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Abstract. The formulation of path integrals in terms of pseudomeasures by
Cecile DeWitt-Morette is extended to infinite-dimensional state-spaces and to
the state spaces dual to nuclear spaces appropriate to second-quantisation. In
both cases a "distribution" formulation is given to allow a subsequent extension
to manifolds. It is shown that the resulting theory is "correct" in that it can give
rise to a wave function on state space which obeys a Schrodinger equation in
appropriate circumstances. The corresponding state manifolds for quantum
gravity are then defined, and the conditions under which the theory extends to
them are discussed. It is shown in an appendix that the Riemannian metric
required by the theory exists on one of the types of state manifold for a wide
class of cases.

1. Introduction and Synopsis

(a) The Idea of Path Integrals

We consider a dynamical system whose state at time τ is represented by a point q(τ)
in a configuration space E. Thus as τ varies from 0 to ί, q(τ) can describe a path
q : [0, t] = T-+E. Given an initial state 0 = q(Q)eE, we examine the set Φ of all C00

paths starting at 0.
The basic idea of the path-integral formalism is to quantise the system by

defining a wave-function ψ(x) for the state at time ί by the formula

J dΨ(x) = j ψ(x)άμ(x) = J χA(q(^v(q) (1)
A A Φi

for any AcE. Here μ is some "standard" measure on E, χA is the characteristic
function of A. Φ has been completed in a suitable metric to Φ15 and v is a specially
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constructed measure designed to give the correct ψ. We may regard (1) as the formal
version of the informal equation1

ψ(x)=Sδμ(x-q(t))dv(q). (10
Φi

Unfortunately, no measure v can produce the correct ψ, so that the following
alternative strategies have been proposed for defining the expression

ί /(«)<Mβ) (2)
Φi

of which the right hand side of (1) is a special case.
(i) Partition [0,ί] by a set {ί0 = 0, *i, t29 ...,tn = t}9 integrate over the finite

collection of q(t$s, then let n-^co (giving a "lattice integral" [18]). This was
Feynman's original approach [19].

(ii) Construct a true measure v related to v by replacing t by it (or by making h
complex), getting the required result by analytic continuation. This is the "main-
stream" approach, related to Euclidean quantum field theory [13]. The measure v is
then the well-understood Wiener measure, and the paths are random walks.

(iii) DeWitt-Morette's approach [3, 4] 2 is to write (2) as (v,/) and regard v as a
distribution, (2) having meaning only for /in a suitable class of test functions on Φ±
(rather than for all continuous /, as would be the case if v were a measure).

To construct v we must take coordinates in E, at least in some open set. Thus we
consider first the case where E is actually a vector space, hoping to apply the vector
space result to a coordinate patch in a general manifold if necessary. When E is
finite-dimensional the situation has been completely analysed by DeWitt-Morette.

The key idea (see also [20]) is the use of Fourier transforms on Φ\ : if v were a
measure, its Fourier transform would be a function ^v on Φ\ defined by

Φi

where (q'9 q) is the pairing Φ\ x Φ->C. Thus one can work with Fourier transforms
to cover a wider class of distributions on Φ± than plain measures.

In § 21 recapitulate some of DeWitt-Morette's work, giving precise definitions of
all the spaces involved and extending it to the case where E is infinite-dimensional (a
Banach space). Since Φl is already infinite-dimensional this extension is hardly
more than a matter of notation.

The implicit choice of test- functions associated with this method is a class d of
C°° cylinder functions (defined in § 3 below). But this class, while technically simple
to work with, depends for its definition in an essential way on the vector space
structure of E. In § 3 1 shall define a second class S, whose definition extends trivially
to the context of at least one of the state-space manifolds of interest in General
Relativity, as I shall show in § 7. The spaces ® and (£ can be related, so that (£ is still
available for explicit computation.

1 If, as usually happens, £ is a finite dimensional inner product space then there is a natural ^-function
and the need for μ can be overlooked. Note that one cannot rewrite the formula as J χ(q)dv(q) with χ the

Φi

characteristic function of {q :q(t) = x} ([4], p. 69) since this set has measure zero in Φ1
2 Unfortunately most of the work was done before the appearance of [5]
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In §5 the consequences of the extension of E to infinite dimensions are
investigated. The discussion here is not completely rigorous, though there seems
every reason to believe that the existence-assumptions made will hold in most cases.
With this proviso I show that a path integral can be split into an integral over paths
with both endpoints fixed, followed by an integral over the final endpoint using the
measure Ψ of (1) and that Ψ satisfies a Schrόdinger-like equation. These properties
form a generalisation of similar conclusions in [5].

(b) The Structure of State-Space

Further development needs more information about E, a space to be determined by
the nature of general relativity and the experience of quantum field theory. The
analogue of "a state at time τ" would be "a 3-geometry on a slice S", so that E should
be a collection of 3-geometries and Φ should be a space of stacks of 3-geometries. I
choose to by-pass E completely at this stage by taking Φ to be a set of 4-geometries
compatible with a given initial 3-metric [§ 6(a)]. To see what is involved, in § 6(c) I
investigate the analogous construction for quantising scalar fields on IR4. Here the
relationship with conventional quantum field theory still needs further clarifi-
cation : the Green's function which appears naturally in the present theory, though
related to the Feynman Green's function, is not identical to it.

Quantum field theory suggests that the state space used in § 6(c) (functions on a
slab of IR4 which decrease rapidly in spatial directions) is not large enough to
encompass many-particle states. This is discussed in § 4, where we are led to the dual
of this space. Consequently a dual formulation is given in parallel with the standard
one, the appropriate test-function space being set up in §4, and the corresponding
relativistic state space being defined in § 6(b). The difficulties of continuing with the
dual formulation become too great at this stage, and subsequent sections deal only
with the standard version.

The important property of the manifold of geometries ^ defined here is that it
has a Riemannian metric (subject to a weak restriction on the geometries). The
proof of this is given in Appendix A.

