x^ 1 implies that
0 ̂  Φt(x) ̂  1. Recall that 0 ̂  x <Ξ 1 was defined by considering the closure Lx of the
operator a^xa defined for xeL2(A, τ) with domain AτCL2(A, τ) [the notation π(x)
was used for Lx in the previous section] and then O^x^l was equivalent to
OrgZ^rg 1. LCO(A, τ) was then defined as the completion in the norm ||x|| ̂  = \\LX\\ of
the linear subspace of L2(A9 τ) consisting of elements x such that Lx is a bounded
operator on L2(A9 τ), and hence the map x^Lx extends to an isomorphism of
LCO(A9 τ) with the weakly closed subalgebra LcB(L2(A, τ)) obtained by taking the
weak closure of the set Lx with xeA C LCO(A, τ). Hence if π is the representation of A
by left translation on L2(A, τ) considered in the previous section we have L = π(A)"
[the weak closure of π(A)']. Therefore we see that Φt is Markov if and only if it
extends to LCO(A9 τ) = L and defines a positivity preserving semigroup Φt on the W*-
algebra L such that Φt(l)^l.

Let A be a C*-algebra and Mn the C*-algebra of n x n complex matrices. The
elements Xe A ®Mn may be represented by X = {x^ }, a n x n matrix with elements

XijGA, and if Y= {ytj} then X7=1 £ xikykj\. If Φ is a map of A we define Φn as the
I fc J

map of A0Mn given by

Φn(X) = {Φ(xij)} for X = {Xij} (3.1)

i.e. Φn(x) = Φ® ln, where ln is the identity of Mn. A linear map Φ of A is said to be
completely positive iff Φn is a positive map of the C*-algebra A®Mn for any n.
Especially we have that a completely positive map is positive. Similarly we say that a
map Φ is completely Markov iff Φn is Markov for any n, and we say that a semigroup
Φt is completely Markov iff Φt is completely Markov for any ί^O.

Let us now briefly recall some known constructions of the theory of Hubert
algebras (see e.g. [1 Ib], Chapter 1, § 5). For any XE L2(A, τ) denote by Rx the closure
of the mapping given by a-^ax with domain A and let R be the weak closure of the
set of elements in B(L2(A, τ)) of the form Rx.

It is easy to see that R = π(A)' i.e. R is equal to the commutant of n(A\ so that
R' = L and L=R. We also remark that, while the restriction of Lx to xeA is a
faithful ^representation of A on L2(A, τ), we have that the restriction of Rx to xeA
is a faithful anti *-representation of A on L2(A, τ). Let S be the anti isometry of
L2(A, τ) given by Sx = x*, then it follows immediately that RX = SLX*S = SL*S and
therefore ||.RJ = ||L*|| = ||LJ|. Hence JR^ extends by continuity to an isometry of
L*(A,τ) onto RcB(L2(A, τ)).
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For any C*-algebra A we define the conjugate algebra A which is identical with
A apart from_the scalar multiplication which in A is defined by (A, a)-+λa,λεC and
αe A, where I is the complex conjugate of λ. Let now ΦeB(L2(A, τ)) be Markov i.e.
0 ̂  x ̂  1 implies 0 ̂  Φ(x) ^ 1. If Φ is completely Markov then Φn = Φ ® in is Markov
on A ® Mn . Let now τn be the natural trace on Mn9 then τ ® τn is a trace on ,4 ® Mπ so
that τ®τn(XY)^Q i f X ^ O and 7^0 in A®Mn. Hence

(3-2)
0'

whenever X = {x^} and 7= {j;̂ .} are positive elements in A ® Mn. Remark that since
Y= Y* we have y.j = yj..

Let now xl9 ..., xn be in 4τ then u = (Σ Xi^Vi}* Σ (*ί® J>») = Σ **x/®)>*3>/ is a

positive element in A ® A (we have considered y 15 . . . , yn to be in A)9 where A® A is
the algebraic tensor product of A and ,4. We now define a linear functional ρ on the
algebraic tensor_product A® A with domain of definition Aτ®Aτ, where Άτ is the
image of Aτ in ,4, by

(3.3)

then

j)yjyf) (3 4)

Now X = {x*Xj} and 7={yj>'*} are obviously positive elements in A®Mn so by
(3.2) we have th_at ρ(t/)^0. Hence ρ is a positive linear functional on A® A or a
weight on A® A with domain Aτ®Aτ.

