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Abstract. We investigate the irreversible dynamics of infinite systems as
specified by completely positive, strongly continuous, one-parameter semi-
groups on a suitable C*algebra. Having shown how to construct such a
semigroup from a fairly general evolution equation we determine when the
semigroup is spatial with respect to a given representation of the algebra. A
special class of exactly soluble evolution equations on the CAR algebra is
studied in detail in order to test conjectured extensions of the theory.

§ 1. Introduction

If of is a C*-algebra, which we shall always assume possesses an identity element 1,a
dynamical semigroup on ./ is defined as a strongly continuous one-parameter
semigroup of completely positive [12, p. 136;47] identity-preserving maps T; of &/
into itself. Such semi-groups arise in various contexts in non-equilibrium quantum
statistical mechanics [12, 27], sometimes in the Heisenberg picture as above, and
sometimes in the Schrodinger picture. They may be obtained in the weak or singular
coupling limit when a system interacts with an infinite external reservoir [8, 13, 23,
35, 38]. In the converse direction given a dynamical semigroup one may frequently
dilate it to a dynamical group, specified in some sense by a Hamiltonian, on a larger
system [11, 20, 22, 33].

Two special types of dynamical semigroup are fairly well understood. In the first
case [12], o is the algebra £ (s#) of all bounded operators on a separable Hilbert
space S and T is obtained by duality from a one-parameter semigroup of the space
of trace class operators on 4. In the second case [19, 30, 42], T; is a one-parameter
group of *-automorphisms of .oZ. Results known in one or other of these two special
cases motivate much of the present work.

Associated with a dynamical semigroup 7, on .« is its evolution equation
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where the infinitesimal generator Z of the semigroup is a closed densely defined
operator on 7. Also associated with T; is the one-parameter semigroup T3 which
maps the compact convex set & of states of o into itself. In this paper we construct
and investigate the properties of certain dynamical semigroups whose evolution
equations are of a form previously studied in [9, 10]. Two particular goals are to
investigate the stability and spatial implementation of temporally invariant states,
defined as elements of

Fr={peS  Tfp=¢ forall t=0}.

In most of the paper we assume for definiteness that o is the CAR algebra.
Much of the analysis could, however, be carried through for the CCR algebra, a
quantum spin system or even a general C*-algebra with quasi-local structure. We
leave such modifications to the reader. We conclude this section by recalling some
standard results about the CAR algebra [45] and fixing our notation.

The CAR algebra </ over a complex Hilbert space # is a simple C*-algebra
generated by bounded operators a (f) which are conjugate linear with respect to
fe# and satisty

a(f)a*(g)+a*(g)a(f)=<g, f>1

a*(f)a*(g)+a*(g) a*(f)=0
for all f, ge #. The symbol a* (f) denotes a*(f) or a(f) indifferently. By a Wick
monomial of degree n we mean a product of n operators a*(f"). We say]the
monomial is normal (anti-normal) ordered if the a*’s are all to the left (resp. right) of
all the a’s.

For every unitary map U on 5# there is a *-automorphism o(U) of &/ such that

a(U){a* ()} =a*(Uf) (1.1)

for all fe #. In particular there is an automorphism 6 of .« such that %=1 and

0{a*(f)}=—a*(f)
for all fe . We define

Ay={Xed 0X)=X}

o =XeA:0X)=—-X}.
The observable C*-subalgebra .o/, of o/ is known to be simple and even *-iso-
morphic to &7 [17; 19, p. 306; 48].

If # = L*(R?), fe # and xeR3, we define f, e # and the unitary map U, on #
by

LW=UNW=f—x). 1.2)
If Be o we define B,e o/ and the automorphism o, of o/ by
B.=u (B)=a(U,)B. (1.3)

We shall call various maps spatially homogeneous if they are invariant under all
space translations.



Irreversible Dynamics of Infinite Fermion Systems 233

If S is an unbounded spatially homogeneous self-adjoint operator on
# =L*(R?) we define fie # by

fi=eS'f. (1.4)
If Be &/ we define B,e.«/ and the automorphism S, of .« by
B,=S,(B)=a(e")B. 1.5)

The infinitesimal generator of the group S; is an unbounded derivation [6,36] on &/
which we denote by Dg. In the symbol f,, or B, the first index will always refer to the
space translation and the second to the time translation.

§2. A Spatially Homogeneous Model

We let .o/ be the CAR algebra over # = L*(IR?) and consider the formal evolution
equation

dX 3

o =DX)+ HL {2B*¥0(X)B,— B¥B X —XB*B_}d°x (2.1)
where D is the derivation associated to the single-particle Hamiltonian S= —14
and B is a Wick monomial of odd degree. This equation is similar to, but more
general than, those studied in [9, 10]. The integral describes a stochastic influence
on the fermion system due to its interaction with an infinite external reservoir. The
slightly unusual presence of 6 in Equation (2.1) is necessitated by the form of the
anticommutation relations. 6 is omitted if B is a Wick monomial of even degree, or if
the evolution equation is interpreted as acting on the observable algebra <7 ,.

For all finite a the evolution equation

% =DX)+ [ {2B*0(X)B,—B*BX—XB*B }d°x (22)
|x|<a
on «/ is soluble because the RHS of Equation (2.2) defines a bounded perturbation
of D. The solution

X(0)=T,(HX

defines a dynamical semigroup T,(f) on & by use of the Trotter product formula as
in [12 p. 83]. Following [49], we show that as a— oo, T () converges to a dynamical
semigroup 1(¢) on /. The following theorem may be adapted to quantum spin
systems or quasi-local C*-algebras by following [40] or [50] respectively. One may
also extend it to the case where the interaction term of Equation (2.1) is replaced by a
finite sum of similar terms.

Theorem 2.1. Let
B=a*(f")...a*(f")

where n is odd and each f* lies in Schwartz space .
Then for all X e of

lim T ()X =T(@)X (2.3)

a— oo



234

E. B. Davies

in norm, uniformly for t in any finite interval. The limit T(t) is a spatially homogeneous

dynamical semigroup on .
Proof. We define the bounded map J,: o/ -« by
JX)=2B% _0X)B, _,
—B*_ B, _X—-XB¥_B

x,—t X, —t X, —t x,—t"*
The solution of

@ =DX)+ [ JX)d*x
dt Ix/<a
is
t
T(OX =8SX + j j S, _J S Xdxds
s=0 |x|Za

t s

+ 0 1 S_JS8._JSXdydxduds+...

s=0u=0 |x|Sa |y|Za
Therefore
t
S TX=X+ | [ J. Xdxds
s=0 |x|Za
t s

+ § [ JJXdxdyduds+...