(c) The Manifold Problem

There are two difficulties in passing from vector spaces to manifolds. The first is
that of defining the overall context, viz. the appropriate test-function space. This is
solved in § 7, Theorem 3, by showing that there is an atlas on ̂  whose coordinate
transformations preserve the main defining property of S. Thus only a small
modification of ® is necessary to achieve a space § of test functions on <&. (Some
technical details are deferred to Appendix B.)

The second difficulty, which is not overcome, is that of actually defining v in any
coordinate patch. (If this could be done, since the atlas constructed above admits
appropriate partitions of unity, a v could be defined everywhere.) Up to now, v has
been constructed using only the quadratic part of the classical action S. (The linear
part can always be taken care of by a translation in Φ.) In [5] DeWitt-Morette has
investigated the inclusion of higher-order terms by performing an expansion.
However, in the case of interest here it is nor clear that this procedure fulfils the
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intuitive requirement for v namely, that near any point v should approximate to the
pseudomeasure derived from the quadratic and linear terms in the expansion of S
about that point. In §71 give an alternative prescription which does not use an
expansion but no proofs are available either for the consistency of the method or
for establishing rigorously that it has the required property. If such proofs could be
provided, then one would have a consistent scheme for the application of path
integrals in General Relativity.

2. The Path Formalism

We begin by taking the state-space E to be a normed real vector space. (Thus E
might be R3 for a free particle, or a Banach space of fields on IR3 for field theory.)
Next, following DeWitt-Morette, we shall define a Hubert space X, with ΦcXΦ',
on which the constructions will take a particularly simple form. X depends only on
the nature of the state-space being considered, not on the action of the system. This
action enters by defining a map P:X ->X—the "primitive mapping" [4,12]—which
induces the "correct" v. Φ^ is then defined as the (closure of the) image of P.

Explicitly, set X = LE(T)—the space of equivalence classes of) square-in tegrable
functions [0, f] = T->E ([6], p. 586). Note that usually P is essentially the operation

of integration i.e. in the simplest case P(φ) (τ) = J φ(τ')dτ'9 0 ̂  τ ̂  ί so that Φi is the
\ o /

space of functions of square-in tegrable first derivatives [14,20].
To define P, we first suppose that the space Φ of C°° paths is given the nuclear

topology, so that the triple Φ CX C Φ' forms a rigged Hubert space [9]. The classical
action S is then taken to be a function on Φ. Choose a point q0e Φ at which S has a
turning point (q0 being the classical path).

We assume that S is twice continously differentiable (at least in the sense of [1 1],
which is equivalent to Gateaux differentiability for nuclear spaces and in practice S
will be twice differentiable in the usual sense with respect to one of the norms on Φ).
Thus S can be expanded about q0 as

S(q) = %o) + Ί S^(q -q0,q

For the systems of physical interest, S is defined on differentiable maps T-*E
by the integral of a Lagrangian along the path, and SqQ(q,r)

= J q(τ)Dr(τ)dτ for a positive second order differential operator D, provided that Φ
o

is defined by suitable boundary conditions.
In any case, twice-differentiability implies that S£0 :Φ->Φ' exists : in addition to

this I shall make the assumption that it is 1 — 1 and onto, having a continuous
inverse G:Φ'-+ΦcX. (This means that I exclude the occurrence of caustics3.) It is
also convenient, but not essential, to be able to represent G by a Green's function for
D,g(v,τ) via

ίflf(υ,τ)0'(τ)dτ. (3)

In [5] it is shown that the formalism includes caustics naturally
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The positivity of D allows us to define the operator G1/2 : Φ'-+X (by making a
self-adjoint extension of D: specific representations can be obtained from the
generalised spectral resolution [8]), which, in the cases where g exists, can be written
in terms of a "Green's function" g(1/2) for the operator D1/2, #(1/2) satisfying

Finally P is defined by setting its adjoint P:ΦΊΦt

1-+X equal to G1/2. To
summarise, we now have

Dl/2 Dί/2

X C Φ\CΦr

3. Pseudomeasures (Standard Formulation)

We now proceed to define the space ® of test functions on Φ1? choosing it
(Theorem 1) so that the corresponding space of distributions consists of the inverse
Fourier transforms of all continuous functions on Φ\ (in a sense defined by the
Theorem). We can then'immediately define the pseudomeasure (distribution) v via
its Fourier transform. To compare this with the standard definition in terms of
cylinder functions (£ we embed ® in the closure of K; it can then be shown
(Theorem 2) that our v is identified in a natural way with the pseudo-measure of
DeWitt-Morette that is derived via P from the Gaussian promeasure on X.

We now further assume that Φ1 is Hubert and that the topology given to Φ to
form Φ1 is such that the inclusion i : Φ1 -*X is a Hubert-Schmidt map. (In the case
just considered, this will hold — for suitable D — when the topology on Φ! is that
induced by P fromX.) Next, a space of test functions onX is constructed. If/ :X->(C

is a C00 function, define \\f\\k= sup ||x||*+1 \\Dk+if(x)l using the obvious Hilbert-
xeX

space norms. Then ® is the Banach space of C°° functions defined by the composite
norm

\\f\\ = max((k-2)\Γ3l2e-k/2\\f\\k.

Thus ® consists of "rapidly decreasing functions" with some control over the rate of
increase of the ||/||k; a control which is not so tight as to exclude functions of
bounded support such as

o Nl>i
A pseudomeasure on Φ1 is then defined to be a member of ®'; i.e. it is a

distribution for the test-function space ®4.

4 In defining 6 the functions are to be restricted to Φt. The definition is given onX because this space
is both more fundamental and computationally easier to handle
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We have chosen ® so as to be able to state the following Theorem. Its statement
would remain true if the definition of ® was slightly modified; one could equally
well use the infinite-dimensional generalization of the ultradistributions of Beurling
and Bjόrck, for example [21].

Theorem ί . I f i is Hilbert-Schmidt, then for any continuous function k on Φ\ there is a
pseudomeasure vk on Φ1 whose value on each /e® is given by

where μf is a measure on Φ\ whose Fourier transform ^μf is f.

