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Metastable States of Quantum Lattice Systems
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Abstract. We extend the characterisation of metastability, as given in [1] for
classical systems, to show that quantal lattice systems with suitable long range
forces can support metastable states.

In a previous work [1], we characterised metastable states of classical systems as
being locally, but not globally, thermodynamically stable and also stable under
constraints confining the system to a suitable reduced state space. It was shown that,
according to this characterisation (whose motivation and relation to other ones
[2, 3] was discussed in [1]), systems with certain types of long range forces can
support metastable states. The object of this note is to show that similar conclusions
are applicable to quantal lattice systems (cf. the Proposition and following
Comment below).

Our treatment is based on a definition of local thermodynamical stability of
such systems, that was introduced in [4]. There it was shown that, for systems with
short range forces, the conditions for local stability are equivalent to those of
KMS. In the present note, we need to extend our definition of local stability to
systems with long range forces.

We formulate the states, observables and forces of a system on a lattice, Γ (= Zv,
say) in a standard way (cf. [5]). Thus, denoting the set {A} of finite point subsets of Γ
by L, we define the C*-algebra j/ of observables of the system as that generated by a
family {<p/(Λ)\ΛeL} of local C*-algebras, where s/(Λ) is a type-/ factor of finite
order that is isotonic with respect to Λ. The state space Ω is then the set of positive
normalised linear functional on Λ/. The set of translationally invariant elements of
Ω will be denoted by Ω. The forces in the system will be taken to correspond to an
interaction potential φ, which maps L into the self-adjoint elements of ̂  in such a
way that (i) (/>(0) = 0; (ii) φ(A)G^(A)\ (iii) φ transforms covariantly w.r.t. space
translations and (iv)

-
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where N(Λ) is the number of points in Λ. We define Φ to be the Banach space of such
interactions, with norm | | and we define Φv(cΦ) to be the Banach space of those
interactions φ for which the norm \φ\1<oo9 where

\φ\^ £ \\φ(Λ)\\. (2)
OeΛ

For AeL and φeΦ, we define the local energy functional EΛ on Ω by the
formula

£>>) = Σ ω(0(Λ'))VωeΩ. (3)
Λ'CΛ

Let Ω be the set of states ω such that, for any state ω' which coincides with
ω outside some bounded region of Γ, EΛ,(ω') — EΛ,(ω) converges, as /Γ-*oo, to a
value in Ku{oo} that does not depend on the particular chosen sequence of Λ"s.
Thus Ω = Ω if φeΦ^ though not, in general, ifφeΦ\Φί. For ωeΩ and ωfeΩ, with
ω'Λc = ωΛc, where ΛC = Γ\A9 we define

E^(ω)] . (4)
A'\

Let SΛ9 SA be the local entropy and conditional local entropy functionals on the
state space, as defined in [4]. We define the free energy density functional / on Ω,
for temperature T, by the formula

/(ω) = lim [£» - TSΛ(ω)l/N(Λ) (5)
A\

and, for ωe Ω and ω'Λc = ω^c, we define the incremental local conditional free energy
AFΛ(ω'\ω) by the formula

AFΛ(ω'\ω) = AEA(ω'\ω) - T(SΛ(ω') - SΛ(ω)) . (6)

In cases where φeΦί9 ΔFΛ(ω'\ω) = FA(ω') — FΛ(ω\ where FΛ is the conditional free
energy functional of [4].

The following definition provides the quantal analogues of those given in [1]
for local and global stability, equilibrium and metastability.

Definition i. (i) We define KL, the set of locally thermodynamically stable states of
the system, to be those elements of Ω for which AFΛ(ω'\ω)^.QVΛEL9ω

f

Λc = ωΛc.
(ii) Let Ω0 be a closed proper subset of Ω. We define KG (resp. K0), the set of

globally stable (resp. Ω0-stable) translationally invariant states of the system to be
the set of elements of Ω (resp. Ω0 = Ω0nΩ) at which / (resp. /jΩo) attains its lower
bound.

(iii) We define KE, the set of translationally invariant equilibrium states of the
system, to be KGr\KL.

(iv) We define KMo, the set of Ώ0-metastable, translationally invariant states of
the system, to be K0nKL\KG.

It follows from these definitions and the proof of Part (a^of the theorem of [4(a)J
that, if φeΦίy then KLnΩcXG; and therefore KLπΩ = KE and XMo = 0. On the
other hand we shall presently construct a class of models, with φeΦ\Φl9 for which
KMo ή= 0. Thus we arrive at the following
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Proposition 1. (i) IfφeΦ^ then KLnΩ = KE and KMo = &; and (ii) for suitable j/,
φ(eΦ\Φί\ T and Ω0, KMo*θ.

Comment. This result parallels those of [1 Section 2]. Further, it may readily be
seen that the result given by [1 Proposition 3.1] concerning metastable states in
mean field theoretic classical models may be carried over to quantal lattice systems.
Thus, models with suitable short range interactions together with long range mean
field theoretic ones (defined in analogy with [1 Section 3] can support metastable
states whose thermodynamic functions are real analytic continuations, in tempera-
ture and chemical potential, of those of an equilibrium phase. Similar results for
mean field theoretic models have earlier been obtained on different bases [2, 6].