5=0u=0 |x|Za |y|=a
We compare this as a— oo with the expression

S_, THX =X + f [ J.Xdxds

s=0 xeR3

t s
+ 7§ § § JJXdxdyduds+ ...
s=0 u=0 xeR3 yeR3
whose convergence has to be demonstrated.
Assuming X has the form

X=a%(g")...a*(g"™)

(2.4)

2.5)

(2.6)

2.7)

where each ¢’ lies in &, we estimate each of the integrands in Equation (2.6).

Assuming first that m is odd and writing
JuX)=—-B; _(XB, _,+B, _X)—(B; - X+XB}_)B, _,

we use the canonical anti-commutation relations to contract exactly one pair of
legs, in all possible ways, in each of the two anticommutators in brackets. This yields

JoX)= Z <f;,—n gj>Pij

(2.8)

where each P;; is a Wick monomial of degree (m+2n—2) and the series has 2mn

terms. If t,=0 Fourier analysis yields the estimate

I<fe -0 gD S Col +Ix)~*

2.9)
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valid for all 0=t <t, and xeIR®. Equations (2.8) and (2.9) are adequate to control
one pair of space and time integrations in Equation (2.6). Applying Equation (2.8)
iteratively and finally estimating the uncontracted field operators in norm we
obtain

Ufcoe [T ysyoee o X Xy oodX, dsy . ds, |

t Sn—1
<ac" | ... | 2mn-2(m+2n—2)n-2(m+4n—4n...

51=0 =0

2{m+(2r—2yn—(2r—2)}nds, ...ds,
a2 cnt'mim+2n—2)...{m+Q2r—2)n—(2r— 2)}71‘!

valid for all 0=t<t,, where a depends on X but ¢ does not. By the ratio test the
series in Equation (2.6) is norm convergent if 0<t<t, and 4cn*t<1. A similar
conclusion for even values of m can be based on the formula

J.X)=B; _(XB, _—B, _X)+(Bf  X—-XB}_)B, _,.
It follows that if X is of the form of Equation (2.7) and
0<t<t,=min{t,,(8cn?) "1}

then the right-hand side of Equation (2.5) converges uniformly to the right-hand
side of Equation (2.6). The density of linear combinations of such X, combined with
the estimates

1Sdl=1, [T@I=1
valid for all t=0, implies that

lim sup |T,)X—-T@®X| =0 (2.10)

a-o 0=ttty
for all X € /. The semigroup property of each T (t) allows one to define T(¢) for all
t=0 and extend the validity of Equation (2.10) to arbitrary ¢, =0. This then implies
that T(t) is a dynamical semigroup on .o7.

By Equation (2.6) the formula

T(t)o, (X) =, T()X 2.11)

is valid for 0=t =¢, and X of the form of Equation (2.7). Its validity for all X e &/
follows by density, and for all t=0 follows by the semigroup property of T(¢).

It is well-known with reversible evolution equations that even when it is possible
to define the dynamics as an automorphism group of the appropriate C*-algebra, it
may not be possible to make sense of the formal Hamiltonian of the system unless
one excludes spatially homogeneous pure creation terms from the interaction
Hamiltonian [28,49]. The situation with irreversible evolution equations is similar,
as we can see from an earlier paper [9], where in order to integrate an evolution
equation similar to Equation (2.1) within the Fock representation of the CAR’s, the
further restriction that B was of the form

B=a*(f")...a*(f" Va(f")
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was necessary. An associated difference between our approach and that of [9] is
that here we are defining the time evolution of observables rather than states.

§3. Evolution of G-invariant States

Let o/ be a separable C*algebra and G a group of automorphisms of ./ which is G-
abelian in the sense of [19,42]. For example G might be the group of space
translations of the CAR algebra .« over L*(IR®), which is weakly asymptotically
abelian by [16].

By [19, p. 222;42, p. 158] the set F; of G-invariant states on .« is a simplex. The
set X of extreme points of ¥ is a Borel set in #; and hence a standard Borel space.
We denote by B(X) the set of bounded measurable functions on X and by P(X) the
set of probability measures on X.

If we regard X as being a classical macroscopic phase space for 7, the following
theorem constructs a Markov process on X which describes macroscopic irrever-
sible dynamics compatible with T.

Theorem 3.1. If T, is a G-invariant dynamical semigroup on </, there is a function
P,(x, E) defined for all t=0, xeX and Borel sets ECX such that

(1) x,t— Pi(x, E) is measurable for all E;

(i) E—>P,(x, E) is a probability measure on X for all x,t;

(i) | Py(x,dy)P(y, E)=P.(x,E)
for all sz( t,x, E;
(iv) x(T;4)= }I{ #(A)Px,d¢) (3.1)

for all x,t and Ae .
Proof. The barycentre map B : P(X)— % is defined by

f(Bw= }f{ J)u(dx)

where fis an arbitrary element of the space A(¥;) of continuous affine functions on
S Since S is a simplex, B is one-one onto [2, p. 87]. Since T is G-invariant T3()
C ¥, and we can therefore define

B(x,E)=(B™" *Bs,) (E)

where ¢ e P(X) is the point evaluation at x. The validity of (ii), (iii) and (iv) is
immediate.

If 9 is the norm dense subspace of A(;) obtained by restricting elements of .o/
to &, then by Equation (3.1)

X, t= }f{ J(@)Px,d¢) (3-2)

is measurable for all fe 2, and hence for all fe A(¥;). Identifying the monotone
sequential envelope of A(¥) with B(X) by [1], it follows that Equation (3.2) defines
a measurable function of x,t for all fe B(X). Choosing f to be the characteristic
function of E completes the proof of (i).
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§ 4. Spatial Implementation of Dynamics

If T; is a dynamical semigroup on </ and 7 is a representation of .o/ on a Hilbert
space J#, we say that r is spatial with respect to 7; if there is a one-parameter
semigroup T;~ of normal completely positive maps on the von Neumann algebra
¥ =(ng/)" such that

T (nX) =n(TX)

for all Xe.o/. We say that n is fully spatial with respect to T if there is a one-
parameter semigroup of normal completely positive maps T; on Z(#) such that

Ti(nX) =n(T.X)

for all Xe.o/. Unlike T, the semigroup T;~ is uniquely determined by T; when it
exists. We say that a state ¢ on o/ is (fully) spatial with respect to T; if the cyclic
representation associated with ¢ has this property. It is well-known that every
invariant state is fully spatial with respect to a dynamical group, but the same does
not hold for dynamical semigroups even when the algebra o/ is finite-dimensional.