[Note that if we define "the Fourier transform «^vfc" to be k then we can write

in analogy with the situation for finite-dimensional distributions. In other words,
one can specify a pseudomeasure vk by its Fourier transform.]

The proof follows by simple verification of the continuity of vk once one can
construct μf. To do this, consider a subspace 7 of finite dimension n in Φ1 and set fv

=f\V. Then define a measure μv on the dual space V by dμv(x') = fvd
nx', fv(xf)

= f fv(x)e~l(x''x)dnx so that the Fourier transform of μv is/F, the coordinates

being orthonormal with respect to the Hubert structure induced from Φr

Following [9], p. 349 we can see that the family {μv\V CΦ^} constitutes a
(complex- valued) cylinder set measure on Φ\ (or promeasure, in the terminology of
Bourbaki [2]). The measures μv can be estimated by the inequality

J |/F|d

(where ||/||;J is the norm || ||n introduced above, but evaluated with the Hubert
metric on Φ x ); while the Hubert-Schmidt character of i gives ||/||,J ^Kn~n/2\\f\\n.
This estimate therefore shows both that {μv} is a measure (using the criterion of [9],
p. 318) and gives the required continuity in /

Corollary. Suppose the conditions of the theorem hold, and that G is defined and
continuous on the whole of Φ\. Then there is pseudomeasure v = vs>βo on Φί whose
Fourier transform is

The "variance" (φf, G(φ')) is given by lφ'(Ό)φ'(τ)g(Ό,τ)dυdτ, if we use the notation

An alternative space of test- function is the set (£ of C°° cylinder functions on Φί

with compact support on their base — that is, functions of the form fv°πv where
πv :Φ1^Φ1/F is the canonical projection onto cosets of a subspace V of finite
codimension and fv \φJV^><L is C°° with compact support. This is the implicit
choice of DeWitt-Morette. The use of cylinder functions is computationally



Path Integrals in General Relativity 131

simpler, but cannot be carried over to manifolds hence the higher priority given to
®. On the other hand, the two approaches — distributions for S and cylinder-set
measures for (£ — are easily related as follows.

Regard £ as a subspace of C00^) with the topology_of pointwise convergence
in all derivatives. If ® is any test function space with S C β C CQO(Φ1\ and if μ — {μv}
is a (not necessarily bounded, complex valued) promeasure ([2]= cylinder set
measure [9]), then we shall say that μ defines (or "is") a pseudomeasure v if 6 lies in

the domain of the closure of the map μ :(£a/F°πκι-> J/FdμF(x)eC and μ\<5 = v.
v

This enables us to state the following :

Theorem 2. The pseudo-measure vStqo is the image under P of the Gaussian promeasure
on X with variance — (i/2) \\xf\\2.

The proof is mainly technical, on the same lines as that of Theorem 1.
The representation in terms of the space (£ of cylinder functions allows us to give

one of the main computational formulae of the subject, which follows immediately
from Theorem 2 (DeWitt-Morette [4], Equation (1), p. 68)

(fv*P*vSJ= ί />)(2πιr*/2(det^)^ (4)
Rn \Z /

where

with eί...en the standard basis of R".

4. Pseudomeasures (Dual Formulation)

If one wishes to apply the forgoing to quatum field theory, it would seem reasonable
to take E to be the space of, say, L2 fields on IR3 and proceed in the way described by,
for instance, Abers and Lee [1]. In this case, however, one has to resort to devices
relying on results from the conventional formalism to convert the one-particle
Green's function that is at first obtained into the n-particle function. This was to be
expected, since this choice of £ is not the full n-particle state-space. As pointed out
by Isham in the context of quantum gravity [10], a possible candidate for E would
be the dual space of rapidly-decreasing functions ̂  on IR3. (See, for instance, [13]
for a full discussion of the use of this state-space.)

Thus we should recast the path integral approach in terms of path integrals over
Φ', the dual space of a nuclear path space Φ of C°° functions Ύ-*y.

Fortunately, this poses no problem : indeed the resulting theory is, at this vector-
space stage (but not at the manifold stage), even simpler than before.

The test function space will now be the space G2 of continuous functions
/ : Φ'-*C whose support Supp/is such that for each cofinite subspace V, πF(Supp/)
is compact. In fact, we then have a simpler characterisation : πv can always be
realised as a map
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for some fixed {φi9 ..., φn}, vectors in φ, and so the requirement is equivalent to the
weak boundedness of Supp/ But in the dual of a nuclear space this implies
compactness ([9], p. 73) and so (£2 is just the continuous functions of compact
support. While this is neat, it must be considered a defect of the present theory since
this is a very restricted class of test functions.

We can relate promeasures to pseudomeasures in (£2 (as in Theorem 2) with the
help of the following lemma:

Lemma. // K is compact, then each (unbounded) promeasure μ on φ' determines a
measure μ(K) with support on K.

Proof. For co finite V define μ'v = %πv(K}μv, a measure on Φ'/V. Then the collection
{μ'v} satisfies μv''=Pvw^w = ̂  f°r any co finite W with WcV, pvw being the
natural projection Φ'/W-^Φ'/V. The set of co finite Win V forms a directed set, and
the measure

is well-defined (possibly zero). It is now possible to verify that the collection {μ(y }}, is
a bounded promeasure provided that \μv(Φ'/V)\>0 for some V (Appendix C). But
since Φ' is the dual of a nuclear space, this promeasure coincides with some measure
μW([9], p. 320).

Now let μs>βo be the (unbounded) promeasure whose Fourier transform is the
Gaussian of variance exρ{ — (i/2)(G(x),x)}, where G is defined by restriction to
Φ CX C Φ', and the inner product is induced from X. Define

for Supp/cK, compact. Then (v,/) is continuous in / (under the topology of
uniform convergence in a fixed K\ and so v is a pseudomeasure for the test- function
space (£2.

