
Communications in
Commun. math. Phys. 56, 115—123 (1977) M3thθΓnatίC3l

Physics
© by Springer-Verlag 1977

A Classification of SU3 Magnetic Monopoles

J. Madore*

Centre de Physique Theorique, CNRS, F-13274 Marseille Cedex 2, France

Abstract. A classification scheme is proposed for SU3 magnetic monopoles
when the Higgs fields lie in the adjoint representation. The scheme is based on a
study of the second homotopy groups of the orbit spaces.

I. Introduction

Consider an octet of self-interacting scalar fields transforming according to the
adjoint representation of SU3, minimally coupled to a set of Yang-Mills fields.
Suppose that the scalar self-interaction potential is generic—that it depends
explicitly on both invariants of the adjoint representation. Then at infinity the little
group is U2. See, for example [1, 2]. Spontaneous symmetry breaking leaves
massless the Yang-Mills fields corresponding to 172, that is, those that commute
with the octet of scalar fields. If we wish to discuss the electromagnetic properties of
a solution to the field equations, one of these must be chosen as the electromagnetic
field. That is, we must choose a Uί subgroup of l/2. U2 contains also SU2 as a
subgroup. There are three ways to choose U1 according to how it intersects SU2:

(i) U^SU2 = {1},

(ii) C71nSt/2 = Z2,

(iii) U1CSU2.

We are interested in everywhere regular, finite energy, static solutions to the field
equations and we wish to show that they may be classified by two integers s and t
which satisfy the following conditions, according to the three possible choices of

*V

(i) s is even or odd, ί = 0,

(ii) s is even, t = 0,

(iii) 5 = 0, t is even or odd.
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Cases (i) and (ii) constitute a refinement of a classification proposed by Tyupkin et
al. [3] and by Monastyrskii and Perelomov [4]. Case (iii) has also been considered
by Corregan et al. [5] and by Corregan and Olive [6]. The solutions generally have
magnetic charge in the sense of Dirac [7] (see also Schwinger [8]). Let e be the
electric charge and g the magnetic charge; they are connected by the relation

As in the SU2 case [9, 10, 11, 12], the classification is incomplete in that we
cannot calculate the dimension of the solution space for every possible value for the
pair (s, ί).

Section II contains a discussion of the field equations and the topological
implications of a choice of boundary conditions at infinity.

Section III contains a review of the SU2 magnetic monopoles. The SU3

magnetic monopoles are discussed in Section IV.

II. Global Problems

Suppose that G is the symmetry group of a given Lagrangian defined on a manifold
M, which we shall define later as Minkowski space with a boundary at space-like
infinity. Let P be the trivial bundle over M : P = M x G, and H a subgroup of G. We
shall say that the symmetry is broken if there is given a reduction of P to an H-
subbundle Q. The reduction determines, and is determined by a section σ in the
associated bundle E with fibre G/H [13, 1, p. 57]. Let I) be the Lie algebra of H. If ω is
a connection on P, we shall choose as connection on Q the projected connection ώ,
that is, the t)-component of the restriction of ω to Q [13, 1, p. 8.3]. In the cases which
interest us this will always be a connection.

We are interested in the Lagrangian describing an octet of self-interacting scalar
fields transforming according to the adjoint representation of SU3, minimally
coupled to a set of Yang-Mills fields.

In general, let P be the trivial bundle, and let ω be a connection on P. The Yang-
Mills field is given by a section of P. A set of scalar fields — the Higgs fields — is given
by a section of an associated G-bundle F with fibre g (the Lie algebra of G), and G
operating by the adjoint representation. The covariant derivative of φ,

Dμφ=dμφ+ιrμ,φ-],

is determined by ω. Let Rμv be the curvature tensor and suppose, for simplicity, that
G is semi-simple and simply connected.