Example4.1. Let o =M(2, C)®M(2,C) and define Pe«/ and 7, pe& by

P=[o o)ols )

The evolution equation

%{ =1(X)P—1(PX +XP)

on .o/ has solution X(f)=T,X where T, is a dynamical semigroup on .«/. Since
H{tX)P—L(PX +XP)}=0

forall X e o/, ¢ is an invariant state on «/. The GNS representation associated with
¢ is two-dimensional with kernel

a b 0 0
=l N2 Yuacae)

Itis clear from the evolution equation that .# is not invariant under T; so there is not
any induced semigroup on &//.%.

We recall that a state ¢ on &7 is called faithful if (X *X)=0 implies X =0. It is
called separating if (/) Q is dense in S, where  is the cyclic representation on #
and Q the cyclic vector associated with ¢. If <7 is simple every separating state is
faithful. If ¢ is a KMS state with respect to any automorphism group of </ then ¢ is
separating [51, p. 69].
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Theorem 4.2. If ¢ is a separating invariant state on the C*-algebra </ with respect to
the dynamical semigroup T,, then ¢ is spatial with respect to T,.

Proof. The normal folium A" of ¢ is defined [25] as the set of states y on .« which
can be put in the form
X)) =tr[en(X)]

for some operator ¢ =0 on 4 such that tr[¢] =1. Alternatively [15, p. 38] 4" is the
set of states on o/ which may be extended to normal states on ¥ =(n/)". We claim
that

N ={pe& w=a¢p for some a}” 4.1)
the closure being in norm. Both sides of Equation (4.1) are norm closed convex sets.

If 0 <y <@ then by the GNS construction there is an operator Ae ¥ such that
0<A=Zual and

PX)=<{n(X)AQ, Q)
for all Xe«/. Thus
P(X)=<nX) (42 Q), (A'*Q))

so we A" and the RHS of Equation (4.1) is contained in the LHS. Conversely since ¢
is separating given ve # with |v]|=1 and given £¢>0 there exists Ae¥” with
|AQ — v|| <e and ||AQ|| =1. Defining the state y on &/ by

PX) =<{nX)(49Q), (42)>
we see that
Osy=|4*4] ¢.

Since ¢ >0 is arbitrary the RHS of Equation (4.1) contains all vector states and
hence all states which can be represented by density matrices g.

The invariance of ¢, the positivity of T;, and Equation (4.1) imply that there are
positive linear maps R, on the Banach subspace % =lin(/") of &/* such that

(Rap) X) =p(TX)

for all Xe.Z, we# and t=0.
Identifying #* with ¥” in the canonical manner [15, p.38; 19, p.119] there are
normal positive linear maps T; =R* on ¥~ such that

I™ (nX) =n(T,X)

for all X e o/ and t=0. The complete positivity of T; implies that T;” is completely
positive and the semigroup property of T; implies that T;” is a semigroup.

We conjecture that ¢ need not be fully spatial with respect to T; in the
circumstances of the above theorem.

Theorem 4.3. Let ¢ be a separating type 1 factor state of the C*-algebra < , invariant
with respect to the dynamical semigroup T;. Then ¢ is fully spatial with respect to T,.
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Proof. By [ 15, p. 124] the Hilbert space # of the cyclic representation associated to
¢ may be written in the form # =, ® #, so that

(ned) =L (H,)D1.

The maps T,~ of Theorem 4.2 may therefore be considered as completely positive
maps on () and by [12, p.140; 32] have representations

(o0}
T~ X)= ), 4,XA%
n=1
where
Y. A Ak=1
n=1

the sums being convergent in the weak operator topology.
If we define T, : L (H#)— L (H#) by

TX)= ) (4,81,)X(4,®1,)*
n=1
then each T; is normal and completely positive. Subject to normality T is uniquely
determined by
T(A®B)=T." (4)®B 4.2)

valid for all Ae #(#,) and Be ¥ (+#,). Equation (4.2) implies that 7, is a one-
parameter semigroup.

In the remainder of this section we apply some of the abstract results above to
the dynamical semigroups constructed on the CAR algebra o/ in Section 2.

Theorem 4.4. Let ¢ be a spatially homogeneous state on the CAR algebra of , which is
invariant with respect to the free dynamics S;. Let T, be the dynamical semigroup
associated with the evolution equation

%=D(X)+ | {2B*6(X)B.— B*B.X

~XB*B_+20B, 0(X)B*—aB,B*X —oX B B*}d*x

as in Theorem 2.1, where 0. =0. If

(X B)=a¢(BX) (4.3)
for all Xe o/ then ¢ is invariant with respect to T,.
Proof. If we define

J (X)=2B*0(X)B,— B¥B . X —XB}B,

+20B,0(X)B¥ —aB,B¥X —aXB,B¥

then

$(J.X)=0 (44)
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for all xeR® and Xe .o/, by the spatial homogeneity of ¢ and Equation (4.3). If
Xes/, then J Xeo/; so Equation (4.4) still holds by [42, p.178]. Therefore
Equation (4.4) is valid for all xelR® and X e.«. By Equation (2.4)

HT()X) = (X)

for all Xe.oZ, t=0 and a=0. Letting a— 00 we obtain

HT(M)X)=pX)

for all Xe./ and t=0.
For the application of this theorem we recall that the universally invariant state
¢, at the inverse temperature f is defined formally by

¢p)=tr[e” "X ]/tr[e”""]
where N is the number operator [45].