5. Two Fixed Endpoints and Schrδdinger's Equation

(a) Schrόdinger's Equation

Having established this formalism, we now return to (1) and examine the object Ψ
thereby defined. If we take v to be a promeasure on (£ and set ne(q): = q(t) (the
projection of Φί onto the path endpoints), then we see that Ψ is a promeasure on E
given by

(!P,/) = (v,/°πe) (/a cylinder function on £). (5)

Whereas Ψ always exists, the wave-function ψ exists only if we can form a sort of
Radon-Nikodym derivative dΨ/dμ = ψ with respect to a natural μ. This has the best
chance of working in the dual theory where such a μ is introduced from a
consideration of the canonical commutation relations ([13], p. 22). From now on I
shall deal only with Ψ.

To define G uniquely we need a second boundary condition, and, since the
formalism requires the final endpoint to be free to range over £, we impose the
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condition q(t) = 0; i.e. G is defined by imposing this restriction on Φ, and Φ1 is then
the image of the resulting G1/2. We shall see shortly how this relates to the usual
prescription of fixing the second endpoint. (Note that an alternative procedure
would be to modify the action S by the inclusion of endpoint terms, a course which
is natural in General Relativity where one includes terms involving the second
fundamental form of the final space-like slice.)

With this choice of G, and assuming the existence of its representation (3) by a
Green's function g, we can use (4) to write (5) as

w (6)

where i^'ij = (Pn(el\ gt(t,t)(Pn(ej)}\ writing g as gt to indicate its dependence on the
parameter value t at which the second boundary condition is imposed.

We can now derive a Fourier- trans formed Schrodinger equation for the Fourier
transform of Ψ, which, from (6) is

If D = A a2 /at2 + Bd/dt + C, where A, B, and C are continuous invertible linear maps
E-*E (Hubert) then we can verify (putting now g for g\t, ή) that

giving

?x, o C) + ί

providing the right hand side exists.
IfE is finite dimensional then we can put dΨ(x) = :ψ(x)dnx and Fourier invert to

get

(7)

Here the first and third terms correspond to the usual terms in the Hamiltonian,
for the case of a particle in a quadratic potential, and the fourth is a normalisation
term that is required because Ψ is normalised by Jd^x'^l (in so far as it is
defined) and not

(b) Two Fixed Endpoints

I shall now argue that an integral over v can in a sense be split into an integral over a
set of paths with both endpoints fixed, followed by an integral over the final
endpoint. We continue with the same boundary condition for G as in (a) above.

Let P1 iΦ^R"1 be a projection, as in §3, and let P2 = P2f°πe:Φl->E-+1Rn2 be a
projection of the sort considered in (a), depending only on the final endpoint. We
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consider a composite function /(x) = /1(x)/2(x), where/1 =/^ °px depends on the
whole path, but f2=fγ°P2 depends only on the endpoint. Thus / is a cylinder
function of n = n1+n2 dimensions, associated with the projection
pπ = p1xp2:Φ1^R».

If we now apply (4), we can partition 1R" into R"1 x R"2, with u = (u1, u2) and 'W
becoming5

so that

with

(assuming the invertibility of i^11 and Ί^22).
To see the significance of this decomposition introduce the Green's function §

corresponding to the boundary condition q(t) = 09 instead of q(t) = 0. We can verify
that g is given by

g(v, τ) = flf(v, τ) - gf(v, ί) (flf(ί, ί)) ~ 1 fl<ί, τ) (8)

(assuming the necessary invertibility and differentiability). Let iΓ be iΓ defined on
R"2 but using g instead of g, and define v, the Feynman promeasure with fixed
endpoints, by (4) with TJT replaced by i^.

Then I claim the following

Nearly- Theorem

(v,/1/2) = (f,v[/1,.]/2') (9)

where

and

/2':=/κ2°P2'.

[One could write (9) more suggestively as

ί /1(β)/2/(9(ί))dvfa) = ί d^W/^Wί/1^- TΛ(9))dv(g) (10)

if one allows the integral notation.]

These techniques have also been developed, more generally, in [5]
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Not-Quite-Proof. In the following I shall assume that various limits can be taken
without yielding surprising answers. In particular, we shall increase the dimension

n2 to N, so that now/2 Φ^E-^IR^-^R"2, and let JV->oo.
P

The projection E ̂ IR* is given by x^φ^x), ..., φN(x))ϊor φ1, ..., φNeE'9 so that
we can form the map

When Γ occurs inside integral expressions I shall assume that, in the limit as
N->oo, Γ can be replaced by (g(t,t))~l.

Now, the expression for Ψ in Equation (6), together with the result
= deti^22/detι^/'11, allows us to write (4), using an integral notation, as

(v,/1/2)=fd!P(x)/2/(x)
N

1/(2πiγι)1/2dnιv. (11)

Now

and a similar calculation yields, from (8),

as AΓ->oo. Inserting these limits in (11) gives the required result (10).

6. State-Manifolds6

In general relativity one replaces the set of all paths I~+M by the set of all 4-
geometries compatible with some initial and final conditions. There is considerable
freedom to choose topologies for such a manifold, and one must be guided by the
procedures already tested for vector spaces. In the paper [10] already referred to,
Isham has convincingly argued that one should use a nuclear topology for the
underlying space, as this achieves the simplest (though not the only) realisation of
the canonical commutation relations. Moreover, by working with a nuclear
topology nothing is lost that cannot subsequently be regained by completion to a
Banach manifold.

(a) Standard Formulation

The underlying manifold for space-time will be M = T x IR3, T= [0, £]. M being a
manifold-with-boundary, we shall make the usual conventions that "Ck" on M
means "extensible to a neighbourhood of M in IR4 and Ck in that neighbourhood".

6 See [7] for the basic ideas and notation
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The set Jίa is then defined to consist of all Lorentz metrics that are C°° on M and
induce a fixed positive definite 3-metric a on {0} x R3 = :S0.