The most general invariant Lagrangian which leads to second order field
equations is of the form

(π.i)

/ is the Yang-Mills coupling constant and the coefficients in Jδf are determined by
the choice of normalization of the basis of the Lie algebra. For example, if GisSU2

we choose σ_ /= — τj where τj are the Pauli matrices and if G is SU3 we choose

Kχ= — λa where λa are the Gell-Mann matrices.
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The energy momentum tensor one derives from J§? is given by

Tμv=jΐΊr(RμσR«)-2τr(DμφDvφ)-3>gμv . (11.2)

Consider now the manifold M. Define B^, M, and M0 by

The boundaries of these manifolds are

We are interested in everywhere regular, static, finite-energy (soliton) solutions
to the field equations derived from (II. 1). Each such solution defines by restriction a
regular function φ on S2^. From the expression (II.2) for Tμv we see that if the energy
is to be finite we must have

Rμv = o(r~\ Dμφ = o(r~2). (11.5)

From the field equations for φ and from (II. 5) we deduce that the potential V must
be extremal on dM :

δV
— =o(r-2). (IL6)

If G = SU3, and V is generic, then this implies [1, 2] if φ does not vanish
identically on dM that it belongs to the orbit that contains the hypercharge
generator and that the little group is U2 In general we suppose that the extrema of V
on dM all belong to one orbit of G. If we call a point in φ-spacε where V is extremal a
classical vacuum, then this means that we assume that the degeneracy of the vacuum
is due entirely to the action of the group [3]. In general let H be the little group. We
see then that the boundary conditions at infinity for the soliton solutions to the field
equations are in one-to-one correspondence with the applications of the sphere S^
into G/H. Any two boundary conditions on dM may be locally joined by a gauge
transformation. If this gauge transformation can be extended globally over dM then
the boundary conditions are equivalent — that is, the solutions corresponding to one
are gauge transforms of the solutions corresponding to the other. It can be shown
that this is the case if and only if the corresponding applications of S^ into G/H are
homotopic. The inequivalent boundary conditions for soliton solutions are
therefore in one-to-one correspondence with the elements ofπ2(G/H) [3]. This is
the first step in the classification of magnetic monopoles. The second step consists in
identifying the electromagnetic gauge group Uί9 as a subgroup of H.

A soliton solution defines a section σ over dM of the associated G-bμndle E with
fibre G/H. σ can be always extended over M0 but it can be extended over M if and
only if the corresponding element in π2(G/H) is zero. Each soliton solution
determines therefore a reduction of P over M0 to an H subbundle Q — and therefore
a broken symmetry. In general the extension of σ to M0 is not unique.

Let ώ be the projected connection on Q ώ determines an element c1? the first
Chern class, in H2 (M0 1). For an intuitive introduction to characteristic classes, see
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[14]. Since we have supposed that G is semi-simple and simply connected, π2(G/H)
can be identified with nl(H), which we shall suppose to be isomorphic to Έ. The
inequivalent boundary conditions for soliton solutions are therefore in one-to-one
correspondence with the integers [3]. Let s be the integer corresponding to the given
solution. Let τ be the fundamental cycle of H2(M0) (any sphere surrounding the
origin in 1R3). c1 is an obstruction to extending a section of Q over τ that is, c1 (τ) is
an element of π1(H) and with the above identification it may be considered an
element of π2(G/H). Therefore we have

c,(τ) = s. (II.7)

This equality was first noticed by Arafune et al. [11] in the case G = SU2.

III. SU2 Magnetic Monopoles

Let P and Q be as in Section II, with G = SU2 and H=U19 and let φ be a given
soliton solution. The orbit G/H of φ is the 2-sphere. We shall define on dM

n = φ/]/φ2, φ = φ σ,
z

and designate by the same symbol an extension of n to M0. If we identify G/H with
the unit 2-sphere in R3 :

= l}, (III.l)

the projection μ of P onto P/H9 [13, I, p. 57] is given by

μ(a) = n9 aσ3a~1 = n = n σ, aeSU2, (111.2)

and the kernel of μ is

Ker μ = E/! = {£Γ 2α<T3|0 < α < 2π} . (III.3)

The electromagnetic field eFμv is the curvature of the projected connection ώ
and the magnetic charge, in units of l/2e9 is given by the element of π2 (S2) defined by
the boundary values at space-like infinity, (II.7) [9, 10, 11].