Let now conversely ΦeB(L2(A, τ)) be Markov and let us assume_that τ(Φ(x)y*)
= Q(x®y)9 where ρ is a weight on the algebraic tensor product A® A with domain
Aτ®Aτ. The densely defined weight ρ gives rise to a representation of A® A on a
Hubert space K by the GNS construction and let η be the corresponding mapping
from ^4®^ into K. Consider now the linear mapping from L , (A, τ) into K with
dense domain Aτ given by

Vy = η(l®y*). (3.5)

Since we have

(Vy,Vz) = (η(l®y*),η(l®z*))

>, (3.6)

where ( , ) is the inner product in K and < , > is the inner product in L2(A, τ). It
follows from (3.6) that F*F=Φ(l):gl so that V is bounded and extends by
continuity to a bounded linear map of L2(A, τ) into K. We observe that if Φ(l)= 1
then V is an isometric imbedding of L2(A, τ) into K. Let πρ be the representation of
A® A given by ρ, by the GNS construction, and set π(x) = πρ(x®l). π is then a *-
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representation of A on K. Then for y and z in Aτ we have

<V*π(x)Vy, z> = (πρ(x® l)Fy, Fz)

y,z> . (3.7)
Hence we get

Φ(x) = V*π(x)V (3.8)

which is a completely positive map since it is the composition of two completely
positive maps, namely x->π(x) and y-*V*yV. We summarize these results in the
following theorem

Theorem 3.1. Let Φbea bounded map of L2(A, τ) into L2(A, τ) which is Markov. Then
Φ is completely Markov if and only if there Js a weight ρ on the algebraic tensor
product A® A with domain containing Aτ®Άτ such that

D

Let now Φt be a strongly continuous one parameter contraction semigroup on
L2(A, τ) which is symmetric and completely Markov. By the previous theorem we

have a one parametric family of weights ρt on A® A such that — (Φ^x), j;>

= Qt(x®y) and since f°r xεL2(A, τ) we have

<(1 - Φt)x, x> = <(1 - Φf(l))x, x> + <Φ(l)x, x> - <Φt(x), x> (3.9)

then

-t <(1 - Φt)x, x> = wt(x2) + ρt((x ® 1 - 1 (x) x)2) (3. 10)

where t - wt(x) = τ((l — Φf (l))x) is a weight on A, since 0 ̂  Φt(l) ̂  1. By Lemma 2.6 we

have that -((l — Φt)x,xyϊE(x,x) as ί^O, where £(x, x) is the Dirichlet form

corresponding to Φr Observe that ρ(x®y) = ρ(y®x) since Φt is symmetric. We say
that ρ is a symmetric weight on A (x) Ά. Hence we have that the Dirichlet form E(x, x)
corresponding to a symmetric and completely Markov semigroup is the increasing
limit of bounded Dirichlet forms of the type Et(x, x) = wί(x2) + ρί((x®l — l(x)x)2)
where w and ρ are weights on A and A® A respectively.

On the other hand assume Jhat wy is a weight on A and ρy is a weight on the
algebraic tensor product A®Ά, such that

Ey(x, x) - wy(x2) + ργ ((x ® 1 - 1 (x) x)2) (3.11)

is a bounded positive bilinear form on L^(A, τ) such that 0 £Ξ Eyι(x, x) ̂  Ey2(x, x) for
y x ^y2 and let us assume that there is a closed bilinear form F such that Eγ(x, x)
^F(x, x) for any y in R + . Let now xeAτ such that x = x*. From the spectral
representation theorem and the fact that wγ and ρy are weights we get that

wyσW) = f/(«)dvy(α) (3.12)
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and

ρy((f(x) ® 1 - 1 ®/(x))2) = J f (/(α) -f(β))2dμy(a, β) ,

where vy and μy are positive Radon measures on R and £ x R respectively,
depending on x, and with support on Spec(x) and Sρec(x) x Spec(x) respectively.
Hence we have that for xeAτπL%(A, τ)

Ey(f(x)J(x)) = j /(oc)2Λy(α) + j j (/(α) -f(β))2dμy(*9 β) .

(3.13)

For /eLip(R, 0) we have, for xeAτnLl(A, τ), that

)^ll/llup£y(*>*) (3.14)
which obviously implies that Ey with domain Aτr\L% is Markov and since Ey is
bounded it is a Dirichlet form.