Next we subdivide Jta into equivalence classes of metrics with the same
assymptotic behaviour. This is done automatically by placing a nuclear topology on
the metrics which regards two metrics as "nearby" if their difference falls off rapidly
at infinity, at all orders of differentiation: this topology causes M to fall into
disconnected components, each component being characterised by a certain
assymptotic behaviour.

To do this explicitly we can regard Jίa as a subset of the vector space Jf of all
symmetric C°° tensors of rank two on M, in which we can distinguish the subspace
J^Q of tensors for which the inner products

n 3

M k = 0 p,q,iι ik = 0

exist. We topologise Ji by taking all the open balls of J^ in these inner products,
and their translates, as a basis, noting that this does not make Jf a TVS ^VQ is the
connected component of the identity in Jf.

We are interested not in metrics, but in geometries, by which I mean an
equivalence class of isometric metrics. Thus we must take the quotient of Jla by a
class of diffeomorphism (noting that this will identify some metrics that are in
different components of Jίa: the diffeomorphism group may not act continuously).

If/: M->M is a C°° diffeomorphism that is identity on S0 such that/* maps Ma

into itself and is continuous on Jf^ then it is continuous on Jίa (with the relative
topology induced from Jf\ The set of all such diffeomorphisms is a group 2 and we
write ^a = MJ2.

Ήa is a nuclear manifold. To see this, it is sufficient to decompose Jίa locally, in a
neighbourhood of some g, into V x 2, Vc &ai by fixing gauge conditions. Explicitly,
given an extension of g to a neighbourhood of M, one can show7 that there is a
neighbourhood U of g in Jίa such that for each g1 in [7 there is a unique
transformation /:M->IR+xIR3 so that g"=f*g' satisfies grόi = gQi (ϊ = 0,l,2,3)
everywhere on /(M), and g"j = gij9 f\S0= identity on S0: = {0} x IR3. We can then
compose this with a specified C°° map which "levels up" the surface f ( { t } x IR3) to
coincide with {ί} x IR3, thus producing a map Jla-*Jta. By its construction, the map
can be shown to be in 2, thus giving the required decomposition. The proof of the
assertion then becomes a routine verification.

ya is not connected: its components represent classes of geometries with
inequivalent assymptotic behaviours.

We can also restrict to the class Jίb of metrics which also induce a fixed metric b
on {t} x IR3, and define ̂  as the set of classes of points in Jtb

a this will be a nuclear
submanifold of ̂ α.

Finally, we shall assume that &a has a naturally defined linear connection for
some class including those metrics of physical interest. This is proved in the
appendix for a class of spaces in which all the geodesies eventually escape to infinity.

Appendix B
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(b) Dual Formulation

&%, the "dual manifold" to ̂ Λ, will be constructed so that its tangent space at a point
is isomorphic to the dual of a tangent space to ̂ fl, the isomorphism being natural for
a given choice of gauge. This means that we cannot use the manifold Jί*/@
(quotient by the obvious dual action of 2ί) which is too big: the gauge freedom is
dualised in ^*, and only part of this dualised freedom is then taken out by 3).
Instead we use a direct consideration of the gauge conditions.

Define a gauge surface G to be a closed linear subspace of Jί that is everywhere
transverse to the orbits of®. [Such G's exist, by the arguments of (a) above.] Then
let © be the set of all gauge surfaces. We note that if φeS) then G' = </>*Ge(5, and
dualisation gives a map φ^ : G'*->G*. We regard this as an action of ® on the
disjoint union of all the G*, finally defining ^* as the quotient by this action :

This space then acquires the structure of a Hausdorff manifold, modelled on a
typical G*.

(c) (3 -f 1)- and 4-Dimensional Formalisms

We have seen in (a) that a neighbourhood in <ga can be described in terms of space-
times having certain coordinate systems assigned in them, which exhibit a particular
homeomorphism with TxR 3. Using this, we see that the tangent space to a
geometry ge&a can also be represented in terms of (perturbation) fields on T x R3,
subject to a gauge condition. Then the application of a gauge transformation can
make the gauge condition independent of τe [0, ί] = T, so that we are left with a
representation which can be regarded as a map τ-» (field on 1R3), i.e. a path with state
space the fields on R3 which satisfy the gauge condition.

It is appropriate to note here that the manifold approach allows one to deal with
geometries which cannot themselves be represented by, for instance, normal
coordinates, even though the perturbations from them can be represented in terms
of the spatial metric alone: there is no one gauge condition which enables us to
cover the whole of &a with one "coordinate patch" and hence to regard it as a vector
space. But this global consideration — which might be thought but a minor
complication — is not the main motivation for stressing manifolds, as opposed to
vector spaces. A manifold technique is essential for piecing together the linear-space
pseudo-measures which are approximately valid only in a very small neigh-
bourhood of their base-point (§ 7).

To give a clearer idea of .the relationship between the four-dimensional
geometry defined in (a) and the path- formalism of the previous section, it is useful to
compare the situation with the case of scalar fields on Minkowski space. Here
E = L2(ΊR3) and S is defined on a subset of the paths from T= [0, f]-»E (viz. the L\
closure of the differentiable ones) by

S(Φ) = } dτ[J(m
0
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where φ = φ(τ; x) may be regarded as the path τ-+φ(τ . ) [or, more conventionally,
as a field (τ,x)->φ(τ;jt)]5 <,> denotes the inner product J( )d3* in E and

Consequently the operator G can be represented by a Green's function g(τ, υ),
this being, for each τ and u>, an unbounded operator defined via the Fourier
transform in R3 by

cos/c°(u-0sin/c°τ
--

τ Π T n / \
sm/c%cos/c°(τ-ί)

Here the expressions are to be interpreted as defining g as the unbounded
operator obtained by closing the operator defined above when ψ is such that the
right-hand side is Fourier-invertible [e.g. with ψ restricted to rapidly decreasing
functions for which \p(k) vanishes at k** = (n + %)πft].

The Green's function g should not be confused with the related quantum-
mechanical "Green's function". Thus the fixed-point function g does tend to a limit
as τ, Ό and ί-» oo, with (τ — Ό) finite, but the result is a real time-symmetric kernel for
m2 + D and not the Feynman Green's function.