Theorem 4.5. If the Wick monomial B is of odd degree and involves m creation and n
annihilation terms, then ¢, is invariant and spatial with respect to T. if

ePm=m —q
Proof. We note that ¢, is a KMS state with respect to the automorphism group

a(e1) of /. The verification of Equation (4.3) is a consequence of the KMS
property ; formally

¢4XB)=tr[e”"NXN]/tr[e™ V]
=tr[e” AN(efNBe PN)X ] /tr[e” V]
=ePm=mtr[e ANBX ) /tr[e ™ #N]
—aghy(BX).

The KMS property also implies that ¢, is a separating state [51, p.69], so ¢, is
spatial by Theorem 4.2.

Comment. It should be possible to extend Theorem 4.5 to the case where ¢ is a more
general KMS state and the evolution equation has a suitable form, dependent on ¢.

§5. An Exactly Soluble Evolution Equation

Many of the above ideas can be well illustrated with the exactly soluble evolution
equation

%Xt‘ = DS(X )
+ ni {2a*(£)0X)a(f,) — a*(f)a(f)X —X a*(f)a(f)} d*x
+ ,,!3 {2a(9,)0X)a*(g,)— alg,) a*(g.)X —X alg,)a*(g,)} d*x (5.1)

on the CAR algebra of over # = L*(IR®). The three terms on the RHS of Equation
(5.1) are interpreted respectively as the free generator, a stochastic term tending to
annihilate particles, and a stochastic term tending to create particles.
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Itis advantageous to consider this model at the maximum level of generality. We
let o/" be the linear span of all Wick monomials, this being a dense *-subalgebra of
of. We let o/" be the linear span of all Wick monomials whose test functions lie in
the domain of an unbounded self-adjoint operator S on #. The derivation Dg on &/
was defined in Section1 and has domain containing «/”. We turn now to the
definition of abstract versions of the two stochastic terms of Equation (5.1)

Theorem 5.1. For every bounded operator A on # such that A+ A* =0 there is a
linear operator Z ,:f'—of which depends linearly on A and has the further
properties.

() If Aistrace class Z ;,may be extended to a bounded linear operator on s/ which
is the generator of a norm continuous, completely positive, one-parameter semigroup
on of.

(i) If A is bounded the closure of Z , is the generator of a strongly continuous,
completely positive one-parameter semigroup T(t) on o/ such that

T@®{a*(f1)...a*(fM}=a* " f1)...a* (" f") (5:2)

for all normal ordered Wick monomials.

Proof. 1f A is trace class then applying the spectral theorem to its skew- and self-
adjoint parts we obtain

A= Y 2ig" <G+ Y i < 53)

where ||g"|| =|h"|| =1 for all n, u, are real, 1,20 and

0 [ee}
Y <00, Y |ul<oo.
n=1 n=1

The formula

Z,0)= Y M{—a*(g"alg"X +2a*(g") 0(X)a(g")~Xa*(g") alg")}

~i i o {a* (W) a(h") X —X a*(h") a(h")} (5.4)

n=1

is norm convergent and defines a linear operator Z, on & with
0
n=1

The complete positivity of the norm continuous semigroup T; = e+’ follows from
[12, p. 143; 33].
Direct calculations show that for any normal ordered Wick monomial

Z{a*(f)...a*(f")}

i<j i>j
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Together with the density of o/’ in o7, this shows that Z , depends only on 4, and not
on the decomposition of 4 in Equation (5.3). Equation (5.5) also implies that
Equation (5.2) holds for any normal ordered Wick monomial.

We prove the theorem for arbitrary bounded A such that A+ A* =0 by taking
limits. If A, is a sequence of trace class operators such that 4,4+ A4%=0 and
A,— A strongly as n— oo, and if we define

T,()=exp{Z 4t}
then
lim 7,0) {a* (/*)..a* (/) =a* @ *[")...a® (/")

for every normal ordered Wick monomial, the norm convergence being uniform for
t in any bounded interval. Because | T, (t)|| <1 for all n and all =0, there is a
bounded operator T(t):«/ —.o/ such that

lim sup ||T,@)X—-T(@)X| =0 (5.6)

n—>o 0=ttt

forall X e o and t, = 0. It is an immediate consequence of Equation (5.6) that T'(¢) is
a strongly continuous, completely positive, one parameter semigroup on .o/
and that Equation (5.2) holds.

By Equation (5.2) the infinitesimal generator Z , of T'(t) has domain containing
all normal ordered Wick monomials, on which it is given by Equation (5.5). Thus ./’
is contained in the domain of Z ,, is invariant under T'(¢) and so is a core for Z , by
[39, p. 241].

Comments (1). An alternative proof of parts of the above theorem could be based on
the fact proved in [21, 29, 44] that since [[e ~#‘|| < 1 there exists a completely positive
map T,(t) on o satisfying Equation (5.2) for all normal ordered Wick monomials.

(i) It is an immediate consequence of the theorem that T(t) leaves the
observable algebra <7, invariant.

(iii) The theorem can be modified by supposing Equation (5.2) is satisfied for all
anti-normal ordered Wick momials, and replacing Z, by an operator Y,. In the
proof Equation (5.4) is replaced by

V0= 3 4, {~a(g)a* (@)X + 2067000 a*(0)
~Xa(g)a* (g} +i 3 o {all) ()X ~Xali) ()
while Equation (5.5) is replaced by
Vola* (). ()
- 2 {aofarun o 67

i<j i>j
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valid for all anti-normal ordered Wick monomials. The action of Y, on normal
ordered Wick monomials may be deduced from Equation (5.7), but the expression is
not so simple.

We combine the above results into one theorem.

Theorem 5.2. Let S be an unbounded self-adjoint operator on # and A, B bounded
operators such that

A+A*20, B+B*=0. (5.8)

Then there exists a dynamical semigroup T(t) on o/ whose infinitesimal generator W is
given on " by

WX)=Ds(X)+Z (X)+ Yp(X).

Moreover
T(t)X = lim (ePs?r 4t ¥ony X (5.9

for all Xe /" and t=0.

Proof. Our method will be directly related to the computation of T(t). We define
®,n,» H as the projective tensor product [43, p. 36] of m copies of # and n copies of
the complex conjugate Hilbert space 5 ~. This is the Banach space completion of
the algebraic tensor product for the norm

k k
IHXIH=inf{ ; LAl enll - x = ; f'1®~~®ffn+,.}~

We then define /= ) ®,,,#.
. m+ns<N ’ .
There are unique linear contractions i, , from ®,, , # into &/ such that

(1 @ ® S 1) =0* () 0* () @ 1) - 0(frn 1)

and these may be combined into one linear contraction iy :.e/y —&. Our plan will
be to construct the semigroup first in the /5 and then to carry it through to o/
using the Trotter product formula.