If E(x, x) is a sesquilinear form on L2(A, τ) we set

En(X,X)=ΣE(xίj,xίj) (3.15)
'

for X = {x0.} eLj^φM,,, τ® τπ). Since L2μ®Mn, τ®τn) - L2(A τ)
®L2(Mw,τw) and En = E(x)ln where ln is the form given by the identity in
L2(Mnί τn) we see that En is closable if and only if £ is closable and if £ is closed then
D(En) = D(E)(S)Mn. We say that E is a completely Markov form if En is a Markov
form for each n^ 1, and we say that £ is a completely Dirichlet form iff £π is a
Dirichlet form for each n. By what is above we see that a Dirichlet form which is
completely Markov is completely Dirichlet.

Consider now Eγ(x, x) given by (3.11). Since Ey>n is given in the way of (3.11) by
wγ(x) τn and ρy® (τπ(g)τj, where τn is the natural trace in Mn, it follows as above that
Ey }n(X,X) is a Dirichlet form. Therefore Ey(x, x) is a completely Dirichlet form.

Let now Ey(x, x) be an increasing sequence of bounded Dirichlet forms i.e.
0^£7ι(x, x)^Ey2(x, x) for yί^y2

 an(^ ^et us a^so assume that Ey(x,x)^F(x, x)

where F is a closed form. It is then well known that E(x, x) = lim Ev(x, x\ with
noo '

domain D(£) consisting of those x for which the limit is finite, is a closed form. From
(3.14) we have that x = x* e D(E) and /e Lip (K, 0) implies that /(x) e D(E) and £(/(x),
/(x)) ̂  11/11 Lip E(x9 x) so that £(x, x) is a Dirichlet form. If moreover Ey is of the form
(3.11) then we have that EytΛ are Dirichlet forms, and since Ey>n = Ey® lπf E® ln = En

it follows that En is a Dirichlet form so that Ey is a completely Dirichlet form. We
summarize these results in the following theorem.

Theorem 3.2. Let E be α Dirichlet form on L2(A, τ) and Φt the corresponding
symmetric Markov semigroup. Then Φt is completely Markov if and only if E is
completely Dirichlet. Moreover E is completely Dirichlet if and only if there exists an
increasing sequence of positive bounded forms Ey9

x,x) for y^y2 and

E(x, x)=lim Ev(x, x)
γ
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with domain D(E) equal to the set of x for which this limit is finite, and Ey has the form

Ey(x, x) = wy(x2) + ρy((x (x) 1 - 1 (x) x)2)

where wy and ρy are weights on A and on the algebraic tensor product A® A
respectively, where A is the conjugate C*-algebra corresponding to A.

4. Normal Contractions on C*-Algebras

For the commutative C*-algebra C(X), X a locally compact space one says that
veC(X) is a normal contraction of ueC(X) iff |ι;(α)|^|tt(α)| and \v(a)-v(β)\^\u((x)
— u(β)\ for any α and β inX. We see that if v(u) is a normal contraction of w(α) then
ί (α) is continuous in the topology generated by u(a) hence there is a continuous
mapping / of the real line R into itself such that φ) = /(w(α)), and from the two
inequalities |φ)|^|w(α)| and \υ(a) — v(β)\^\u((x) — u(β)\ it follows that /(α) may be
taken as a contraction of R leaving zero fixed i.e. /(O) = 0 and |/(α) - f(β)\ g |α - β\.

Let now Ch(X) be the real (self adjoint) part of C(X), then ι (α) is a normal
contraction of w(α) iff v2 ̂  u2 and (v(a) - υ(β)}2 ^ (w(α) - u(β))2. Now w(α) - u(β) may
be considered as an element in Ch(X) (x) Ch(X ) £ Ch(X x X) where the tensor product is
the algebraic tensor product, namely u(α) — u(β) = w(α)® 1 — 1 ®w(/?)e ChpO(x) CΛ(Jί).
Hence we may write the condition for normal contraction as

v2^u2 and (v®l — l®v)2^(u®l — l(x)w)2 (4.1)

where the first inequality is in C(X) and the second inequality is in C(X)®C(X). Let
now A be an arbitrary C*-algebra with a unit. If x and y are in >4Λ (the self adjoint
part of A) then we say that x is a normal contraction of y if

x2^j2 and (x(x)l-l(x)x)2^(};(x)l-l®};)2 (4.2)

where the first inequality is in A and the second inequality is mA®A, the algebraic
tensor product of A with itself. Since x and y are self-adjoint, x = x* and y = );*, we
may also consider the second inequality to be in A® A, where A is the conjugate
algebra. If yeAh and x^=f(y) where /(0) = 0 and |/(α)^/G&)|^|α-j8| it follows
easily from what is said before that x is a normal contraction of y because in this
case x and y are in the same commutative subalgebra. We shall now see that if x is a
normal contraction of y then x = f(y) where /(0) = 0 and |/(α)-/(/?)|^|α — /?|.