Models with Metastable States. We now formulate our specifications
and Ω0 for the models, referred to before Proposition 1, which will be shown to
support metastable states. Thus we take <$/(Λ) to be a type-/ factor of order nN(Λ\
with n<ao. Let {PΛe<stf(Λ)\ΛeL} be a family of projectors such that (i) PAίPA2

= PAίuΛ2> (ϋ) PΛ^(Λ)PΛ *s a tyPe-J factor of order mN(Λ\ with m<n, and (iii)
PA, jtf (Λ) transform covariantly with A under space translations. It may be verified
that these properties are obtained if (a) j/(Λ) is isomorphic with the set of bounded
operators in a Hubert space JfA of dimension nN(Λ}/2, such that
3?Aι®3fA2~2tfA^Λ2 f°r A1nA2 = 0;(b) PΛ corresponds to the projector from 2tfA

to a subspace tfA of dimension mN(A}/2, with 3fΛί®3fA2~3fΛluΛ2 f°r AίnA2 = 0;
and (c) $?A,y£A transform covariantly with A under space translations.

The interaction φ is assumed to be of the form φi + φ2, where φίeΦ1, and
φ2eΦ\Φ2; and, for all AeL, (ί-PA)Φι(Λ)=Q and φ2(A) = (I-PΛ)φ2(A)
>c(A)(I — PΛ) where c(A) is a positive number and £ c(A)= oo.

We take Ω0 to be {ωeΩ|ω(/-PJ = OVΛeL}.
We now establish that the models of this class support Ω0-metastable states by

showing that (a) K0CKL and (b) for sufficiently large T, K0r\KG = &.

Proof of (α). We start by introducing an auxiliary C*-algebra & as follows.
be the J/F*-algebra PΛ£/(A)PΛ, whose unit element is PΛ and, for A' D Λ9 let iA,A be
the injective mapping of $(A) into &(A'} given by: i^^B^^P^^B^^^. We
identify BA(e@(A)) with iA,A(BA) (eJ'(Λ')) for Λ"3Λ, thereby rendering ^(A)
isotonic in Λ. We then define J* to be the quasi-local C*-algebra given by the norm
closure of \J

ΛeL

It follows from our definitions of Ω0 and J* that the elements ω of Ω0 are
completely determined by their restrictions ω^(A) to the local algebras $(A\ and
may thus be identified with the states on $. Further, as (/-PJφ1(yl)=0 and
PΛφ2(A)=Q, it follows that K0 corresponds to the set of globally stable states on $
for the interaction φίt Hence, applying Definition 1 (i) and Proposition 1 (i) to the
states on ̂  for interaction φl9 we see that AFΛ(ω'\ω)^QVAeL9 ωeK0, α/eΩ0 and
ωΛc —

 ωΛc Thus it remains for us to show that AFA(ω'\ω) ^ 0 if ωe K0, ω' e Ω\Ω0 and
ωf

Λc = ωΛc. This we shall do by proving that, for such states, AEA(ω'\ω)=co and
therefore, as SΛ is a bounded functional on Ω [4(a); Lemma 2.4 (2)], AFA(ω'\ω) = cQ.

Assuming then that ωeK0, ω'eΩ\Ω0 and ωAc = ωAc, we start by showing that
there exists a point z in A such that ω'(Pf)< 1, where P^P^. For this purpose we
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start by assuming the contrary, namely that ωXP^lVieA This in turn implies
that ω'lPi) = 1 V ί e Γ, since ω'Λc = ωAc and thus ω'(P^ = ω(PJ = !VieΛc. On the other
hand, if Λ19 Λ2eL and ω(PAl) = ω'(PΛJ = l, then it follows from the relations
0 £ ω'((/ - PAί)PA2) Z ω'(I - PAl) = 0 that ω'(PΛ^AJ = ω'(PκιPΛa) = ω'(PJ = 1.
Hence, by induction, if Λί9Λ2, ...,ΛneL and ω'(PΛί) = ω'(PΛ2)=... = ω'(PΛn) = l,
then ω'(P^lUyl2 uyln) = 1. In view of this result, the assumption that ω'(P^ = 1 V ieΛ,
hence VzeΓ, implies that ω'(Pκ/) = 1 VΛ'eL, in contradiction with the assumption
that ω' e Ω\Ω0. Thus we have established, by a reductio ad absurdum argument, that
3ieΛ for which ω'(Pz )<l. As a consequence, we see that, if A'BI and thus
PA' = PA'^ = PA^ then ω'(Pf) - .ω'(P^) = ω'ίP^J - P^)) ̂  0. Hence
1— ω^P^/)^!— co'(Pi)>QV Λr3ί. It follows from this inequality and Equation (4),
together with our specification of φ, that

ΔEΛ(ω'\ώ)^-2\φ,\,+(l-ω'(P$ Σ c(^).
ie/l'

In view of the translational invariances of the forces, we may replace £ c(Λ') by
ieΛ'

Σ c( î') in this last estimate. Hence, as we are given that £ φl') = oo, I^Jj < oo
Oe/l' ^ OeΛ'

and 1 — ω'ίP^O, it follows that AEΛ(ω'\ω)=co9 as required.

Proof Of (b). We^shall prove (b) by showing that, for large enough T, inf {/(ω)|ωe Ω}
<inf{/(ω)|ωe00}.
For this purpose we note that it follows from equations (1), (3) that
\EA(ω)/N(Λ)\ ^ |0| while it follows from the definition of SA in [4(a)], together with

our above specification of Ω, Ω0 that sup{limiS'yl(ω)/7V(yl)|ωeβ(resp. Ω0)l
Ut J

= 0(resp. logm/π). Hence, by Equation (5),

and

Therefore inf {f(ω)\ωeΩ}< inf {f(ω)\ωeΩ0} for sufficiently large T, as required.
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