There is a strongly continuous one-parameter group of isometries S.” on o
such that for all m, n we have

S (f1®~~®fm+n)=(ei&f1)®---®(ei5t mn) -
It is clear from Equations (1.1) and (1.5) that
iyS;x=S8,iyx (5.10)

for all xe .o/ and all ¢=0. The linear span &5 of all elementary tensor products
fi®...® f,+, such that each f; lies in dom (S) is a core for the infinitesimal
generator g of ST by [39, p. 241]. There is a unique bounded linear map Z on
&y such that

m+n

Z;(fi®- @ fiysn)=— ,.; [{@ﬁ}@(Aﬂ)@{i@jﬁH.
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One sees by Equation (5.5) that
iyZ;x=2Z 4iyx (5.11)

for all xe /. Using Equation (5.7) to write down the action of Y; on normal
ordered Wick monomials one may show similarly that there is a bounded operator
Yz on oy

such that

iy Y5 x=Ypiyx (5.12)

for all xe /. Since Z] and Y are bounded there is a strongly continuous one-
parameter semigroup Ty () on /5 whose infinitesimal generator is equal to
(Dg +Z7+Yg) on its core Py. Moreover

T3 () x= lim (eP5 24l g¥iiry x

¥—> 0

for all t=0 and xeo/y by [7]. It follows by Equations (5.10), (5.11) and (5.12) that
the limit in Equation (5.9) exists for all X in the dense subspace

(<)

0 iz

of /. Since each of ePs', eZ4!, e¥?!is a completely positive contraction for all ¢ =0,
Equation (5.9) is proved for all X e &7, and T'(¢) is a completely positive contraction
on 7 for all t=0. Moreover

T(t)iyx=iyTy({)x

for all t 20 and xe o . This formula implies that T'(¢) is a strongly continuous one-
parameter semigroup on .«/. Applying iy to both sides of

lim YTy () x—x)=(Dg +Z; +Y5)x
t—-0
valid for all xe 2y, we obtain

lim ¢~} (T()X —X)=(Dg+ Z,, + Yy X
t—0

forall Xest"= () iy2y.
1

Comment. With some further work one could show that /" is a core for the
infinitesimal generator W of T(z).

Corollary 5.3. If f, ge # and
C=iS—A-B (5.13)
then

T(t){a*(f) alg)} =a*(e“ f) a(e™q)

+ [ {(B+B*¥)e“fe“gyds-1. (5.14)
=0

N
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Proof. We first note that C is abounded perturbation of iS and so is the generator of
a one-parameter semigroup. Moreover C is dissipative by Equation (5.8), so ¢ is a
contraction semigroup by [12, p. 103; 52, p. 250].

Since T(t) are contractions it is sufficient to consider the case where f,
gedom(S). Since

Yz{a*(f)a(9)} = Y3 {{f,9> 1 —alg)a*(/)}
=a(Bg) a*(f)+alg) a*(Bf)
={f,Bg)-1—a*(f)a(Bg)+<Bf,g>-1—a*(Bf)alg)
we find that
W{a*(f) alg)} =a*(iSf) a(g) + a*(f) a(iSg) — a* (Af) alg)
—a*(f)a(Ag)+<f,Bg>-1+{f, Bgy-1—a*(Bf)alg) —a*(f)a(Bg)
=a*(Cf)alg)+a*(f)a(Cg)+<{(B+B*) f,g>-1.

This may be directly integrated yielding Equation (5.14).

Comment. One may similarly find explicit expressions for T'(t) applied to any Wick
monomial. We shall, however, manage to avoid doing the necessary computations.

§ 6. Quasi-free States

We study the time evolution of quasi-free states of the CAR algebra under the
dynamical semigroup T(¢) constructed in the last section. If R is a bounded operator
on # with 0 <R =<1 then by [5, 14, 34, 45] there exists a unique state wy on & such
that

wg{a*(f)---a*(f) a(gy)-..a(g,)} =b,, det {{Rf; g7} (6.1)

for all normal ordered Wick monomials. These states are factor states and their
quasi- and unitary equivalence as R varies has been determined in [37]. The Fock
state, anti-Fock state and central trace are given by R=0, R=1 and R=3
respectively.

Lemma 6.1. The map R— wy, is a homeomorphism of {Ae £ (#):0= A=< 1} with the
weak operator topology onto the closed set &,y of quasi-free states on o/ under the
weak* topology

Proof. This is a trivial consequence of Equation (6.1).
Theorem 6.2. The semigroup TF maps Sy into itself. Indeed

T¥ (wg) =g {6.2)
where

t
R(t)=e“"Re“' + [ €“(B+B*)e“ds. (6.3)
=0

N



246 E. B. Davies

Proof. By Equation (5.9) and the closedness of )y it is sufficient for the first
statement of the theorem to prove that &, is invariant under each of €', e*+', ¢">",

{(eP)* g} {a* (f).--a* (f) algy)-..alg,)}
=g {a* (€' f,)...a* (™' f) a(e™g,)...a(e™ g,)}
=35, det {CRESIS, €5t >}
=, -ist geist {a*(fm)a(gn)}
SO
(eDS')*coR=we_.s: ReiSt -

The proof that
(eZAt)*wR = a)e_ A* 1o at
is similar. To deal with e¥®' we need the formula

wglalg,)...alg,) a*(f,)...a*(f)}

for all anti-normal ordered Wick monomials, which may be deduced from Equation
(6.1) by straightforward algebraic manipulations. By Equation (5.7)

{€")*wg} {algy)...alg,) a* (f)--a*(f1)}
=awg{ale™g,)...a*(e"f))}

=0, det{{(1—R)e ®f,e"P'g;>}

=0, det {{(1—[1—e " (1-R)e™™]) f,9>}

=g _o-Bre(y —R)e~Bt{a(gl)-~a*(f1)}
SO

Yptyk —
(e’ WR =1 _ o-B*(1 — R)e~ Bt -

Having established the validity of an equality of the form of Equation (6.2) the
precise value of R(f) may be deduced using Corollary 5.3. We have

RO S

— oy (0 () alg)} = (TF ) {a* (/) a(g)}

R {0 () aleg)+ | (B+B) e gy 1)
0

s=

=(ReC'f,eC‘g>+ f ((B+B*)ecsf,ecsg>ds

s=0

for all f, ge #. This yields Equation (6.3).