7. The Manifold Problem

The translation of the preceding formalism to the setting of the manifold <& (or 0*)
involves two steps. In the first, which is fairly clear in outline, the "test function"
space (5 (or K2) must be extended to a space of functions on the manifold. In the
second step, where there remain several uncertainties, the pseudo-measure must be
freed from its dependence on the coordinates and on the base-point q0.

(a) Test- Functions on Manifolds

In the case of ̂  the situation is particularly tractable because we can form partitions
of unity out of the functions of (S. The construction can be modelled closely on the
work of Bonic and Frampton [15], except that S does not, of course, correspond to
any ^-category. The definition of S is, however, preserved by composition because
we have the following.

Lemma. Let f:E-*F9 g:G-+E be C°° functions between Banach spaces defined on
domains in which \\Όng\\£(Cnγ, \\Όnf\\^(Cn)

n. Then ||D"(/°0)il ^(QM, where
C^ = CnC'n(n/2n1/2)1/n. (We assume that C1^C2^... and so on.)

Proof. Repeated differentiation gives

= Σ PV) (0(*)) Σ (D"
fc=l P»

(12)
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the second summation being over the set P£ of every arrangement of the integers
1,2, ..., n into an unordered set of k disjoint exhaustive nonordered nonempty
subsets, of the form {{f1?i2,..,ini}, 0'Λl + 1,...Λ2}, ...,tt,k_1 + ι»-Λ}} Consequently

k=ί

χ I(n2-nj\. ..(n-n^,)!.

But the number Σ n1l...(n—nk_ί)\ is just the number of unordered arrangements
ph

into k nonempty disjoint exhaustive ordered subsets, = n \(n — 1) \/(n — k) l(k — 1) Ik I
Hence

- 2π1/2 (2CΠQ)«π! q.e.d.

We can now show (Appendix B) that there is an atlas on <&a whose transition
functions have π'th derivatives that are bounded (pointwise) by Knn!, if we measure
derivatives by reference to the L2, rather than the nuclear, topology on M — as is
needed for investigating the class ® which is defined on X rather than Φ.

If we restrict to functions of bounded support then the dependence on \\x\\ in the
definition of ® can be ignored, and we obtain a class which is invariant under
certain coordinate changes on ^fl, using the lemma to compose functions with
coordinate changes. This enables us to apply the method of Bonic and Frampton
[15] to deduce:

Theorem. There is an atlas j/ on ̂  a such that for every open covering ^U of^a there is a
refinement %' and a partition of unity subordinate to ^U', each of whose functions are in
a class ® for some suitably chosen chart in <$/.

This result makes reasonable the following extension of ® to the manifold @a:
we define § to be the class of functions /:^α->C such ihatf = fl+f2 + ... + fn (i.e.
finite), with each ft being in an ®-class for some chart of j/. Then § inherits a
topology from ® in a natural way, and pseudomeasures on ^α are defined as
members of §'.

(b) The Construction of a Pseudomeasure

The essential criterion for the choice of pseudomeasure v on ̂ a is that it should, near
each point qQ of 0α, approximate to the vector-space pseudomeasure vs ίo

constructed in normal coordinates (with respect to the Riemannian structure on ̂ α)
based on q0. Where q0 is not a turning point of S the first derivative is incorporated
by translating the pseudomeasure, writing (rather informally)

with

Σ = const + o(q - q0),
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where

regarding the second derivative as Ό2S(q0) :Φi-^Φ'ί and ΌS(q0)e Φ\. Then one can
proceed to construct a pseudomeasure as before, only using the translated
coordinate q — q1.

The important feature is that the second derivative is to be evaluated in normal
coordinates at the current base point, and not at some fixed turning point, if we are
to achieve a true global formulation. This is essential to the philosophy of the path-
integral approach, in which the classical path emerges from the formalism as one
where the action is stationary : it would be otiose to fix a classical path at the outset
as a base-point from which the formalism was to be developed.

Thus the problem, which has yet to be solved, is to construct a pseudomeasure v
which is in some sense "tangent" to vs>qo at each q0 — and not just the turning points.
The following outline of how to do this is mainly conjectural.

The aim is to write

for / having support in some neighbourhood of q0, kqo being a "compensating
function", equal to unity at qQ. In the finite dimensional case we would have

detP2%0)
k«°(q)-e detD2%) '

The determinants are not defined in our case 8 but we could consider the equivalent
formulation

There is considerable evidence that this is defined in the case of general relativity.

The directional derivative — (Ό2S(tq + [1 — f]q0)) does exist if we strengthen Φ1 to
CIΓ

incorporate higher derivatives of the metric, and the existence of the trace depends
essentially on the behaviour of the high-frequency perturbations to the metric,
which are comparatively insensitive to the lower derivatives of the perturbed
Einstein operator. While simple cases suggest that the trace exists, no way has yet
been found of evaluating D2^ in normal coordinates at each point of ^α (the
coordinates being chosen continuously along the path from q0 to q).

Of course, even if the above expression is well defined, this is no guarantee that
the resulting v will be independent of q0, as it is in the finite-dimensional case.

See [16] for a direct approach to this problem
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(c) The Dual Case

It is clear that the class (£2 is too narrow to allow a similar construction on ̂ *. Here
one must look, if possible, for an indirect demonstration of the existence of a v with
the required properties of "tangency" to the vStqo.