In order to give an explicit expression for Fμv, and to identify the charge e in
terms of the Yang-Mills coupling constant /, it is necessary to examine more closely
how ω\Q projects onto ώ. P is the trivial bundle and it has a global section, for
example the unit element of SU2. Let Γμ be the Yang-Mills field given by this
section then ω may be written

ω = a~l Γμadxμ + a~ l da .

Any local section of Q is given by a = b(xΛ) where on dM, b is a solution of
n = bσ3b~1. Therefore, locally

ωlQ = Γμdxμ-2σ3da, Γμ = b~lΓ μb^ b~l dμb. (III.4)

The projected connection is locally of the form

= eAμ. (111.5)
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This is to be identified with the σ3-comρonent of ω(Q. This identification is most
easily made by considering the corresponding co variant derivatives in an associated
vector bundle F — for example, with fibre (C2. Let

\V>2/

be a local section of such a bundle. Then

and we have

The sign of e is not significant. If we had used ψ2 instead of φ1? in (III.6), we
would have obtained e= +f/2. The possibility of a reduction of SU2 to U1 means

that F splits into the sum of two U^ -bundles F1 and F2, with F2 = F* (the action of

U^ on F2 is the inverse of the action of U1 on F^). The Whitney sum formula [13, II,
p. 306] implies therefore that the reduction was only possible because P was a trivial
bundle. We shall encounter this obstruction to reducing an SL/2-bundle again in
Section IV (case iii).

From (III.4, III.5, III.7) we find the following expression for Aμ:

b-1). (III.8)

A straightforward calculation yields the curvature tensor eFμv of ώ :

eFμv = Tr (nRμv) - Tr (n \Dμ n, Dv n]) . (III.9)

This calculation is most conveniently carried out either in a gauge where n = σ3 or in
a gauge where Γμ = 0 (at a point). Fμv is the electromagnetic field tensor introduced
by 't Hooft [9].

It is of interest to consider under what condition the projected connection ώ
coincides with ω\Q that is, under what condition ω is reducible to a connection on
Q. One sees immediately that this is the case if and only if Rμv commutes with n. The
necessary and sufficient condition for this to be true is that the covariant derivative
of some multiple λ of n vanish :

Dμ(λn) = Q, λφO. (III. 10)

If this condition is satisfied everywhere in M0, then the only field present is the
electromagnetic field. What one has is a U 1 magnetic monopole imbedded in a
trivial SU"2-bundle and no extra physical fields. We saw in Section II that (III. 10)
must be satisfied on dM.
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IV. SU3 Magnetic Monopoles

Let P and Q be as in Section II with G = SU3 and H=U2 and let φ be a given soliton
solution. On dM the orbit of φ is G/H. We define

and we designate by the same symbol an extension of n to M0. If we identify G/H as
a 4-dimensional submanifold of the unit 7-sphere in R8, the projection μoϊP onto
P/H is given by

μ(a) = n, aκ%a~l = n = n - κ? aeSU3, (IV.l)

and the kernel of μ is [72. The second homotopy group of G/H is given by

Let ώ be the projected connection on Q. We can proceed in exactly the same way
as in Section III to obtain the Yang-Mills fields for ώ in terms of the Yang-Mills
fields for ω, with respect to any given local section of Q, Any such section of Q is
given by a = b(x<*) where on dM, b is a solution of n = bκs b~l. Therefore, locally

ωlQ = a-1Γf

μadxμ + a~ίda, Γ^b'1 Γ^ + b'1 dμb . (IV.3)

where a is in U2 and Γμ is given by the unit-element section of P. The projected
connection is locally of the form

ώ = a~1fμadxμ + a'1da. (IV .4)

Considering the corresponding co variant derivatives in an associated vector bundle
with fibre (C3, we obtain Γ in terms of Γ' :

J 21/3

If Kμv is the curvature tensor of ώ, the first Chern class of any vector bundle
associated to Q is given locally by

Cl = J-. Tr (Rμv) dxμ Λ ̂ xv . (IV.6)

cr(τ) is an integer s (II. 7). As in Section III, if (III. 10) is satisfied ω reduces to a
connection on Q.