§7. Equilibrium States

Let T;be a dynamical semigroup on a C*-algebra .« and let ¢ be a state on .« which
is invariant with respect to T#. There are various criteria for stability of ¢ which we
now enumerate.
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(i) ¢ is globally stable if T#yp— ¢ in the weak* topology as t— oo for all pe¥.

(ii) ¢ is weakly locally stable if it is spatial and T;*yp— ¢ in the weak* topology
as t—oo for all y in the normal folium of ¢.

(iil) ¢ isstrongly locally stableifitis spatial and T#yp— ¢ isnormas ¢— oo for all
y in the normal folium of ¢. Our condition of weak locally stability is close to that
used in [41] and other local stability conditions may be found in [3, 26]; all these
refer to reversible dynamics.

Strong local stability is too strong a property to be relevant for dynamical
groups. For if T¥yp—¢ in norm as t— oo then since

ITFp—oll=llw—T* ¢l =lv-9¢l

it follows that y = ¢. We include for completeness a well-known criterion for weak
local stability.

Theorem 7.1. If T:is a dynamical group on o/ and ¢ an invariant state which is
clustering in the sense that

lim ¢{Y*(T.X)Z}=¢{Y*Z} ¢ {X} (7.1)
t— o0
for all X, Y, Ze o, then ¢ is weakly locally stable.

Proof. If m is the cyclic representation and Q the cyclic vector associated with ¢ then

lim (n(TX)(rZQ),(nYR)) =<{¢X) 1(nZQ),(nYQ)>

t— oo

for all Y, Ze </ so
lim n(T.X)=¢X)1
t— o0

in the weak operator topology for all X e /. If p lies in the normal folium of ¢ and ¢
is a density matrix such that

Y (&) =tron(x)]
for all Xe.oZ, then

lim (T#) ()= lim tr[on(T.X)] = tr[0g (X) 1] = (X)
for all Xe /.

We can provide examples of the other types of stability with the dynamical
semigroups introduced in Theorem 5.2. Some preparatory lemmas will be needed.

Lemma 7.2. If e converges strongly to zero as t— oo then there is exactly one
temporally invariant quasi-free state, namely wg,,, where

R(w)= ofo e“"(B+ B¥) e ds (7.2)
0

satisfies 0 <R(0c0)< 1.



248 E. B. Davies
Proof. Equation (5.8) implies that R(c0)=0 and also
R(oo)g _ j eC*S(C-I- C*) eCSds= — [eC*t eCt]g) =1.
0

This calculation also establishes that the integral in Equation (7.2) is convergent in
the weak operator topology. If 0<R =<1 and R(t) is defined by Equation (6.3) then
R(t) converges in the weak operator topology to R(c0) as t— co. This implies all the
statements of the lemma by Lemma 6.1.

Lemma 7.3. Let T(t) be a strongly continuous one parameter contraction semigroup on
a Banach space o, and let {,};_, be an increasing sequence of closed invariant
subspaces of o, If the induced semigroups on o,/ _ , all converge strongly to zero
as t— oo, then for all Xe o/, and ¢>0 there exists t, such that if t=t, then

ITOX-Y|<e
for some Ye A, depending on X, t and e.

Proof. The truth of the lemma for n=0 is evident and we suppose inductively that it
is true for (n—1). Given X e/, and >0 let t =¢t, imply that

IT@OX +o,_ 1}l <e/2

where ||| - ||| is the quotient norm in &, /<7, _ .
Then

I T(t) X ~X']| <&/2

for some X'e o/, _,. Let t, be such that t=¢, implies
ITOX —X"|| <e/2

for some X"e /. Then t=t, +t, implies
ITOX X" | T@E—to)ll | T(20)X —X"||
+HITE—to) X' —X"| <e.

This establishes the inductive step, and hence the lemma.

Theorem 7.4. If ¢ converges strongly to zero as t— oo, then the state OR() I8 globally
stable.

Proof. We let o/, be the norm closure in o of the set of Wick polynomials of degree
=<n. For any Wick monomial

W=a*(f1)...a* (f")

the element W+, _, of «/,/</,_, is independent of the order of the creation-
annihilation operators in W. Therefore for such W

S W+st,_)=a* (@' f1)..a* (@S M+,
AW ot,_)=a* (e fY)...a* (e MM+,
e W+,_)=a*(e B fY)..a¥ (e B M+,_,
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and each of these semigroups leaves all the subspaces <7, invariant. Equation (5.9)
now implies that

T(@t)(W+,_)=a*( f1)...a* (' fM+o,_,
SO

lim 7)) (W+ 7, )| =0
and T(t) satisfies the hypotheses of Lemma 7.3.

If Xe .o/, and >0 there exists ¢, such that if t=¢,

ITX)—al] <e/2

where e € depends on X, t, &. Now wpg(,, is an invariant state by Lemma 7.2 so
IwR(w)(X)—acl=!a)R(oo){T(t)X—oc1}|<s/2.

Combining the last two equations leads to
| THX) — gy X) 1] <.

This implies for any state w on & that
(T ) (X) = 0p(eo) X)| =10 { TUX) = 0 (or) X) 1} <&

for all t=t,. Hence T;*w converges to wg,, in the weak* topology as t— co.
The following special case of the above theorem will be needed in Section 8. We
introduce the operators

Ay=(A+A%)/2, B,=(B+ B*)/2 (7.3)
for notational convenience.

- Theorem 7.5. Suppose that A, A*, B, B* all lie in an abelian von Neumann algebra v
and that S is affiliated to this algebra. Then e converges strongly to zero as t— oo if
and only if (A,+ B,) is one-one, in which case

R(00)=B,(A4,+B,) . (7.9
Proof. If fe # then since the operators all commute
e fl) = |~ Ut Bt £

which by spectral theory and Equation (5.8) converges to zero as t— oo if and only if
0 is not an eigenvalue of (4, + B,). Again because all the operators commute

R(o0)= [ €“"5(B+B*)e“ ds
(4]

— j‘e(C+C*)s(B+B*)dS
0

=(B+B¥)(C+C¥™!
=Bo(4o+Bo)"".
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Theorem 7.6. Suppose that R, A, A*, B, B* all lie in a totally nonatomic abelian von
Neumann algebra ¥~ and that S is affiliated to this algebra. If (A,+ B,) is one-one,
O0<RZ1 and

R#B,(A,+By) !

then the states T wy and T*wy are not quasi-equivalent when s=t.