8. Conclusions

I have tried to develop the path-integral approach as a method in its own right, not
dependent on results from quantum theory. It seems clear that this development can
be carried a long way—but possibly at the cost of diverging from orthodox
quantum theory. For instance, it is far from obvious how one could construct a
Hubert space translation of the dual path integral theory. While this presents
possibly an insuperable handicap to the application of the theory to fields that are
already well studied by traditional methods, it may provide new opportunities in
quantum gravity, where the path integral approach seems better matched to the
geometrical techniques that relativists are already accustomed to.
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Appendix A: Riemannian Structures on Manifolds of Geometries

It will be helpful to generalise the context slightly to a set Jί of metrics defined on an
77-dimensional manifold-with-boundary M with the following properties:

(i) either the metrics in Jί have positive definite signature, or (for n = 4 only)
they have Lorentz signature

(ii) for each metric in Jί and each xeM there is a compact K3x and a
diffeomorphism M\K->IR4 which is onto either IR4\£ or T x IR3\£ (B a ball in R4)
and such that all geodesies from x leave int K and subsequently have dr/ds and their
divergence uniformly bounded positively away from zero (r = radial distance in R4,
s —affine parameter);

(iii) the topology on Jί is such that the members of T(Ji) (perturbations) die off
at oo in an L1 manner [with respect to the diffeomorphism in (ii) above].

The only condition requiring special comment is (ii), which is a very weak
"assymptotic flatness" condition.

Let 2 be a group of surjective diffeomorphisms/ :M->M for which/* \M^Jt
and suppose that the induced orbit through geJί, for any g, is a closed submanifold
Φg and that the (9g foliate Jί. (This assumption thus excludes symmetric and "nearly
periodic" metrics from Jί.) The tangent space Tg(Gg) to an orbit will, as usual, be a
space of tensor fields of the form ξ(k.j} (covariant differentiation with respect to g),
and the tangent space at [#]̂  to ^=Jίl^) will be Tg(Jt)/Tg(G^.

We shall construct a Riemannian metric < , > on T(Jί) such that <£, γ\yg = 0 for
any ξeTg(J()9 ηεTg((9Q): in this case < , > will reduce to a metric on
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If we restrict attention to metrics of the form

<£, ηy = J JC^'V, x)ξ,f(xt)ηkl(x) }/(g(x)g(x'))dnxdnx'

where κiΊ'kl = K(i'nkl = KiΊ'(kl\ then we require X to be symmetric
= JK

Wί' 7"(x,x/)) and, for reduction to Γ(0), to satisfy

Kί>j'kl

;l = 0. (Al)

There is obviously a multitude of solutions to this on a noncompact manifold,
and any smooth choice would satisfy our requirements. But, fortunately, it is
possible to give an explicit construction of a natural solution for the class of metrics
being considered.

Take the positive definite case and work at first locally, with x in a normal
neighbourhood of x'.

We would achieve a conventional L2 metric if we set Kl'j'kl = g(l'(kgj')l)δ^}(xf)
(where gi>k is the two-point parallel propagator) but then, of course, (Al) would not
be satisfied. Thus the ^-function must be "spread out" somewhat, and we are led to
consider the form K ί / j ' k l ( x , x')=Xί'Xj'XkXlf(x, xf) where exp^pT) = x', expx,(Xr/) = x
This will satisfy (Al) for xΦ x' provided that / on the geodesic between x and xf

satisfies

(where θ is the divergence of the geodesies from x and s is their distance parameter).
In order to obtain a symmetric K we must replace (Al) by ( K l ' f k l ( x f , x)
+ Kklί'j'(x,x')).l = Q and solve the resulting equation for /. The constant of
integration can be fixed by the requirement f~s~(n+1} as x->x'.

We actually require (Al) to be satisfied not only for x Φ x', but in a distributional
sense for all x. This is easily verified to be the case.

The global extension of this requires the use of our restrictions on Ji. The
integral expression for the inner product remains defined (/ being continued
through critical points on the geodesies by demanding asymptotic symmetry about
the critical point), providing we write it in the form

<& ηy =f d"x'<sίv,(x') f d»- ̂ 'ds^je'^^/tx',*', s)

-XkXlηkl(x) }/gWg(x)J(x9X', s)

whereX' ranges over the unit tangent sphere at x', x — Qxpx,(sXf) andX is defined as
— s times the parallel propagate of X' to x. J is the Jacobian of the coordinate
transformation (obtained from the Hessian of the Jacobi fields on the geodesic) and
vanishes at critical points. Convergence follows from the isolation of the critical
points, and the assumption on the divergence of the geodesies and their asymptotic
behaviour.

In the indefinite case the function / can no longer be normalised by refering to a
distance parameter. However, for n = 4 we can look for a K of the form
X'l'X'j'XkXlf(x,x')1m(Γ(x9x') + iQΓΊ/2, where Γ is the square of the geodesic
distance and (Γ + ίQ)λ is the generalised function, defined analogously to (P + ityλ in
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[17], p. 274. We find that / must satisfy the symmetrized form of

-3/s)f=Q

and so we can achieve a normalisation by requiring /~ 1 as x->x'. The rest of the
analysis is essentially unchanged.

Appendix B: Gauge Transformations

We carry out a coordinate transformation M-+JSL4:xμ'->χμ defined by xμ' = xμ

+ ξμ(x\ ξμ being chosen so that the transformed metric satisfies g0v(xμ) = g*v(xμ)
(v = 0, 1, 2, 3), with g* being the "reference metric" which serves as a base point for
imposing this gauge condition on metrics in a neighbourhood of g*. Thus we
demand

F(ξ, g)(x)v = g0v(x - ξ(χ)) + 2gρ(0(x -

+ gρσ(*-ξ(x))ξσ,0ξ >v-gl(x-ξ(x)) = 0. (Bl)

This is a nonlinear differential equation for ξ, to be solved under the condition
ξ = 0 on S0. Solution is clearly possible provided g0v - g$v, and their derivatives, are
suitably small (globally).

Let us regard F(ξ, g) as a function from the nuclear space of pairs of fields (ξ, g)
into a nuclear space of vector fields. Differentiating we obtain from (12)

^

/n(n- l)

+ (2 + 2ξ')\

+21 Σ δlξ>δ2ξ>δ%-*}gδ4ξ...δnξ

where all the coordinate indices have been omitted for brevity, ξ', g(n) etc. denote
partial derivatives with respect to the coordinates, and summations (over the
number of terms indicated above the £) are over permutations of indices on the
terms following so as to symmetrize them.