To identify the electromagnetic field we must identify the electromagnetic gauge
group U1 as a subgroup of U2 and apply the reduction procedure once more,
passing from a C/2-bundle Q to a ί/^subbundle R. There are essentially 3 ways of
doing this depending on how Uί intersects SU2 :

(i)

(ii)

(iii) U1CSU2.
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We shall consider each of these three cases separately.
(i) U1 may be considered a subgroup of U2 by the embedding

r 0<α<2π (IV 7)

The quotient space U2/U1 is the 3-sphere S3 and its second homotopy group
vanishes. A reduction is defined by a section in the associated bundle E with fibre S3.
We shall choose as section the point (0, 0, 1) in S3 corresponding to the unit element
in U2. Any other reduction yields an electromagnetic field with the same magnetic
charge. Let ,R be the reduced L^-subbundle and let ώ be the projected connection on
R. ώ is locally of the form

ω = iΓμdxμ + ίda, Γμ = eAμ. (IV.8)

As previously, Γμ may be given in terms of Γμ by considering the co variant
derivative in an associated vector bundle F with fibre C2. For simplicity we suppose
that the section of Q which we choose to obtain a local expression for ώ is also a
section of R. Therefore we have

The possibility of this type of reduction of U2 to 17 15 means that F splits into the sum
of two L^-bundles F1 and F2 with F^ equal to R and F2 the trivial bundle. From the
Whitney sum formula we see then that

But cί(R) (τ) = 2eg where g is the magnetic charge and c±(Q) (τ) = s; therefore, we
have

2eg = s. (IV. 10)

The electromagnetic field tensor Fμv is given by

μ , v ] ) . (IV.ll)

(ii) U1 may be considered as subgroup of U2 by the embedding

eίa 0 \
Λ 0<α<2π. (IV.12)

The quotient space U2/Uί is the group SO3 and its second homotopy group
vanishes. A reduction is defined by a section in the associated bundle E with fibre
SO 3. We shall choose as section the unit element in S03. Any other reduction yields
an electromagnetic field with the same magnetic charge. Let R be the reduced t/j-
subbundle and let ώ be the projected connection on R. As in case (i) we find (IV. 8, 9).
The possibility of this type of reduction of 17 2 to Uί however means that F splits
into the sum of two isomorphic ι[71 -bundles F1 and F2. From the Whitney sum
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formula we see then that

Cl(β) = 2Cl(R);

therefore, we have

4eg = s. (I V.I 3)

The electromagnetic field tensor Fμv is given by (IV. 11).
(iii) U1 may be considered as subgroup of U2 by the embedding

0

0 e~
eMn -J> 0<α<2π. (IV.14)

The quotient space U2 x U1 is S1 x S2 and the second homotopy group is isomor-
phic to Z. A reduction is defined by a section in the associated bundle E with fibre
S1 x S2. There are therefore an infinite number of inequivalent ways of reducing to a
U1 -subbundle R, but two reductions defined by homo topic sections of E yield
electromagnetic fields with the same magnetic charge. Let R be a reduced U^-
subbundle and let ώ be the projected connection on R. As in cases (i, ii) we have
(IV.8) and we may suppose for simplicity that the section of Q which we choose to
define a local expression for ώ is also a local section of -R. But now Γμ is given locally

- . = = ί , 3 . e=-f/2 αv.15)
The possibility of this type of reduction of U2 to ί/ l5 means that F splits into the sum
of two [/j -bundles Fx and F2 with F2 = Ff . From the Whitney sum formula we see
that

that is, Q must be isomorphic to the trivial bundle. The reduction from Q to R in this
case is the same as the reduction P to Q in Section III. cί (R) (τ) is an integer t and we
have

2eg = t. (IV.16)

There is a natural section of £ given by

«3 = fcκ:3b-1. (IV. 17)

We recall that b(xa) is the element of Sl/3 which defines the local section of Q (and
R). The corresponding value of t is f = 0 and the electromagnetic field tensor Fμv is
given by

eFμv = Tr(n3Rμv)-Tr(n3[Dμn3,Dvn3]) (IV. 18)
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