Proof. Since Re ¥, Equation (6.3) takes the form
R(t)=Re 2o*Boty B (A + Bg) ! {1 —e~ 2ot Boty

According to [37] the states wp, and wpg,, are quasi-equivalent if and only if both
R(5)2—R()"?

and
{1-R(s)}'?={1-R(®)}'?

are Hilbert-Schmidt. Since 7" is totally non-atomic these imply R(s)=R(t). If s%¢
this in turn implies

R=By(4y+B,)"".

We suggest that this theorem implies that one cannot describe the time
evolution of states in Hilbert space, or spatial, terms. One may qualitatively say that
the Hilbert spaces associated to different time instants are disjoint. Thus the
dynamical equations must be treated at the C*-algebra level.

We conclude the section with an example of strong local stability.

Theorem 7.7. If B=0 and e converges strongly to zero as t— oo then the Fock state
w, is invariant for the dynamical semigroup T(t) with evolution equation
ax

o =Ds)+2,(0).

Moreover w,, is globally stable and strongly locally stable.

Proof. Since B=0, R(c0)=0and the Fock state w, is globally stable by Theorem 7.4.

That w, is spatial with respect to T(t) follows by the method of [9]. Indeed if V,
is the space of density matrices on Fock space &# which are supported in the
subspace %, of <n particles then

TFV)EY,

for all n and t=0.
For any operator Y on # we define Y~ to be the unbounded operator on &
which maps each n-particle subspace into itself and is given there by

YRIQ. . l+10YRI®..Ql+..+1®..Q1QY.

The number operator N therefore equals 1~. We denote by P the projection of #
onto the one-dimensional subspace spanned by the Fock vacuum Q.
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If the state p on &/ is determined by an operator in V,, and {e,} is any
orthonormal basis of # then

G[TFpN]= 3 u[(THp)a (e, ate,)]

m=1

i tr[wa*(e“e,) a(e“e,)]

m=1
=p {7}
Since ¢ ¢ converges in the weak operator topology to 0 as t— o0

lim tr[(T#y)N]=0. (7.5)

t— oo

Since
0<1-PZN
we have

0=str[(TFy) (A —P)]= tr[(TFy)N]
which together with Equation (7.5) implies that
lim {(TFy)Q,Q>=1.

t— o0
This in turn implies that
lim || T#p— ]| =0.

t—> 0

§8. A Statistical Mechanical Model

Following the notation of Section 1, we let .o/ be the CAR algebra over # = L%(R®)
and let S be the single particle Hamiltonian — 4. Given £, g in Schwartz space & we
consider the evolution equation

% =DX)+Z (X)) + Y3(X) (8.1)
on &/ where
Z,X)= n{} {2a*(£)0X)a(f) — a*(f)alf)X
—Xa*(f)a(f)} d’x (8.2)
and
%00= | {2a(gx>9(X>a*<gx)—a(gxm*(gx)X
—Xalg,)a*(g,)} d’x. (8.3)

Physically Z , describes the spatially homogeneous absorption of particles from the
system and Yy describes the spatially homogeneous emission of particles into the
system from an external reservoir.
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By first introducing a space cut-off into the interaction terms one sees Equation
(8.1)is of the form treated in Theorem 5.2 if the operators 4 and B on 5 are defined
by

A= [ 1> (fld*

B= .éa lg.> <9l dx.
If " is the Fourier transform then

(Ay) ()= 20| T (k) (k) (8.4)

(By) (k) =(21)*|3(0) > p(k) (8.5)
for all pe # and keIR®. That is A and B are bounded multiplication operators in the
momentum representation.
Theorem 8.1. If

71> + 19k >0 (8.6)
for all keR? then for all states w on o/

3 ® )
lim T¥w =wg(y,

oo

in the weak* topology, where the operator R(o0) on H# is defined by

{R(0)p} () =13(R)* {1 7 (R} +1g(0N*} ™ k) 8.7)

for allpe #. If w is a spatially homogeneous quasi free state different from Op(c) then
T#w and T*w are not quasi-equivalent unless s=t. If

If(R)*>0,  lg(k)>>0 (8.8)

for all keR3? then g (o IS Spatial with respect to the dynamical semigroup T(t).
Proof. The formula
{Gh)y} (k)= h(k)p(k)

defines an algebra isomorphism j of L°(IR?) onto the von Neumann algebra ¥~ of all
spatially homogeneous operators on #. Therefore ¥~ is a totally non-atomic
abelian von Neumann algebra. Equation (8.6) implies that the operator (4, + B,) of
Theorem 7.5 is one-one. Most of this theorem may be obtained directly from
Theorems 7.4, 7.5 and 7.6.

Equation (8.8) implies that R(c0) has neither zero nor one as an eigenvalue.
Therefore there exists an unbounded self-adjoint operator H on s# such that

R(c0)=(ef +1)71.

Therefore wpg,,, is a KMS state with respect to the automorphism group of whose
generator is Dy [4, p.18; 20; 24] and hence is a separating state by [51, p. 69].
Therefore wg,, is spatial by Theorem 4.2.
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§9. A Spatially Inhomogeneous Model

We consider an evolution equation similar to that of the last section but with
different operators A and B. We put A=al where a>0, corresponding to the
physical assumption that particles are absorbed from the system at a rate a which is
independent of their position and momentum. We put

B= és b(x) lg.» <g.l d*x ©.1)

where ge¥ and b is a non-negative bounded function representing the spatial
density of an external source emitting particles into the system. If b is not constant
then the evolution equation

dX
s =Ds(X)+Z ,(X) + Yp(X) 9.2)
with
S=-14

is not spatially homogeneous and interesting new phenomena can occur. Before we
can use any of the theory of Section 5 we need the following lemma.