We may assume that AgB(3F] for some Hubert space 3tf , and as we are only
interested in the subalgebra of A generated by x and y we may also assume that ffl is
separable. Let L2pf ) be the Hubert space of Hubert-Schmidt operators on ffl.
Then L\2tf )^ tf ®3P and B(3?)®B(W) is naturally imbedded in B(L2(^)) by the
correspondence a®beB(jj?}®B(3ί?) goes to the mapping m->αmfe* contained in
B(L2(JJf )), (B(3f ) is the conjugate algebra of B(^f )). If we denote m-*am by L(a) and
m-^mb by R(a) we have the imbedding of B(tf)®B(Jtf) into £(L2(^f)) is given by
a®b^L(a)R(b*). It is easy to see that this imbedding is a faithful ^representation.
Hence we have that (x(x)l — l(g)x)2 ^(y®l — l®y)2 if and only if

(L(x)-R(x))2^(L(y)-R(y))2 (4.3)



Dirichlet Forms 185

in B(L2(3? )). Hence (x® 1 - 1 ® x)2 ̂  (3;® 1 - 1 ® y)2 is equivalent with the statement
that for any meL2(^f\ i.e. for any me£(Jf) with tr(m*ra)<oo we have that

(m, (L(x) - R(x))2m) ^ (m, (L(y) - R(y))2m) (4.4)

where ( , ) is the inner product in L2(Jf ) so that (4.4) is equivalent with

tr(m*[x[x,m]])^tr(m*|>, [y,m]]). (4.5)

Here [x, m] = (L(x) - R(x))m i.e. the commutator of x and m. From (4.5) we get that

tr([x, m]*[x, m])^ tr(O, m]*[j;, m]) . (4.6)

Take now m to commute with y then by (4.6) the Hubert-Schmidt norm of [x, m]
is zero so that x commutes with m. Hence the commutant of x contains the
commutant ofy, and therefore x is in the commutative algebra generated by y. Since
x and y are in the same commutative subalgebra we have the argument above that
x = y( y) where/is a contraction of the real line i.e. |/(α) — /(/J)| ̂  |α — β| for any real α
and /?. We summarize these results in the following theorem.

Theorem 4.1. Lβί xα am/ j; be self adjoint elements in a C*-algebra A with unit. Then

(x® 1 - 1 ® x)2 ̂  (y® 1 - 1 ® y)2

m f/ze algebraic tensor product A® A if and only if there is a contraction f of the real
line (\f(a)-f(β)\^\oc-β\) such that x = f(y).

Moreover x is a normal contraction ofy if and only if there is a contraction f of the
real line such that f(Q) = Q and x=f(y).

Combining this theorem with the results of Section 2 we get the following
theorem.

Theorem 4.2. Let £(x, x) be a closed positive form on L2(A, τ) where τ is a lower
semicontinuous faithful trace on the C* -algebra A. Then E(x,x) is a Dirichlet form if
and only if for yeD(E) and x a normal contraction of y, xeD(E) and E(x,x)
£E(y,y). D

From the proof of Theorem 4.1 we have the following lemma.

Lemma 4.3. If Ac B(J^) and x and y are in A, then x is a normal contraction ofy if and
only if

and for any meB(3tif) such that tr(m*m)< oo we have that

tr([x, m]*[x, m]) ̂  tr(D>, ro]*|>, m]) . D

Let now τ be a lower semicontinuous faithful trace on the C*-algebra A and assume
that A C B( ffl ) for some Hubert space tff. If M is a positive selfadjoint operator on
Jf (not necessarily bounded) and m-e^pf ) with tr(mf m ) < oo we consider the form
on L2(A,τ) given by

E(x, x) = tr(x2M) + f tr([x? m.]*[x, mj) . (4.7)



186 S. Albeverio and R. H0egh-Krohn

Then if E(x, x) is closable on L2(A, τ) then by Theorem 4.2 and Lemma 4.3 we have
that E(x, x) is Dirichlet. It follows easily that it is completely Dirichlet because the
form E(n\x, x) on A® Mn is obtained by replacing M by M® 1M and wf by mt (x) ln, and
therefore £(n)(x, x) is again Dirichlet. Hence we have

Corollary 4.4. If AC B(J^) and M ̂  0 is α se// adjoint operator (not necessarily
bounded) and m^B^) satisfy tr(mfm f)<oo

E(x,x)=tτ(x2M)+
ί= 1

zs closable on L2(A, τ) ίften £/ze closure of E(x, x) is completely Dirichlet.
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