We see that, because F is polynomial, the number of terms rises modestly with
increasing n. More significantly, successively higher coordinate derivatives of the
metrics become involved, and there is no limit placed on the rate of increase of these
with n. Thus if we are to bound ΌnF by some known behaviour as n-> oo we must
modify the transformation somewhat. Instead of determining ξ by (Bl) we set

F(ξ,g)(x)v = 0 (B2)
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where gμv(x) are functions obtained from gμv by smoothing with a fixed analytic
kernel. Also g* is assumed to be smoothed similarly. It is clearly possible to find a
sub-atlas for 3?a all of whose coordinate transformations are derived from gauge
transformations of this form. (This is somewhat analogous to choosing an analytic
structure on a finite-dimensional manifold.)

The derivatives of the function F(ξ, g) = F(ξ, g(g)) are now freed from the spatial
derivatives of g, so that if we define ξ = Ξ(g) by F(ξ, g) = Q, we can bound ΌnΞ by
A - Knn ! with the norm on g depending only on the magnitude of gμv(x) (e.g. a simple
supremum norm). The Lemma of § 7 is used to estimate the derivatives of
compositions.

To complete the gauge transformation we "level up" the top of the slice by
xμ-^x"μ, where

(a= 1, 2, 3). To determine α, note that the previous transformation carried a point
(ί, xb') at the top of the slice into some point xμ(t, xb') so that we now need

t = x°(t,xb')(l-a(xa(t,xb'))).

The derivatives of this transformation can again be estimated, noting that the
coordinate derivatives of ξ are now smoothed because of the smoothing imposed on
g. Consequently we obtain bounds of the same form: A'K'nn\

If we write the composite transformation as xμf = xμ" + ξμ(x"\ then we obtain for
the transformed metric an expression like the first three terms of (Bl). Thus the
derivatives of the transformation of metrics g'-*g" will again involve the spatial
derivatives of the original metric. We conclude, therefore, that if we put coordinate
charts on $a simply by imposing gauge conditions on the corresponding metrics,
then the coordinate-transformations on ^a will not have well-controlled higher
derivatives. Consequently, the coordinates on ̂ a are to be fixed by smoothing the
metric and applying a gauge transformation to the smoothed metric. This will
produce derivatives satisfying the required bounds.

Appendix C: Submeasures

Let X be a topological vector space and 2F the class of its co finite subspaces. A
submeasure is a family {μ'v\Ve^}, μ'v being a positive bounded measure onX/V,
satisfying

for WCV: V,We^; pvw : X/W-+X/V. Set μv = l\mμ* (as in §4).
w

Proposition. {μv\Ve^} is a promeasure.

Proof, (a) μv is additive, since
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(b) We now show that μ^(Z)->μv(Z) uniformly in Z. For

μ^(Z)-μv(Z) = μ^(X/V)-μ^(CZ)-μv(X/V) + μv(CZ)<μ^(X/V)-μv(X/V)

since μv < μJT.
Thus for all £, we can find W(ε) such that

WC W(ε) =>0 ̂  μJΓ(Z) - μv(Z) < ε (VZ),

where W(ε) decreases with ε.
(c) We can now deduce countable additivity from (b). Put U = W(ε/2N). Then

ε/2> -
ϊ = 1 i = 1

Thus

i.e. Σ ί̂ ) ~ Σ

(
~~
Σ zi

N+ί

Σ
,N+1

» oo ) as required.

(d) The projective properties can now be routinely verified, thus proving the
proposition.

References

1. Abers,E.S., Lee,B.W.: Gauge theories. Phys. Rep. 9C, 1—141 (1973)
2. Bourbaki,N. (pseud.): Elements de mathematique, Fascicule XXXV Livre VI Integration, Chapitre

IX. Paris: Hermann 1969
3. DeWitt-Morette,C.M.: Commun. math. Phys. 28, 47—67 (1972)
4. DeWitt-Morette,C.M.: Commun. math. Phys. 37, 63—81 (1974)
5. DeWitt-Morette,C.M.: Ann. Phys. 97, 367—399 (1976)
6. Edwards,R.E.: Functional analysis. New York: Holt, Rinehart and Winston 1965
7. Fischer,A.E.: The theory of superspace. In: Relativity (eds. M.Carmeli, S.I.Fickler, L.Witten), pp.

303—358. New York: Plenum Press 1970
8. GeΓfand,LM., Shilov,G.E.: Generalised functions 3. New York: Academic Press 1967
9. GeΓfandJ.M., Vilenkin,N.Ya.: Generalised functions 4. New York: Academic Press 1964

10. Isham, C. J.: Some quantum field theory aspects of the superspace quantisation of general relativity.
Preprint, Kings College, London (1975)

11. KijowskiJ., Szczyrba,W.: Studia Math. 30, 247—257 (1968)
12. Maheshwari,A.: J. Math. Phys. 17, 33—36 (1976)
13. Simon,B.: The P(φ)2 Euclidean (quantum) field theory. Princeton U.P., Princeton (1974)
14. Truman,A.: J. Math. Phys. 17, 1852—1862 (1976)
15. Bonic,R., FramptonJ.: J. Math. Mech. 15, 877—898 (1966)
16. Hawking, S.W.: Zeta function regularization of path integrals in curved space time. Preprint,

Cambridge, 1976



146 C. J.S.Clarke

17. GeΓfand,I.M., Shίlov,G.E.: Generalised functions 1. New York: Academic Press 1964
18. Mayes,LW., Dowker,J.S.: Proc. Roy. Soc. Lond. 14, 434 (1973)
19. Feynman,R.P., Hibbs,A.R.: Quantum mechanics and path integrals. New York: McGraw-Hill

1965
20. Albeverio, S. A., H0egh-Krohn, R. J.: Mathematical theory of Feynman path integrals. Lecture notes

in mathematics, Vol. 523. Berlin-Heidelberg-New York: Springer 1976
21. Bjδrck,G.: Ark. Mat. 6, 351—407 (1966)

Communicated by R. Geroch

Received February 17, 1977