Lemma9.1. The integral in Equation (9.1) is convergent in the weak operator topology
and defines an operator B with

0<B=|fll, llglzl.
Proof. As a quadratic form

0<B<B'=|b|, 13 lg,.> gl d*x (9.3)

and by Fourier analysis
(B'y) () =(2)° [|b]l ,, [a(K)I* (k) 04
for all ye# and kelR3, so
0=B'=(2n)*|b], 1415 1
<bllo lglzt.

We now denote by T(t) the dynamical semigroup on ./ associated with the
evolution Equation (9.2) according to Theorem 5.2.

Theorem9.2. If the operator R on # is defined by

R= [ 272w~ 8= DI Bois=Bigy ©.5)
0

then wy is a temporally invariant globally stable state on .
Proof. Since

B=B*=0
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Equation (5.8) implies that
”eCt” — ” e(iS—B)te—at” ée—at

so the conditions of Theorem 7.4 are satisfied.

The state wy is generally not spatially homogeneous. In order to investigate
some of its properties we recall some well-known ideas.

The particle number distribution of any state w on the CAR algebra .o/ over #
= L*(R?) is a non-negative countably additive measure u on IR® such that for any
Borel set ECR?

0

WE)= Y, o{a*(fMa(f")}

n=1

where {f"} is any orthonormal basis of the subspace Pz5#, and Py, is the projection

o7 51

If the operator R on 4 is defined by
(Rf,9>=w{a*(f)alg)}

for all f,ge s, so that 0= R<1, then we may alternatively write
W(E)=tr[RP]

which shows that the particular orthonormal basis of P chosen is not important.
We say the state w is locally finite if u(E)< oo for all bounded Borel sets E.

In the spatially homogeneous case the measure y associated to the state wy of
Theorem 9.2 can be easily determined.

Theorem 9.3. If b(x)=1 for all xeR? then wy is locally finite and its distribution u is
given by

uE)= [ hk)dk [ &x 9.6)
R3 E
where
h(k)=1g(k)* {(2m)~* a+|g(k)|*} ~* ©.7)
for all keR3,

Proof. We first note that he L'(R?) since ge &.
A simple calculation based on Equation (9.5) shows that

(Ry) (k)= h(k) (k)

for all e #. The operator R on # therefore has the positive definite continuous
kernel (2m) ™32 h(y — x).
If E is compact then PyRPy, is trace class by Mercer’s theorem [46, p. 128] and

tr[RP;] =tr[P,RP,]
= [(2m)~32h(0)d>x
E

= | h(k)d3k | d®x.
R3 E



Irreversible Dynamics of Infinite Fermion Systems 255

The truth of the theorem for more general Borel sets E follows by standard measure
theory.
We now return to the spatially inhomogeneous case.

Theorem 9.4. For all non-negative bounded functions b the state wy is locally finite.
Moreover the measure u has a bounded density with respect to Lebesgue measure.

Proof. If E is a bounded Borel set then

o0
WE)= j e 2at u.[PEe(—iS—B)tBe(is_B)tPE] di
0

o
— j‘ 2e—Zat|“Bl/2e(iS—B)tPE”|2dt
]

where ||| - ||| is the Hilbert-Schmidt norm. Now

t
e(iS—B)t=eiSt__ j‘ e(iS—B)(t—s)BeiSsds
s=0
SO

Bl/2e(iS—B)tPE =Bl/2 eiStPE
t

_ j (Bllze(iS—B)(t—s)BI/Z) (Bl/zeiSsPE)dS
=0

N

and
B2 =Bt P ||| < [||BY? e Pyll|

t
+ | IBY2|1[||B*2e"* Pyl ds. ©.8)
0

If B is defined by Equation (9.3) then
IIBY/2€ Py |2 =tr[Pye™ 5B Py]
Str[Pye™S'B €' Py]
=tr[P;B Pg]
= [ 116l 400> &k | &
R3 E
=6l Ilglliid%

by Equation (9.4) and the fact that B’ commutes with ¢'>'. Substituting this estimate
into Equation (9.8) there is a constant § such that

1/2
25 b s+ o] 2]
E
for all t=0. Hence
WE) | 224 B2(1+0)*de [ dx
0 E

=y [d3x.
E
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By the Radon-Nikodym theorem the density of u with respect to Lebesgue measure
is bounded by 7.
We specialise further to the case where the emission of particles into the system
from the reservoir occurs only in the region
R3 =(u,v,w)eR3 :u>0}.
This is achieved by putting
1 if xeR3
b(x)= { . by
0 if xgR3.

For notational convenience we shall write u below for the element (u,0,0) of R3,
Physically one would expect that the state wy, shows a transition as one passes

from large negative values of u to large positive values. This is made precise in the

following theorem.

Theorem 9.5. The limit states

o= lim oa*wy
u—>+oo

exist in the weak * topology and are spatially homogeneous quasi-free states of . The
state ™ is the Fock state while w™ is the quasi-free state associated to R™, where

(R* ) (k) =h(k)p(k)
for all we #, and h is defined by Equation (9.7).

Proof. Since
(Fog) {a*(f1)...a*(f™)alg")...alg")}
=wg{a*(U,f!)...aU,g")}
= 0, det{<R(U,, 1), (U,g%)>}
canRUu{a*(fl)...a(gl)}

for all normal ordered Wick monomials, we see that »
oy g =WOysry,, -

By Lemma 6.1 we have to prove that
R,=UXRU,

converge in the weak operator topology to R™ (resp. R™) as u tends to + oo (resp.
— 00).
By Equation (9.5) and the spatial homogeneity of S

0
R“ — j’ ze—2ate(—iS—Bu)tBue(iS—Bu)tdt
0

where

B,=U#BU,= | b(x+(u,0,0))|g,> <g,ld’x.
]RS
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It is clear that as u— + oo, B, converges in the weak operator topology to
B* = [ lg.><gld’x.
R3

Since also u<v implies B, < B, B, actually converges to B in the strong operator
topology. This implies by [31, p.502] that

lim e(iS—Bu)t — e(iS—-B*)t

u—>+ o

in the strong operator topology for all t=0. It follows by the dominated
convergence theorem that R, converges in the weak operator topology to

@
R+ — j' 2e_2“’e(—is—3+)tB+e(is_B+)tdt.
0

The required expression for R* may be obtained as in Theorem 9.3.
The case u— — oo is done similarly, the limit operator R~ being equal to 0, which
characterises the Fock state.
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